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ABSTRACT In the fog computing architecture, the offloading of computing tasks can be conducted by the
Internet of Things (IoT) devices to the fog nodes (FNs) that are co-located with base stations (BSs). However,
as the IoT devices within the same coverage of the BS can offload lots of tasks simultaneously, the FN can
be overloaded, resulting in scalability issues due to limited computing resources. As a promising solution to
this problem, opportunistic FNs (OFNs) which denote FNs with mobility such as smart phones and vehicles
have been considered as they opportunistically reduce the load of static FNs. IoT devices can offload a task
and receive the result to/from the OFN directly when OFN is close to the device. In addition, the offloading
can be conducted indirectly through the BS when the OFN is not in the vicinity of the IoT devices while it
is within the coverage of the BS. To assess the offloading performance according to the mobility of the OFN
considering the direct and indirect offloading scenarios, we developed an analytic model for the opportunistic
offloading probability that the task can be offloaded to the OFN, which can also be interpreted as the load
distribution effect. Extensive simulation results are given to validate the analytic model and to demonstrate
the performance of the opportunistic offloading probability.

INDEX TERMS Fog computing, opportunistic fog node, load distribution.

I. INTRODUCTION
With the growing popularity of smart devices, such as smart
phones, wearable devices, and vehicles that are equippedwith
various sensors, Internet of Things (IoT) networks where
data is shared between the connected devices and IoT ser-
vices such as smart home, smart city, and smart factory have
attracted increased attention [1], [2]. Along with the variety
and complexity of IoT services, cloud computing has been
utilized to process the task from the IoT devices due to its
flexible and scalable computing resources [3]. However, the
remote location of the cloud servers typically leads to high
latency and requires high network bandwidth usage for the
core network. To mitigate this problem, the concept of fog
computing, which brings computing resources closer to the
IoT devices, has been introduced [4], [5].

In the fog computing architecture, the offloading of com-
puting tasks can be conducted from the IoT devices to the
fog node (FN) that is usually co-located with the network

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurizio Casoni .

FIGURE 1. Offloading scenarios: (a) direct, (b) indirect, (c) hybrid.

access node such as a base station (BS) [6]. Compared to the
conventional offloading (i.e., based on the cloud computing),
offloading with FN can reduce the load of networks and sup-
port delay-sensitive applications. However, as the IoT devices
within the same coverage of the BS can offload lots of tasks
simultaneously, the FN can be overloaded, resulting in scala-
bility issues due to its limited computing resource [6]–[9].
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As a promising solution to this problem, opportunistic
FNs (OFNs) which denote the FNs with mobility such as
smart phones and vehicles have been considered. OFNs can
provide computing resources to the IoT devices only when
they are close to each other. In other words, OFNs can oppor-
tunistically reduce the load of static FNs because of mobil-
ity [10]–[19]. There have been many studies on the OFN
offloading that can be classified into three scenarios as shown
in Fig. 1: (a) direct offloading where the IoT devices directly
offload the task and receive the result to/from the OFN when
the OFN is close to the IoT devices [10]–[12], (b) indirect
offloading where both procedures (i.e., the task offloading
and result reception) always pass through the BS when the
OFN is not in the vicinity of IoT devices while it is within the
coverage of BS [13]–[16], and (c) hybrid offloading where
either of the procedures directly interacts with OFNwhile the
other is conducted through the BS according to the availabil-
ity of the OFN based on its mobility [17]–[19]. However, pre-
vious studies have only considered their own fixed offloading
scenarios. This means that the overall offloading analysis that
reflects the entirety of the scenarios has not been considered
even though all the scenarios can be opportunistically utilized
according to the mobility of the OFN.

In this paper, we focus on the challenges associated with
analytically modeling the behavior of the OFN offloading
based on the whole systematic view. Based on the analytical
model, extensive simulations are conducted and demonstrate
that direct and hybrid offloadings account for 73% of the
total opportunistic offloading probability, which denotes that
the direct and hybrid offloading scenarios should be consid-
ered to design the OFN-based offloading architecture. To the
best of our knowledge, this is the first analytical study that
elaborates on the performance of the OFN offloading con-
sidering the entirety of the available scenarios according to
the mobility of the OFN under diverse environments. The
key contribution of this paper is two-fold: 1) we develop an
analytic model for the opportunistic offloading probability
that a task can be offloaded to the OFN for each offloading
scenario, which can be interpreted as the load distribution
effect; and 2) based on the simulation works, we evaluate the
performance of the opportunistic offloading probability under
various environments, which can provide valuable design
guidelines for the OFN-based offloading architectures.

The remainder of this paper is organized as follows. After
related works are introduced in Section II, the system model
is described in Section III. Performance analysis is conducted
in Section IV. Evaluation results and concluding remarks are
given in Sections V and VI, respectively.

II. RELATED WORKS
Due to the limited computing resource of FN, there have
been efforts to optimize the offloading performance between
FN and users [6]–[9]. Fan et al. [6] proposed a workload
balancing scheme tominimize the service latency considering
traffic load allocation to BS and computing load allocation
to FN. In addition, an application-aware load distribution

scheme was introduced that can dynamically adjust comput-
ing resources of different applications to FN [7]. Ali et al. [8]
provided an energy-efficient deep learning based computa-
tion offloading scheme to minimize the cost of local and
remote executions considering the remaining energy of users,
previous offloading decision, and network conditions. More-
over, Irshard et al. [9] considered a wireless powered FN
system where users can offload the task to FN and harvest
energy from FN, and provided an optimal time allocation and
offloading policies to minimize the cost and energy consump-
tion of users. These efforts on the offloading with FN have
been extended to consider OFN.

As introduced in Section I, lots of studies have been con-
ducted to opportunistically reduce the load of static FNs
using OFNs [10]–[19]. These studies can be categorized
into the direct offloading between the IoT devices and the
OFN [10]–[12], indirect offloading via the BS [13]–[16],
and hybrid offloading that considers both direct and indirect
offloadings [17]–[19]. Shah et al. [10] introduced a vehic-
ular fog computing framework to consider computational
offloading from user vehicles to other fog vehicles and pro-
vide a scheduling policy for the offloading. Waqas et al. [11]
investigated the effects of the mobility factors that captures
the level of physical proximity between the users and fog
nodes to the offloading performances. Lee et al. [12] pro-
vided a vehicular fog computing system to reduce the ser-
vice delay of vehicular applications by offloading compu-
tational tasks to vehicles based on the resource monitoring
manager.

Wang et al. [13] considered a fog computing architec-
ture where roadside units (RSUs) redirect the incoming
tasks to available vehicles to minimize the average response
time. Hou et al. [14] introduced a software-defined vehicu-
lar fog computing architecture where RSU-based task allo-
cation to vehicles is performed based on the offloading
decision by software-defined networking (SDN) controller,
while also maintaining the global network state information.
Ye et al. [15] provided a service offloading strategy in bus
networks to find an optimal task allocation strategy according
to themoving trajectory of the bus fog servers. Tang et al. [16]
proposed a task scheduling scheme where RSUs determine
the task offloading strategy among vehicular fogs to reduce
the service latency.

Zhang et al. [17] introduced a hybrid offloading
scheme where either the vehicular-to-infrastructure (V2I) or
vehicular-to-vehicular (V2V) transmissions is determined as
task offloading options to reduce the offloading cost while
considering running direction, file transmission time, and
task execution time. Zhou et al. [18] reviewed the hybrid
usage of the V2V and V2I offloadings in the vehicular fog
computing architecture from the perspective of the mobility
feature such as the contact probability, contact time inter-
val, and coded computing. Wu et al. [19] provided a fog
node selection algorithm to minimize the average response
time of the offloaded tasks utilizing both V2V and V2I
communications.
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FIGURE 2. System model.

Note that abovementioned previous studies focused on
their own offloading scenarios, which means that it was not
investigated to analyze the OFN offloading performance con-
sidering the whole available offloading scenarios.

III. SYSTEM MODEL
As an example, in Fig. 2, the OFN can be in contact with
the BS between τo and τ5 (i.e., the BS contact time). In the
BS contact time, the OFN can communicate with IoT devices
(i.e., users 1 and 2) between τ1 and τ2 and between τ3 and
τ4 (i.e., the IoT contact times), respectively. If the task of the
users occurs during the IoT contact time (e.g., τf 2), the IoT
device can directly offload the task to the OFN. Then, the
IoT device can receive the result of the task from the OFN
if the OFN completes the task before τ4. This case does not
impose any load on the BS. However, it can be possible that
the OFN cannot complete the task (e.g., τe2) during the IoT
contact time (e.g., between τ3 and τ4). In this case, the OFN
can deliver the task result via the BS if the task is completed
before τ5. On the other hand, if the task occurs before or after
the IoT contact time (e.g., τf 1), the IoT device transmits the
task to BS because it cannot directly use the OFN. From the
BS’s perspective, if the task is received during the BS contact
time, the BS can offload the task to the OFN because the
OFN is available. If the OFN cannot complete the task before
τ5, this paper assumes that the result can be delivered to the
original BS based on the interface between the BSs such as
X2 and Xn interfaces [20], [21]. Similarly, if the task occurs
at the IoT device before τ0 or after τ5, the IoT device offloads
the task to the FN through the BS. Note that the IoT device
and the BS can recognize the disconnection with the OFN by
using periodic signaling messages [22], [23].

It is assumed that the IoT and BS contact times denoted by
tI and tB follow an exponential distribution with mean 1/µI
and 1/µB [24], [25], respectively. The probability density
function (PDF) and cumulative density function (CDF) for
the IoT contact time are denoted by

fI (t) = µI e−µI t (1)

and

FI (t) = 1− e−µI t . (2)

Similarly, the probability density function (PDF) and
cumulative density function (CDF) for BS contact time are
denoted by

fB(t) = µBe−µBt (3)

and

FB(t) = 1− e−µBt . (4)

In addition, we assume that the period when the OFN
is not available for both the IoT and BS (i.e., non-contact
time), denoted by tN , follows a general distribution withmean
1/µN [27].
Meanwhile, it is assumed that the task processing time of

the OFN denoted by tp follows the exponential distribution
with themeanωvOFN /uOFN , whereω, vOFN , and uOFN are the
average size of the offloaded task, computational intensity,
and computing capacity of OFN, respectively [28]. Its PDF
and CDF are given by

fp(t) =
uOFN
ωvOFN

e−
uOFN
ωvOFN

t (5)

and

Fp(t) = 1− e−
uOFN
ωvOFN

t (6)

IV. PERFORMANCE ANALYSIS
In this section, analytic models are introduced to evaluate
the performance of the opportunistic offloading probability
that task is offloaded to the OFN. Specifically, available OFN
offloading scenarios can be divided into six disjoint cases in
Fig. 3: a) τ1 ≤ τk , τr < τ2, b) τ1 ≤ τk < τ2 ≤ τr ≤ τ3,
c) τ1 ≤ τk < τ2, τ3 < τr ≤ τ4, d) τ2 ≤ τk , τr ≤ τ3, e)
τ2 ≤ τk ≤ τ3 < τr ≤ τ4, and f) τ3 < τk , τr ≤ τ4, where τk
and τr are the times when the task occurs in the IoT device
and the result of the task is received, respectively. tp denotes
task processing time of the OFN. As described in Figure 3,
we assume that the BS and IoT contact times can have range
from 0 to infinity (i.e., 0 ≤ tB ≤ ∞) and from 0 to the BS
contact time (i.e., 0 ≤ tI ≤ tB), respectively. In addition,
the IoT device can meet the OFN when they are both in the
coverage of BS (i.e., tN ≤ τ2 ≤ tN + tB − tI ). As explained
before, we do not consider the cases when τk < τ1, τ4 < τk ,
and τ4 < τr because the FN (i.e., not OFN) is in charge of the
offloaded task in these cases.

Let EY be the opportunistic offloading probability in the
case Y ∈ {a, b, c, d, e, f}. Then, EY can be derived as follows.

1) Ea: As shown in Figure 3(a), when τ1 ≤ τk , τr < τ2,
the task is delivered to the OFN through the BS because
the OFN is not within the IoT contact time (i.e., tI )
but within the BS contact time (i.e., tB). This means
that the task occurs before the IoT device meets the
OFN during the BS contact time (i.e., tN ≤ τk ≤ τ2).
In addition, the result of the task can be received from
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FIGURE 3. Timing diagrams of OFN offloading cases.

the BS because the task is completed before the IoT
contact time (i.e., 0 ≤ tp ≤ τ2 − τk ). The oppor-
tunistic offloading probability in case a (i.e., Ea) can
be calculated using the PDF of tp and τk . The joint
PDF of the tp and τk is denoted by fp,k , (tp, τk ). Since
tp and τk are independent, the joint PDF becomes the
product of each PDF (i.e., fp(tp) · fk (τk )). Consequently,

Ea is given by

Ea =
∫ τ2

τk=tN

∫ τ2−τk

tp=0
fp(tp)fk (τk )dtpdτk . (7)

2) Eb: When τ1 ≤ τk < τ2 ≤ τr ≤ τ3, after the IoT device
offloads the task to the OFN through the BS (i.e., tN ≤
τk ≤ τ2), it can receive the result of the task directly
from the OFN because the task is completed within the
IoT contact time (i.e., τ2−τk ≤ tp ≤ τ2+ tI −τk ). This
means that OFN moves close to the IoT device before
the task is completed. Consequently, Eb is given by

Eb =
∫ τ2

τk=tN

∫ τ2+tI−τk

tp=τ2−τk
fp(tp)fk (τk )dtpdτk . (8)

3) Ec: When τ1 ≤ τk < τ2, τ3 < τr ≤ τ4, after the
IoT device offloads the task to the OFN through the BS
(i.e., tN ≤ τk ≤ τ2), it can also receive the result of the
task from the OFN through the BS because the task is
completed after the IoT contact time (i.e., τ2+tI−τk ≤
tp ≤ tN + tB − τk ). This means that OFN passes by the
IoT device while processing the task. Consequently, Ec
is given

Ec =
∫ τ2

τk=tN

∫ tN+tB−τk

tp=τ2+tI−τk
fp(tp)fk (τk )dtpdτk . (9)

4) Ed: When τ2 ≤ τk , τr ≤ τ3, the IoT device directly
offloads to OFN because the task occurs during the IoT
contact time (i.e., τ2 ≤ τk ≤ τ2 + tI ). In addition, the
IoT device receives the result of the task to/from the
OFN because the OFN is within the IoT contact time
from the task occurrence time to the end of the process-
ing time (i.e., 0 ≤ tp ≤ τ2+ tI − τk ). Consequently, Ed
is given by

Ed =
∫ τ2+tI

τk=τ2

∫ τ2+tI−τk

tp=0
fp(tp)fk (τk )dtpdτk . (10)

5) Ee: When τ2 ≤ τk ≤ τ3 < τr ≤ τ4, although
the offloading to the OFN can be directly possible from
the IoT device (i.e., τ2 ≤ τk ≤ τ2+ tI ), the result of the
task is delivered to the IoT device from the OFN via
the BS because the IoT contact time is not sufficient
to complete the task (i.e., the OFN leaves from the
coverage of the IoT device before the task processing is
completed; τ2+ tI−τk ≤ tp ≤ tN+ tB−τk ). Therefore,
Ee is given by

Ee =
∫ τ2+tI

τk=τ2

∫ tN+tB−τk

tp=τ2+tI−τk
fp(tp)fk (τk )dtpdτk . (11)

6) Ef: Similar to the case a, when τ3 < τk , τr ≤ τ4, the
task is offloaded, and the result of the task is received
after the IoT contact time (i.e., τ2 + tI ≤ τk ≤ tN + tB
and 0 ≤ tp ≤ tN + tB − τk ). Consequently, Ef is given
by

Ef =
∫ tN+tB

τk=τ2+tI

∫ tN+tB−τk

tp=0
fp(tp)fk (τk )dtpdτk . (12)
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FIGURE 4. Opportunistic offloading probability E for each case according
to the BS contact time 1/µB.

Since the cases from a to f are disjoint events, the total
opportunistic offloading probability denoted by EO can
be obtained from (13).

EO = Ea + Eb + Ec + Ed + Ee + Ef (13)

V. SIMULATION RESULTS
To validate the analytic models, we developed an event-
driven simulator based on MATLAB R2018a and conducted
extensive simulations. The default values of µN , µB, and
µI are 5, 5, and µB × 2, respectively, as the average
contact time of OFN is usually assumed to have a range
from 1 to 10 [24]–[26]. In addition, the default values of ω,
uOFN , and vOFN are set to 1Mb, 5 × 108 cycles per second,
and 50 cycles per Mb, respectively [27]. For the simulation
results, 50,000 random numbers are generated for tp, tB, tI ,
τk , and tOFN according to the distribution with the default
mean values as described above and used to compute the
opportunistic offloading probability. This means that each
simulation result is the average value of 50,000 tests.

Fig. 4 shows the opportunistic offloading probability E for
each case according to the BS contact time 1/µB which is
normalized by the non-contact time 1/µN . The reason of this
normalization is that Fig. 4 aims to show the effect of the BS
contact time relative to the non-contact time (i.e., the ratio of
the BS contact time to the non-contact time is the x-axis in
Fig. 4). First, as shown in Fig. 4, the simulation results are
consistent with the analytic results in all simulation settings.
Meanwhile, as 1/µB increases, E increases for all cases. This
is because as 1/µB increases, which can also be interpreted
that the moving speed of the OFN decreases within the cover-
age of the BS, there are increased chances to exploit the OFN.
Fig. 4 also describes thatEb,Ed, andEe are higher thanEa,Ec,
and Ef. Since we assume that the BS contact time is twice of
the IoT contact time, the probability that either τk or τr exists
within the IoT contact time is higher than the probability that

FIGURE 5. Opportunistic offloading probability E according to the IoT
contact time 1/µI .

both do not exist within the IoT contact time. Therefore, Eb,
Ed, and Ee, when either τk or τr exists within the IoT contact
time, is higher than others. In addition, a crossing point can
be found as 1/µB increases. Specifically, Ea sharply increases
and becomes higher than Ec. This is because the probability
of a short processing time is higher than the probability of a
long processing time for the OFN based on the form of the
distribution. From Fig. 4, we can also check that the direct
and hybrid offloadings between the OFN and IoT device can
be efficiently utilized. Specifically, when 1/µB = 0.5 (i.e.,
the fifth x-axis point), the direct and hybrid offloadings (i.e.,
cases b, d, and e) account for 73% of EO. This means that the
direct and hybrid offloadings should be considered to design
the OFN-based offloading architecture.

Fig. 5 shows the opportunistic offloading probability E for
each case according to the IoT contact time 1/µI which is
normalized by the BS contact time 1/µB. The reason of this
normalization is that Fig. 5 aims to describe the effect of
the IoT contact time relative to the BS contact time (i.e., the
ratio of the IoT contact time to the BS contact time is the
x-axis in Fig. 5). First, as shown in Fig. 5, Eb and Ed increase
while others decrease as 1/µI increases. This is because the
opportunity to complete the task processing within the IoT
contact time becomes higher as 1/µI increases. It can be noted
that as 1/µI increases, which can also be interpreted that the
coverage of dedicated IoT communication increases, there
can be more chances to exploit the OFN directly from the IoT.
Between the cases b and d, Ed sharply increases and finally
becomes higher than Eb because it becomes easier to offload
the task and receive the result of the task directly to/from the
OFN with increasing IoT contact time. On the other hand,
among the cases a, c, e, and f,Ee has the highest value because
the task can easily occur within the IoT contact time as 1/µI
increases. With other cases (i.e., cases a, c, and f), Ea is
higher than others due to the form of distribution for the task
occurrence and processing time as explained above. From

4510 VOLUME 10, 2022



Y. Kyung: Performance Analysis of Task Offloading With Opportunistic Fog Nodes

FIGURE 6. Opportunistic offloading probability E according to the
average size of the offloaded task ω.

Fig. 5, we can also check that the direct offloading between
the OFN and IoT device without the intervention of the BS
can be efficiently utilized. Specifically, when 1/µI = 0.7
(i.e., the seventh x-axis point), 40% of EO does not require
the intervention of the BS, which can reduce the load of the
BS as well as the FN.

Fig. 6 shows the opportunistic offloading probability E
for each case according to the average size of the offloaded
task ω whose unit is Mb. It is shown that E decreases as ω
increases for all cases. This is because the task processing
time also increases asω increases, whichmakes it difficult for
the OFN to complete the task within the BS and IoT contact
times. Among all cases, the cases utilizing the IoT contact
time (i.e., cases b, d, and e) have a higher E as explained with
Fig. 5. On the other hand, among the other cases (i.e., cases
a, c, and f), case f has the lowest E due to the form of the
distribution for the task occurrence as explained above. Then,
we can see that Ea becomes lower than Ec as ω increases.
This is because it is difficult for the OFN to complete the
task within short time (e.g., before the IoT contact time) as
ω increases.

VI. CONCLUSION
In this paper, we introduced a systematic view to design
the OFN-based offloading architecture which can be dynam-
ically flexible according to the mobility of the OFN. In
addition, we developed the analytic model of the opportunis-
tic offloading probability considering both direct, indirect
and hybrid OFN offloading scenarios based on the mobility
of the OFN. Analytic and simulation results demonstrated
that the opportunistic offloading probability for each case is
affected by the contact times of the OFN with the BS and
IoT device as well as the size of the offloaded task. Based
on the results, it was found that the opportunistic offloading
probability in each case increases when the BS contact time
increases and the average size of the offloaded task decreases.

On the other hand, when the IoT contact time increases, the
opportunistic offloading probability in the direct and specific
hybrid offloading cases increases and accounts for the major
parts while the opportunistic offloading probability in the
other cases decreases. This denotes that the direct and hybrid
offloading scenarios should be considered to design the OFN-
based offloading architecture. In our future work, we will
investigate the optimal offloading performance considering
the available resources of the BS, static FN, and OFN.
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