
Received December 13, 2021, accepted January 3, 2022, date of publication January 7, 2022, date of current version January 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3141086

A Lightweight Optimal Scheduling Algorithm for
Energy-Efficient and Real-Time Cloud Services
JOOHYUNG SUN 1,2 AND HYEONJOONG CHO 2
1Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
2Department of Computer Convergence Software, Korea University, Sejong City 30019, South Korea

Corresponding author: Hyeonjoong Cho (raycho@korea.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant through the Korea Government under Grant
NRF-2021R1F1A1049202.

ABSTRACT To support ever-chainging user needs such as large storage volumes, web search, and high-
performance computing, numerous companies have expanded their systems to cloud computing servers.
Cloud environment systems generally consume large amounts of electrical power, leading to tremendously
high operational costs. In addition, they require computing infrastructures to run various real-time applica-
tions such as financial analysis, cloud gaming, and web-based real-time services. To represent performance
guarantees, the negotiated agreements in real-time computing, expressed as deadline (or latency), can be
specified by service level agreements of cloud services between users and cloud server providers. Thus,
a number of research works have started focusing on reducing the energy consumption and simultaneously
satisfying the temporal constraint in a cloud environment. Although we previously proposed an optimal
real-time scheduling algorithm for multiprocessors, it is difficult to use it for cloud environments handling
a large number of cloud services because of the high computational complexity of �(N 3logN), where N is
the number of tasks. Thus, we introduce a real-time task scheduling algorithm for cloud computing servers,
which alleviates the computational complexity ofO(N 2) from the complexity of the previous algorithm using
a novel flow network-based optimizationmethod. To the best of our knowledge, our scheduling algorithm in a
cloud environment, which ensures optimality for real-time tasks and achieves energy savings using dynamic
power management simultaneously, is the first in the problem domain.We show that the proposed scheduling
algorithm guarantees an optimal schedule for real-time tasks and achieves energy savings simultaneously.
Our experimental results show that the proposed algorithm outperforms the latest existing algorithms in
terms of both time complexity and energy efficiency.

INDEX TERMS Cloud computing, dynamic power management, energy-aware algorithm, flow network
problem, optimal scheduling, real-time computing.

I. INTRODUCTION
Numerous companies (e.g., Amazon, Google, Facebook,
and Yahoo) have expanded their systems and operations to
cloud computing servers for satisfying ever-chainging user
demands, such as large storage volumes, web search, and
high-performance computing. Cloud computing offers a new
computing model for sharing computing resources such as
servers, networks, memory, and storage. It also delivers com-
puting services to users as a utility in a pay-as-you-go man-
ner [1]. According to [2] and [3], cloud computing will con-

The associate editor coordinating the review of this manuscript and

approving it for publication was Alon Kuperman .

tinue to grow at an unprecedented rate in the coming years.
They also list the following detailed insights:

(i) Sixty percent of all information technology (IT) invest-
ment in 2018 would be on cloud-based solutions and this
figure will be even higher in the future.

(ii) The public cloud market would grow at an annual rate
of 22% and reach US$236 billion in 2020.

(iii) Enterprise cloud investment will grow at an annual rate
of 16% until 2026.

Various cloud service providers have put in place a
large-scale computing infrastructure in data centers to sup-
ply on-demand system resources to approved users over the
Internet. Data centers are cost-effective infrastructure con-
sisting of thousands of computing servers, routers, switches,

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 5697

https://orcid.org/0000-0002-3177-6595
https://orcid.org/0000-0003-1487-895X
https://orcid.org/0000-0002-3156-1287

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

and a higher memory bandwidth. They can be dynamically
shared by a number of users through virtualization of physical
resources.

According to [4] and [5], data centers consume large
amounts of electrical power, leading to tremendously high
operational costs. They also predicted that the cost of elec-
trical power will in a few years’ time exceed the cost of the
infrastructure for the data center itself. In 2013, U.S. data
centers consumed an estimated 91 billion kWh of electricity,
equivalent to the annual output of 34 large (500-megawatt)
coal-fired power plants. The annual electricity consumption
of data centers was projected to increase to approximately
140 billion kWh by 2020.

Furthermore, many applications of pay-as-you-go-based
cloud computing require service-level agreements (SLAs)
between users and cloud service providers. In real-time com-
puting, the negotiated agreements expressed as deadline (or
latency) can be specified by the SLA of cloud services.
According to [6], latency in cloud gaming applications deter-
mines not only how players experience online gameplay but
also how to games should be designed so that theymeet player
expectations. The authors show that the effect of latency
on actions can be categorized by the precision and deadline
demands of the action, the game’s interaction model, and the
player’s perspective. Several examples that demand real-time
constraints are as follows:

(i) Cloud gaming [6]: 100 ms for first-person shooter
and racing, 500 ms for sports and role-playing games, and
1000 ms for real-time strategy and simulation games.

(ii) Long-term evolution technology [7]: Mobile operators
reported handset-to-base-station latencies of approximately
2 ms (round-trip time of 4 ms).

(iii) Amazon web services [7]: 500 ms is the maximum
latency observed for Amazon Web Services according to
CloudPing, available at http://www.cloudping.info.

(iv) Dynamic web pages [8]: Commonly, the latency of
static or simple dynamic web pages can be assumed to range
from 0.3 to 150 ms.

In this study, we propose an energy-efficient scheduling
algorithm for cloud environments that guarantees an opti-
mal schedule for real-time tasks and achieves energy sav-
ings simultaneously. Meeting deadlines is an important issue
because they are directly related to the performance metrics
of SLAs. Thus, ensuring the optimality of real-time schedul-
ing, which can maximize the degree of SLAs, is a valuable
contribution to cloud services. In the context of this paper,
we define the optimality of the real-time schedule as the same
as in [12] for ease of understanding.
Definition 1 (RT-optimality): An optimal real-time sched-

ule meets all the task deadlines when the total utilization
demand U of a given task set does not exceed the total
processing capacity M, which is the RT-optimal.

In addition, RT-optimality is well suited to dynamic power
management (DPM). DPM can dynamically transit an idle
state of processors into low-power states by disabling some
of the system parts to reduce leakage of power consumption.

It can also shut down idle processors for the entire system
runtime. Thus, the scheduler reduces energy consumption by
utilizing a minimum number of processors only to guarantee
RT-optimality, and then it turns off all the other residual
processors. Considering that cloud computing servers such as
super computers and data centers have numerous processing
resources, DPM offers a number of opportunities for reduc-
ing leakage power consumption. In addition, these servers
consume considerable power for a cooling (or ventilation)
system to prevent system failures because they are sensitive
to high temperatures. Moreover, leakage power (i.e., static
energy consumption) increases exponentially with tempera-
ture, unlike dynamic power [35]. Therefore, applying DPM
to a cloud environment can result in high energy savings.

In summary, the proposed algorithm designed to guarantee
RT-optimality and simultaneously achieve energy savings in
a cloud environment is capable of

• Finding the minimum number of active processing ele-
ments to process users’ request,

• Initiating and staying at low-power states of active pro-
cessors as long as possible, and

• Shutting down inactive processors for whole system
runtime.

However, there are some practical issues that need to be
addressed as follows.

• Increasing resource utilization by the additional cloud
service requests of users.

• Overheads of VM migration for global load balancing
of processing elements.

• High temporal complexity of the scheduling algorithms.

To address the first issue of additional requests, a reformu-
lation of the scheduling problem is required. The objective
of the reformulated scheduling problem is to minimize the
number of active PEs by deliberately migrating VMs that
cause their resource utilization to exceed the resource capac-
ity. To achieve this goal, the cloud provider should determine
which PE will be activated and which VMs will be migrated.

However, migrating VMs between different PMs imposes
time overheads for changing the state of the processor, the
contents of memory, etc. Fortunately, the overhead can be
reduced using the live VM migration scheme introduced
in [33]. Live VM migration can move a running virtual
machine or application between different PMs without dis-
connecting the client or application. Thus, in this study,
we also assume that a VM required to be migrated is managed
by live VM migration. More details about the procedures for
live VM migration are explained later.

In this study, we significantly reduced the computational
complexity of the scheduling algorithm compared with the
latest works [12]. Because the complexity of the previous
algorithm was �(N 3logN), where N is the number of real-
time tasks, it is difficult to dynamically schedule real-time
tasks during system runtime. In particular, this overhead is
a critical problem in cloud environments that have a large
number of services to be performed. To solve this problem,

5698 VOLUME 10, 2022

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

TABLE 1. Related works about energy issue and real-time theory.

we first show where the most time-intensive part is and how
to alleviate the temporal overhead. Then, we formulated the
problem as a flow network and proposed a dedicated solver
algorithm while reducing performance degradation. We also
evaluated the proposed algorithm by measuring the elapsed
time of the proposed solver to find a feasible solution and
the energy efficiency of the scheduling algorithm in a cloud
environment.

A. ORGANIZATION
The remainder of this paper is organized as follows. Section II
introduces the related works. Section III describes the sys-
tem models. Section IV describes the proposed algorithm
and presents its computational complexity with theoretical
proofs. Section V presents the experimental evaluations of the
time complexity and energy efficiency. Section VI presents
our in-depth discussions and future work, and Section VII
concludes this paper.

II. RELATED WORKS
A. VIRTUALIZATION FRAMEWORKS FOR REAL-TIME
COMPUTING
Two leading open-source hypervisors, Xen and kernel-based
virtual machine (KVM), are generally used to manage
scheduling tasks or VMs. Although KVMandXen have com-
parable performance, Xen has the advantage of supporting
hyper-threading [14]. In addition, according to [15], KVM
shows degraded performance when the number of virtual
machines equals or exceeds the number of physical cores
available. Thus, our discussion focuses on the Xen hyper-
visor. More details about the comparison between these two
hypervisors can be found in [14] and [15]. In particular, the
Xen hypervisor was originally developed at the University
of Cambridge and is now distributed by Citrix Systems, Inc.
The first public release of Xen occurred in 2003 [16]. The
Xen hypervisor [17] supports several different virtual CPU
schedulers with different properties. The role of a hypervisor
in resource management is to dynamically map the virtual
CPUs (vCPUs) in VMs to the physical CPUs (pCPUs) in
hosts according to their own scheduling policy. According
to [17], the CPU schedulers in the Xen hypervisor are as
follows:

(i) Credit scheduler is a general-purpose weighted fair
share scheduler, and is the current default.

(ii) The Credit2 scheduler is an extension of Credit for
higher scalability with a latency-sensitive workload, while
still being based on a general purpose and weighted fair share
scheduling policy.

(iii) The sEDF (simple earliest deadline first) scheduler is
a real-time scheduler that provides weighted CPU sharing in
an intuitive manner. Unfortunately, sEDF was removed from
Xen 4.6 since behavior and performance were unideal and
unreliable [17].

(iv) RTDS (real-time deferrable server) scheduler is a
real-time scheduler aiming at supporting real-time workloads
in the cloud. The RTDS is designed for soft and firm real-time
tasks.

(v) The ARINC653 scheduler is an embedded (automotive
and avionics) real-time scheduler. ARINC653 is designed for
hard real-time tasks, avionics, drones, and medicine, but its
multicore support has not yet been implemented.

With respect to real-time scheduling, sEDF uses the tradi-
tional EDF algorithm on every CPU using a local queue, but
it lacks global load balancing on multiprocessors. As a result,
sEDF cannot guarantee RT-optimality on each processor
because migration is not allowed for VMs that have already
been assigned to processors. RTDS follows a scheduling
policy based on the preemptive global earliest deadline first
(Global-EDF) using a global queue, but Global-EDF does
not guarantee RT-optimality. From the beginning, RTDS was
proposed to change the scheduling model from the quantum-
driven (i.e., credit scheduler) to an event-driven model in
order to incur less scheduling overhead. The scheduler also
uses a deferrable server to improve the average response time
of the aperiodic requests.

In addition, S. Xi et al. [18] developed the first real-time
virtual machine manager that supports hierarchical real-time
scheduling in Xen, which is called RT-Xen. This framework
provides an open-source platform for researchers and integra-
tors to develop and evaluate real-time scheduling techniques.
A key technical contribution of RT-Xen is the instantiation
and empirical study of a suite of fixed-priority servers (e.g.,
deferrable server, periodic server, polling server, and sporadic
server) within a VMM. In addition, J. Lee et al. [19] extended
RT-Xen to support a compositional real-time scheduling
capacity that uses periodic resource models as compo-
nent interfaces. All of these works bridge the gap between
real-time scheduling and hypervisor, thus developing an
attractive virtualization platform for real-time systems.

VOLUME 10, 2022 5699

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

B. SCHEDULING VIRTUAL MACHINES ON CLOUD
COMPUTING
Many studies focused on improving resource utilization and
reducing energy consumption in cloud computing have been
conducted [20]–[23], [25]–[27]. The allocation of VMs to
PMs in data centers is a key optimization problem for cloud
providers to improve resource utilization and reduce energy
consumption. As resource utilization increases, energy effi-
ciency decreases, and vice versa. Thus, there exists a trade-off
between performance and energy savings in the allocation of
VMs to PMs. It is well known that the VM allocation problem
is a special case of a classic bin-packing problem, which is an
NP-hard problem.

In cloud computing, there are two approaches to VM allo-
cation: static and dynamic. The static approach considers
allocating VMs onto available PMs to satisfy the required
hardware resources based on SLAs. This is normally applied
for initial VM allocation, but resource utilization can be
degraded if there is a large fluctuation in workload. In con-
trast, the dynamic approach is used to deal with the largely
fluctuating workloads by dynamically reallocating all or sev-
eral VMs onto the available PMs. When the resource usage
of the allocated VMs on a PM increases, this approach can
find a VM that needs to be migrated to satisfy the SLAs.
In addition, this approach suits the various types of SLAs
determined by cloud providers and users. It can also copewell
with newly added or modified user requests online without
waste of resource usage. However, the cost of VM migration
can increase if a large number of VMs migrate too frequently
between PMs. Generally, the initial VM allocation is deter-
mined by the static approach, and then the VM reallocation
is preceded by the dynamic approach for the VM allocation
problem.

Dong et al. [22] proposed a novel greedy algorithm based
on an abstracted combination of the bin-packing problem
(Best-Fit) and the quadratic assignment problem. It was pro-
posed to meet multiple resource constraints, such as the phys-
ical server size (CPU, memory, storage, bandwidth, etc.) and
network link capacity to improve resource utilization. This
work reduces both the number of active physical servers and
network elements to reduce energy consumption.

Cao et al. [23] proposed an energy-efficient scientific
workflow scheduling algorithm to minimize energy con-
sumption and CO2 emissions while satisfying a certain
quality of service (QoS). This algorithm was designed for
resource provision and allocation problems by applying the
DVFS scheme to reduce energy consumption. The optimal
frequency for executing each task was determined under the
deadline constraint and resource utilization simultaneously.
However, according to [21] and [24], DVFS implementations
suffer from cubic time complexities O(N 3), where N is the
number of tasks.

Hadji et al. [25] proposed a minimum cost maximum
flow algorithm for VM placement in cloud computing to
serve multiple users and tenants with time-varying demands

and workloads. Their algorithm was compared to an exact
method that generalizes the classic bin-packing formulation
using a linear integer program. This algorithm can seek a
near-optimal solution that can achieve performance close to
bin-packing algorithms that are optimal for virtual machine
placement in virtualization enabled physical resources when
the demand is known in advance [25]. The complexity of this
algorithm is O(min{N 2

∗ flow,N 3
∗ fcost }), where flow is the

obtained flow on the graph and fcost is the corresponding min-
imum cost. They stated that this complexity can be considered
as low and negligible compared to the modified bin-packing
problem. However, it is still expensive to use for dynamic VM
allocation.

Ding et al. [26] proposed an energy-efficient scheduling
algorithm for VMs using DVFS in cloud computing with
heterogeneous physical machines considering the deadline
constraint. This study focuses on the dynamic scheduling
of virtual machines to achieve energy efficiency by deter-
mining the optimal frequency for a PM. To achieve these
goals, they first found the VMs needed to be scheduled and
allocated them to the PMs, and then computed the optimal
frequency of each active core based on the sum of the required
resources of the VMs on it. When some VMs are finished
using this optimal frequency, this algorithm reconfigures the
consolidated physical resources onto PMs or reallocates VMs
to further reduce the energy consumption. However, it fully
utilizes the computing resources of each active PM, and thus,
an excessive number of PMs should be activated. This is also
caused by the usage of the DVFS scheme because the lowered
frequency by using idle time increases the execution time.

Guo et al. [27] proposed a game-based consolidation algo-
rithm for VMs in cloud data centers with energy and work-
load constraints. This study focused on improving resource
utilization and reducing the number of VMmigrations simul-
taneously. They forecasted the resource load using gray
theory to reduce the delay of load throttling and then
attempted to reduce the number of online PMs to save energy
consolidation.

Kim and Zeghlache [9] deployed compositional real-time
computing and real-time virtual machine techniques to
achieve real-time service on virtualized cloud resources. The
compositional and hierarchical real-time framework [10],
[11] enables a group of real-time applications to be a sin-
gle real-time resource requirement for the upper layer of
real-time environments. For a given real-time applications,
they anayzed the required CPU utilization on the base
machine. Thus, the real-time service can be guaranteed when
the allocated virtual machine keeps providing the required
amount of processing capacity by the deadline. Therefore,
they modeled a real-time service as a real-time virtual
machines (RT-VM) request and then applied the dynamic
voltage/frequency scaling (DVFS) scheme to each RT-VM.
In this paper, we will also use this definition of RT-VM to
represent the requirements of real-time services in a cloud
environment.

5700 VOLUME 10, 2022

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

TABLE 2. A set of real-time tasks for an example.

III. SYSTEM MODEL
A. TASK MODEL
A set 0 that contains N periodic real-time tasks, denoted by
0 = {τ1, τ2, . . . , τN }, where the tasks are mutually inde-
pendent, was considered. The task τi has a period Ti and
worst-case execution time (WCET) Ci. It was assumed that
the relative deadline Di of τi is equal to Ti, that is, each τi
has the implicit deadline. The utilization ui of τi is defined as
Ci/Ti, and the total utilization U is the sum of ui. The active
job (i.e., instance) of τi at time t is denoted by τi(t). Each
active job has its arrival time ai(t) subject to t ∈ [ai(t), ai(t)+
Ti), the absolute deadline di(t), and the remaining execution
time ci(t). dmax(t) is defined as the largest di(t) of all active
jobs at time t .
A set B that contains the current time t , all of the release

times, and the absolute deadlines of jobs within the time
interval [t , dmax(t)] is defined, that is, B = {b0, b1, . . . , bK }.
bk is called the temporal boundary, and it is assumed thatB is
sorted in an increasing order. The time interval [bk , bk+1] is
called the time window Wk . The total number of windows is
K . The length of the windowWk is denoted by lk = bk+1−bk .

B. REAL-TIME VIRTUAL MACHINE MODEL
We assume that RT-VM (Real-time virtual machine) is
required to provide a real-time service, as in the existing
work byKim et al. [9]. RT-VMVi is parameterized with three
elements ui, mi, and di(t) at time t , where mi is the million
instructions per second (MIPS) rate of the virtual machine.
Without the loss of generality, we assume that ui and di(t)
are the same as in the above definition, and mi is the fixed
rate for the specification of the base machine. For example,
Vi must provide ui × mi processing capacity (i.e., ci) by the
deadline di when the virtual machine is allocated for real-
time services. Note that this terminology will also be used in
the experimental simulation of CloudSim [32]. More details
about modeling real-time virtual machines can be found in a
previous study [9].

IV. ALGORITHM FOR SOLVING THE OPTIMIZATION
PROBLEM
In this section, we introduce the scheduling methodology that
guarantees RT-optimality and minimizes active processing
elements. We propose a newly structured flow network com-
pared with our previous study, which simplifies the process
of finding augmenting paths and a solver algorithm. We then

show the computational complexity of the proposed algo-
rithm. Note that the detailed process of finding augmenting
paths using the previous flow network is described in the
appendix.

A. CONSTRUCTING THE FLOW NETWORK
We propose a methodology for constructing a flow network
that is designed to find a feasible solution (i.e., maximizing
the actual flows) by visiting all edges only once. To limit the
finding of additional augmenting paths, we need to control the
use of idle time. Thus, we first divide an existing flownetwork
containing both the flow of real-time tasks and processor idle
time into two separate flow networks, where one contains the
flow of real-time tasks and the other contains the flow of idle
time. Figure 1 (a) and (b) show the flow network containing
the flow of real-time tasks and its active job area for the
example in Table 2. To limit the waste of idle time, a capacity
constraint at every edge between the task and window nodes
is newly defined as cap(e(τi,Wk)) = lk × Ui instead of
cap(e(τi,Wk)) = lk , where all tasks are allowed to execute
their own utilization. For example, τ2 can have a maximum
flow of 5 ∗ 0.5 = 2.5 within W1 and can have a maximum
flow of 5 ∗ 0.5 = 2.5 withinW2.

Figure 1 (c) and (d) show the flow network for idle time and
its active job area, respectively, where Ik is the time interval
allowed for idle time within [bk , bk+1]. The amount of flow
at edges between left-side and right-side nodes in this flow
network represents the idle time allowed for the real-time
tasks within each window. This flow of idle time can be used
to execute the real-time tasks over their allowed time based on
its utilization within the window. If the flow of real-time task
at e(τ2,W1) is 2.5 in Figure 1 (a) and the flow of idle time at
e(τ2, I1) is 1 in Figure 1 (c), then the reserved execution time
of τ2 withinW1 is 3.5.
To find a feasible solution for real-time tasks and idle time

simultaneously in a graph, two flow networks are combined,
as shown in Figure 1 (e). In the combined flow network, the
flow of real-time tasks and that of idle time can be man-
aged together. At every boundary, the scheduling algorithm is
invoked to reserve the execution time for all active jobs. Here,
we formulate an optimization problem with a combined flow
network, as in [12]. For convenience of description, we define
four sets at the current time interval as follows:

KRT (ts, te) = {k|Wk ⊂ [ts, te]}, (1)

JRT (k, t) = {i|Wk ⊂ [ai(t), di(t)]}, (2)

KI (ts, te) = {k|Ik ⊂ [ts, te]}, (3)

JI (k, t) = {i|Ik ⊂ [ai(t), di(t)]}, (4)

KRT (ts, te) and KI (ts, te) contain all of the indices k
of the windows Wk and Ik , respectively, which are placed in
the time interval [ts, te]. JRT (k, ts) and JI (k, ts) contain all of
the indices i of the active jobs at time ts that are still active in
Wk and Ik , respectively. Using these four sets, a flow network
problem for scheduling real-time tasks was formulated as

VOLUME 10, 2022 5701

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

FIGURE 1. The examples for combining real-time tasks and idle time in a flow network.

follows:

Maximize
∑
∀i

∑
∀k

Xi,k (5)

s.t.
∑

∀k∈KRT (t,di(t))

Xi,k ≤ ci(t), 1 ≤ ∀i ≤ N (6)

∑
∀k∈KI (t,di(t))

Xi,k ≤ cIdle(t), 1 ≤ ∀i ≤ N (7)

∑
∀i∈JRT (k)

Xi,k

≤

 ∑
∀i∈JRT (k,t)

Ci/Ti

× lk , 1 ≤ ∀k
≤ K (8)∑
∀i∈JI (k)

Xi,k ≤ lk × UIdle, 1 ≤ ∀k ≤ K (9)

5702 VOLUME 10, 2022

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

Algorithm 1 The Scheduling Algorithm for Dedicated Search
// Initially, G← construct the combined graph including idle time

1: procedure Solver(G, t, curMode)
2: if curMode is CF then
3: τnext ← A task had an earliest deadline
4: else
5: τnext ← A task had an latest deadline
6: end if
7: while maxFlow is not

∑
i ci(t) do

8: if curMode is CF then
9: Find an augmenting path using BFS from τnext connected with windows of the front order
10: else
11: Find an augmenting path using BFS from τnext connected with windows of the back order
12: end if
13: for Each edge e(u, v) in the augmenting path do
14: Decrease the capacity of e(u, v) by bottleneck
15: Increase the capacity of e(v, u) by bottleneck
16: end for
17: Increase maxFlow by bottleneck
18: τnext ← A task of the next order
19: end while
20: return {Xi,1|∀i}, {XIdle,k |∀k}
21: end procedure

Xi,k ≤ lk × Ui, 1 ≤ ∀i ≤ N and 1 ≤ ∀k ≤ K

(10)

Xi,k ≤ min(lk × UIdle, lk − lk × Ui),

1 ≤ ∀i ≤ N and 1 ≤ ∀k ≤ K . (11)

In AJA(t), Xi,k is the reserved execution time for τi within
Wk and Ik . At a boundary, the corresponding AJA is estab-
lished, and three types of constraints are defined as equa-
tions (5)-(11). Equation (5) is the objective function of the
scheduling problem. Equation (6) indicates that each active
job must complete its execution times within the allowed
time interval [ai(t), di(t)), which is called the job comple-
tion constraint (JCC). Equation (8) indicates that the sum
of the active job execution times within a given window
does not exceed the permitted processing capacity of the
window, which is called the processing capacity constraint
(PCC). Equation (10) indicates that each active job within a
given window does not simultaneously occupy more than one
processor, which is called no intra-task parallelism (NIP).
Equations (7), (9), and (11) indicate that each active job has
a limitation for the use of idle time. In particular, the flow of
idle time within each window is set to a value smaller than
lk × UIdle and lk − lk × Ui in equation (11). This constraint
indicates that the flow of idle time is upper-bounded by the
length of its window. After a feasible solution is obtained
from this scheduling problem, the amount of flow within
W1 and I1 is used to allocate the computational resources
to each active job for their execution. Therefore, the formu-
lation (5)(11) corresponds to the combined flow network,
as shown in Figure 1 (e). The amount of maximum flow

from ns to nt is assumed to be
∑

i ci(t). If the maximum flow∑
i ci(t) is found in the flow network, it is interpreted as a

feasible schedule for AJA(t). Then, the method of allocating
Xi,1 to the processors within W1 can easily be determined,
for example, using McNaughton wrap around the algorithm
in [36].

B. A SOLVER ALGORITHM THAT REGULATES THE FLOW
We propose a solver algorithm to find a feasible solution
by visiting each edge of the given flow network only once,
which is expressed in Algorithm 1. This algorithm is designed
for the flow network constructed in the previous section and
is named the scheduling algorithm using dedicated search
(DSEA). DSEA is also capable of clustering the idle time
to initiate a deeper low-power state to save static energy.
For this, we use two modes, ClusterBackward (CB) and
ClusterForward (CF), either to save idle times for later
use or to cluster idle times for staying in a deeper low-power
state for a long time. Specifically, the solver algorithm clus-
ters the idle time close to the end of either the last boundary
(bk) or the current time (b0) when the current mode is CB or
CF, respectively. On the other hand, the previous algorithm
in [12] assigned a parameter cost based on the current mode
to each edge to prioritize a certain flow over the flow network,
and its feasible solution was found by using the min-cost-
max-flow solver algorithm.However, because of the high time
complexity of the min-cost-max-flow solver, it is difficult to
dynamically schedule real-time tasks during system runtime.

Thus, we apply a method that does not use the cost to the
proposed solver algorithm to find a feasible solution close

VOLUME 10, 2022 5703

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

FIGURE 2. The actual example of the amount of flow in the active job area.

to the solution from the min-cost-max-flow problem by the
previous algorithm in [12]. In the combined flow network
with idle time shown in the previous subsection, a feasible
solution can be found in any order for all edges, so there
is no need to control the flow using cost. To cluster the
flow of several tasks at the beginning of AJA, the solver first
searches the edges connected to that task and sends the flow as
much as possible. Algorithm 1 is based on the Edmonds-Karp
algorithm using breadth first search (BFS), except for flags
CF and CB for clustering idle time. In line 3 of Algorithm 1,
the BFS selects the starting node based on curMode to find the
augmenting path. If curMode is CF, then the task is selected
based on the earliest deadline first and vice versa. In lines
10 and 12, this algorithm finds the augmenting path using
BFS from τnext connected with windows of the front or back
order. In line 14-17, it searches edges in the augmenting path
and modifies the capacity of edges by bottleneck capacity,
where bottleneck is the minimum capacity of any edge on the
path. Finally, maxFlow is added by this amount of bottleneck
in line 18. The procedure for finding the augmenting path will
continue until maxFlow is equal to the summation of WCET
for real-time tasks in line 8.

1) (EXAMPLE)
Figure 2 (a) and (b) show the computed flow clustering
the real-time tasks and idle time based on CF and CB
using Algorithm 1. These feasible solutions were found by
visiting each edge only once. In Figure 2 (a), the solver
fills out the flow at edges connected with windows of
the front order based on CF. A part of the search order

is {e(τ1,W1), e(τ1, I1), e(τ2,W1), . . . , e(τ5,W5), e(τ5, I5)}.
As a result, real-time tasks are clustered close to the
beginning of AJA and the idle time is clustered close
to the end of AJA. In Figure 2 (b), the solver fills
out the flow at edges connected with windows of the
back order based on CB. A part of the search order
is {e(τ5,W5), e(τ5, I5), e(τ5,W4), . . . , e(τ1,W1), e(τ1, I1)}.
As a result, real-time tasks are clustered close to the end of
AJA and the idle time is clustered close to the beginning of
AJA.

C. COMPLEXITY
The proposed solver does not require traditional solvers for
the max-flow and min-cost-max-flow problems used in [12].
The existing solver in [12] incurs a high time complexity of
�(N 3logN). On the other hand, the proposed solver has a
reduced complexity ofO(N 2). In the combined flow network,
several window nodes for the idle time and edges connected
to the nodes are added. As a result, |E| is computed as the
summation of |{e(ns, τi)|∀i}| = N , |{e(τi,Wk)|∀i,k}| = (N +
1)(N + 2)/2 = (N 2

+ 3N + 2)/2, |{e(τi, Ik)|∀i,k}| = (N +
1)(N + 2)/2 = (N 2

+ 3N + 2)/2, |{e(Wk , ne)|∀k}| = N + 1,
and |{e(Ik , ne)|∀k}| = N+1. In summary, |E| is N 2

+6N+4.
Because our solver finds a feasible solution by visiting each
edge only once, its complexity is O(|E|) = O(N 2).

D. PROOF FOR LOWER COMPLEXITY OF THE PROPOSED
ALGORITHM
The proposed algorithm generates an unfair-but-optimal
schedule to satisfy the deadlines of real-time tasks and

5704 VOLUME 10, 2022

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

simultaneously control the use of idle time.More specifically,
Algorithm 1 can unfairly assign the reserved execution time
based on the current mode CB or CF to active jobs at each
boundary. Nonetheless, it ensures the optimality of real-time
tasks within the range of AJA by finding a feasible solution
from the flow network problem. In a previous study [12],
we formulated a scheduling problem for real-time tasks with
the permitted resource capacity at each boundary to find a
feasible solution from all possible solutions. Because of the
wide scope of problems, there is a limitation of high time
complexity, which is one of the motivations for the current
study. In the above sections, we introduce a methodology for
alleviating computational complexity. Thus, we focus on the
proof of finding an optimal solution with lower complexity
than the previous study in this section. A proof of the opti-
mality for real-time tasks using flow network models can be
found in [12] and [13].
Lemma 1: Algorithm 1 finds a solution for maximizing the

flow of real-time tasks over the flow network, as shown in
Figure 1 (a), which results in a fairness schedule.

Proof:We will show the proposed algorithm finds a fea-
sible solution within the specific scope of problems instead of
all possible problems addressed in the previous study. First,
Algorithm 1 ensures the boundary fair for real-time tasks
by using the graph constructed with the minimum capacity
of resources, as shown in Figure 1 (a). According to [40],
a schedule is boundary fair if and only if the absolute value
of the allocation error for any task τi at any boundary time
bk is less than one time unit. The allocation error of τi at
boundary time bk is defined as the difference between bk ∗ ui
and the time unit allocation to τi before bk in a schedule.
In Figure 1 (a), the permitted processing capacity of the k-th
window is limited to bk ∗ ui for each τi using Equation (8).
Thus, the allocation error of τi is always less than one time
unit at each boundary. Consequently, this ensures that fairness
remains for real-time tasks. �
Lemma 2: In Figure 1 (e), the amount of flow associ-

ated with the vertices and edges, which is expressed as the
use of idle time, does not affect the fairness of real-time
tasks.

Proof: In the same way, the use of idle time within
the range of AJA is also limited by Equations (9) and (11)
instead of allowing all remaining capacity at each boundary
to keep the fairness of real-time tasks. Then, the combination
of the solution maximizes the flow of real-time tasks from
Figure 1 (a), and the solution maximizes the flow of the use
of idle time from Figure 1 (c) is used as the reserved execu-
tion time to generate the final schedule for tasks. Although
the reserved execution time of each active job seems unfair
because of the additional idle time, it does not affect fairness
for real-time tasks because the idle time is also fairly used
within AJA. This is expressed as the combined flow network
for real-time tasks and idle time, as shown in Figure 1 (e).
With that of the flow network, the proposed algorithm can
find a feasible solution for real-time tasks and idle time
simultaneously. �

Lemmas 1 and 2 show that the feasible solution still ensures
RT-optimality even in the narrowed problem scope. Then,
we will show that Algorithm 1 can find that of the solution
with low complexity expressed as O(N 2) in the previous
section. In fact, the purpose of constructing the combined
flow network, as shown in Figure 1 (e) is to prevent the pro-
cedure for finding additional augmenting paths. Therefore,
Algorithm 1 can find a feasible solution by visiting edges in
{e(τi,Wk)|∀i,k} only once.

For proof, let fCF be the cumulative amount ofmaxFlow in
Algorithm 1 and fMAX be the theoretical maximum amount of
flow, that is, fMAX =

∑
i ci(t).

Lemma 3: After Algorithm 1 is finished searching
e(τi,Wk) only once, where ∀i,k , fCF is the same as fMAX .

Proof: For a proof by contradiction, the opposite of
Lemma 3 can be expressed as fCF < fMAX after the comple-
tion of Algorithm 1. This means that the proposed algorithm
does not find the maximum flow over the given flow network
by searching all edges in {e(τi,Wk)|∀i,k} only once.

First, we start with an explanation based on graph theory
for the process of Algorithm 1 to find the maximum flow.
Algorithm 1 finds an augmenting path in a residual graph
using BFS in lines 9 and 11. The residual graph indicates the
amount of flow allowed at each edge in the flow network. The
amount of flow allowed in the residual graph is determined by
the bottleneck in the augmenting path, and then it is added to
maxFlow. If an edge in the original graph is saturated, that
is, the capacity of the edge in the residual graph becomes
zero, then the corresponding edge is omitted from the residual
graph as it cannot admit any more flow. In other words, the
flow becomes the maximum if there are no augmenting paths.
In this process, the bottleneck is determined by the change in
the allowed capacity at the edges, and various augmenting
paths are found accordingly. In a previous study, the capacity
of e(τi,Wk) was set as the length of each window to con-
sider all possible feasible solutions. These are expressed as
the following equations related to the capacities of e(ns, τi)
and e(Wk , nt). In the following equations, Cap′(edge) is the
capacity of edge and e′(vertex, vertex) is the edge between
two vertices, which were defined in a previous study.

Cap′(Wk) ≤

 ∑
∀i∈JRT (k,t)

Ci/Ti

+ UIdle
× lk (12)

∑
∀k∈JRT (k,t)

Cap′(e′(τi,Wk) =
∑
∀k

lk (13)

On the other hand, the proposed algorithm finds a fea-
sible solution from the narrowed problem scope because it
considers the graph constructed with the minimum capacity
that ensures fairness for real-time tasks. The corresponding
capacity is expressed as follows:

Cap(Wk) ≤

 ∑
∀i∈JRT (k,t)

Ci/Ti

× lk (14)

VOLUME 10, 2022 5705

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

∑
∀k∈JRT (k,t)

Cap(e(τi,Wk) =
∑
∀k

Ci (15)

Using these equations, the proposed algorithm assigns the
flow as much as possible within the capacity of the corre-
sponding edges to maximize the flow at each iteration. Then,
because the capacity of e(τi,Wk) becomes the bottleneck in
most cases, the residual capacity of the edges is depleted, and
the corresponding edges in the residual graph are omitted as
a result. On the one hand, there is a case where the residual
capacity of e(τi,Wk) is not depleted. This occurs when the
remaining execution time of the active job is less than the
worst-case execution time. Then, the bottleneck becomes
e(ns, τi) in this case, and the corresponding residual capac-
ity is depleted before visiting the edges in {e(τi,Wk)|∀k}.
Because e(ns, τi) is omitted, the corresponding edges in
{e(τi,Wk)|∀k} are also omitted in the residual graph.

However, a time instance in which all tasks release
jobs simultaneously is the worst case, as all edges in
{e(τi,Wk)|∀i,k}must be visited once. In this case, the residual
capacity is depleted when each edge is visited once, and the
corresponding edges are omitted from the residual graph.
This means that the augmenting path no longer exists in the
residual graph after visiting all e(τi,Wk) once, and then fCF
becomes fMAX . Because there is a counter example to the
opposite of Lemma 3 is true by a proof by contradiction. �

From Lemma 1 to 3, we can derive the following theorem
for Algorithm 1:
Theorem 1: Algorithm 1 generates an unfair-but-optimal

schedule for real-time tasks in O(N 2) from the combined flow
network, as shown in Figure 1 (e).

Proof: From Lemmas 1 and 2, we showed the proposed
algorithm ensures the optimality of real-time tasks even if it
generates an unfair schedule for real-time tasks and idle time
because of the use of idle time. In other words, Algorithm
1 finds the feasible solution in the given flow network shown
in Figure 1 (e), and then generates an unfair schedule for
tasks. In line 7 of Algorithm 1, the proposed algorithm iterates
the procedure for finding the feasible solution until maxFlow
(fCF) becomes

∑
i ci(t) (fMAX), which maximizes the amount

of flow. FromLemma 3, we show that fCF becomes fMAX after
the algorithm visits all edges only once in the flow network.
Because the number of edges |E| isN 2

+6N+4, as computed
in sub-section D. Complexity, its complexity is O(N 2). Thus,
Algorithm 1 generates an unfair schedule for real-time tasks
in O(N 2). �

V. EXPERIMENT
We proposed a real-time task scheduling algorithm for
multiprocessors, which was designed to reduce static
energy consumption with reduced computational complexity.
To demonstrate its experimental performance, we used the
following two metrics:

• Time complexity
To evaluate the proposed algorithm in the first metric,
we measured the elapsed time required to find a fea-

sible solution in comparison with a traditional solver
algorithm. The time taken by constructing a graph and
sorting tasks by a deadline is excluded from the mea-
surement of time because they are the same in both
algorithms. Because the complexities of both algorithms
for finding a feasible solution have an exponential rela-
tionship with N , we measured the elapsed time while
varying N . Through this experiment, we show that the
proposed solver can find a feasible solution in less time
than the traditional solver.

• Static energy efficiency
The static energy consumption can be reduced by using
a decreasing number of processing elements (PEs) that
must be in an active mode (i.e., powered-on). Thus,
we compared the number of active PEs required for the
given set of real-time tasks in this experiment. To clearly
see the difference, we used a set of real-time tasks with
heavy or lightweight utilization. Through this experi-
ment, we show that the scheduling algorithm with the
proposed solver is energy-efficient in a cloud environ-
ment.

A. EXPERIMENTAL ENVIRONMENT
1) (TIME COMPLEXITY)
For the first metric in the above section, we compare the
proposed solver, including the construction of a graph, to a
traditional solver used in the previous algorithm. We referred
to the source code written in the Python code in [31] to
simulate the traditional solver. On the other hand, even if the
procedures for constructing a graph from both algorithms are
different, they are excluded from the measurement of time
because their complexities are the same asO(N 2). Thus, only
the time taken to find a feasible solution after constructing the
graphs was measured. More specifically, the measuring time
starts immediately after the construction of a graph and then
ends when the maximum flow is found.

We generated 1,000 sets of real-time tasks for each uti-
lization value ranging from {4, 8, 16, 24, 32, 40, 48, 96}. The
period of each task was randomly chosen using the uniform
distribution in the interval between 1 ms and 100 ms. Then,
the WCET was randomly chosen as a value from 0.1 to
1.0 times its period. The experiment was conducted in a
system with an Intel(R) Core (TM) 2 Duo CPU E8400 @
3.00 GHz, 4GB RAM, and an Intel SSD SC2CT240A3 ATA
Device. Finally, through this simulation, we show that the
proposed solver can find a feasible solution based on both
CF and CB.

2) (STATIC ENERGY EFFICIENCY)
For the second metric in the previous section, we compare the
scheduling algorithm using the proposed solver with sEDF
in Xen. sEDF calculates the number of active PEs for a
given set of real-time tasks based on task allocation in accor-
dance with the utilization of each task. Note that the RTDS
scheduler can also be comparable, but the task allocation

5706 VOLUME 10, 2022

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

in RTDS works the same as sEDF at the critical instant,
that is, the time at which all tasks are released at the same
time.

The experiment uses a simulation tool called CloudSim
[32], which provides a simulated environment in which users
can manage services and model cloud infrastructure. This is
a commonly used simulation tool because it is difficult to
conduct large-scale systems such as data centers or super-
computing platforms. The task generation methodology is the
same as that used for evaluating the first metric, time com-
plexity. In addition, we generated 20,000 sets of real-time
tasks classified into 10,000 sets of tasks consisting of light
utilization of a task (U ≤ 0.5) and 10,000 sets of tasks
consisting of heavy utilization of a task (U > 0.4). The
given task set is assigned to PEs as RT-VMs (similar to
Kim et al. [9]). To accurately measure the required number
of PEs according to the given task set, we assumed that
a cloud server has sufficient computing resources. In other
words, it is assumed that there are enough available PEs to
accommodate all the given task sets. Finally, we show that the
scheduling algorithm using the proposed solver uses fewer
PEs and consumes less static energy than the sEDF.

B. EXPERIMENTAL RESULT
In all figures for this section, the x-axis is set as the required
number of processing elements (or the total utilization to be
the reference point). This was used as the reference point in
the generation of the task sets. For example, if it is set to 16,
then the task generator creates a task until the total utilization
of tasks becomes [15, 16). Thus, when it is large, N becomes
exponentially large.

1) (TIME COMPLEXITY)
We assume BFS (breadth-first search) as a counterpart
because it is used in the latest algorithm [12]. Figure 3 (a) and
(b) show the elapsed times when ClusterForward and
ClusterBackward are applied to the proposed algorithm,
respectively. The elapsed time is the average time required
to find a feasible solution for each set of tasks. When the
required number of processing elements is low, the elapsed
times are almost the same because N is very small. However,
as the required number of processing elements increases, the
difference between both algorithms increases in the elapsed
time. In particular, when the required number of PEs is
96, BFS is 30 times longer than DSEA. This gap is caused
by the difference between their complexities as O(N 3) for
BFS and O(N 2) for DSEA. The minimum and maximum
number of tasks (i.e., N) from the generated set of tasks
based on 96 were 154 and 190, respectively. We did not
experiment when the required number of PEs was more than
96 because it took almost 10 h to find a feasible solution for
1, 000 task sets even if the number of PEs was 96. Through
this experiment, we showed that DSEA can find a feasible
solution based on both CF and CB in less time complexity
than BFS.

FIGURE 3. The elapsed time for finding a feasible solution.

2) (STATIC ENERGY EFFICIENCY)
Figure 4 (a) and (b) show the required number of active
PEs to accommodate the given light- and heavy-weight task
sets, respectively. In Figure 4 (a), sEDF continuously allo-
cates RT-VM unless the total utilization of a PM exceeds
1.0 according to the utilization of the task. Thus, as sEDF is
more likely to allocate two or more RT-VMs to a PM for the
light-weight task set, the required number of active PEs can
be low. To quantitatively see the evaluating result, Figure 5
shows the required number of active PEs normalized to the
total utilization. In this figure, the dotted line represents a
continuous value as the average number of required active
PEs for all task sets. The solid line represents a discrete value
as the actual number of required active PEs as the number of
PEs must be an integer. In Figure 5 (a), this means that sEDF
requires about 10% more PEs to be active mode than DSEA
for all total utilization. In contrast, when the heavy-weight
task set is used, as shown in Figure 4 (b), sEDF begins to
rapidly increase the required number of active PEs. This is
because the utilization of a heavy-weight task is set as greater
than 0.4 and then sEDF can allocate at most two RT-VMs in
a PM. Thus, in Figure 5 (b), sEDF required about 20% more

VOLUME 10, 2022 5707

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

FIGURE 4. The required number of active processing elements.

active PEs when the total utilization is 4 and about 30% more
active PEs in the rest.

However, we have already seen in [12] that DSEA guar-
antees RT-optimality on multiprocessors. Therefore, DSEA
needs as many active PEs as the ceiling of the total utilization,
even if the total utilization increases. This feature can be
seen more clearly in terms of the static energy efficiency.
Figure 6 shows the energy model in which the ratio between
the dynamic and static energy consumption is 75% : 25%.
As the required number of active PEs is increased by sEDF ,
as shown in Figure 4 and 5, the static energy consumption of
sEDF is also significantly increased, as shown in Figure 6.
In contrast, DSEA consumes less static energy than sEDF
because it only activates PEs as necessary. In addition, as the
total utilization increases, the static energy consumption by
DSEA becomes very low because active PEs are used at
almost 100%. In other words, DSEA has made resource uti-
lization to 100% with a small number of active PEs. This is
also because the actual case execution time is assumed to be
the same as the worst-case execution time. However, even
if the actual case execution time is less than the worst-case
execution time, sEDF does not reduce the static energy con-

FIGURE 5. The normalized number of required active processing
elements.

sumption because it does not consider dynamic power man-
agement. For a comparison with the initial number of active
PEs in Figure 6, we excluded the additional static energy
savings achieved from transitioning to a deeper low-power
state by clustering idle time. Despite this, the scheduling
algorithm with DSEA uses fewer PEs than sEDF ; therefore,
DSEA consumes less static energy than sEDF .

VI. DISCUSSION AND FUTURE WORKS
A. TRADE OFF BETWEEN COMPUTATIONAL COMPLEXITY
AND ENERGY EFFICIENCY
There is a trade-off between the computational complexity
and energy efficiency of the proposed algorithm. For exam-
ple, the previous work in [12] clusters the idle time greedily
to achieve high energy savings. To obtain an opportunity to
cluster the number of idle times as much as possible, it has to
continuously find the augmenting paths at every node over the
given flow network. In other words, the previous algorithm
attempts to find a feasible solution that includes the largest
clustered idle times among many possible solutions using

5708 VOLUME 10, 2022

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

FIGURE 6. The static energy consumption within first boundary.

a min-cost-max-flow problem. The procedures for achiev-
ing energy savings simultaneously cause high computational
complexity. This may be acceptable in multiprocessor sys-
tems, but it makes it difficult to use the scheduling algorithm
for cloud environments where the number of services is high.

On the other hand, the algorithm proposed in this paper
finds a feasible solution among a few possible solutions
that can be easily found by limiting the use of idle times.
It proposed the use of a new flow network and a dedicated
solver algorithm that can find a feasible solution by visiting
edges only once. This algorithm has to search for a feasible
solution among a few possible solutions, but it has only
O(N 2) computational complexity. In addition, this feasible
solution also expects high energy savings because calculating
the minimum number of active PEs and clustering idle times
to initiate a deeper low-power state are still available. This has
already been observed in the simulation results in the previous
section.

B. LIVE VM MIGRATION
At the beginning of this study, we assumed that the temporal
overhead caused by migrating VMs between different PMs is

negligible by using live VM migration. Live VMmigration is
one of the major primitive schemes for managing virtualized
platforms, such as data centers and cloud environments. It can
synchronize the contents of memory, including the context of
the CPU between the source and destination VMs. According
to [33], live VMmigration can maintain network connections
and the application state during the process, thereby effec-
tively providing seamless migration from a user’s point of
view. In the live VM migration scheme, two techniques are
commonly used to synchronize the states of memory, which
are called pre-copy and post-copy. These technologies can be
classified according to the time required to copy memory.
On the other hand, both technologies have a specific time
interval to stop the VM and send the CPU state, which is
called downtime. According to [34], at the minimum, this
includes the transfer of the processor state. For pre-copy, this
transfer also includes any remaining dirty pages. For post-
copy, this includes other minimum execution states, if any,
needed by the VM to start at the target. Even if one of the
objectives in pre-copy and post-copy is to make a near-zero
downtime, it can be critical in real-time computing. Thus,
we believe that this downtime should be considered in the
real-time scheduling problem for cloud environments and
plan to proceed in future work.

VII. CONCLUSION
In this study, we proposed an energy-efficient scheduling
algorithm for cloud environments that guarantees an opti-
mal schedule for real-time tasks and achieves energy sav-
ings simultaneously. This algorithm was expanded from our
previous work based on multiprocessors, which can reduce
the total power consumed by unnecessarily activated pro-
cessing elements and reduce the static energy consumption.
To expand from multiprocessor systems to cloud environ-
ments, we analyzed several practical issues that need to
be solved in our previous algorithm. Among these issues,
the high time complexity of the previous algorithm, that is,
�(N 3logN), where N is the number of tasks, is the most
critical. Because it makes it difficult to dynamically sched-
ule tasks during system runtime, the time complexity must
be alleviated. In addition, this can be a more critical prob-
lem in cloud environments that handle a large number of
cloud services. To resolve this issue, we found that the most
time-intensive part of the previous algorithm is the traditional
solver that finds the solution of the given flow network. Thus,
we propose a methodology for constructing a new structure
of the flow network and designing a dedicated solver. With
the newly constructed flow network, the proposed solver only
takes time O(N 2) to find a feasible solution. We showed
the alleviated time complexity of the proposed solver by
measuring the elapsed time to find a feasible solution in the
experiment. As a result, we presented the scalability of the
proposed algorithm for application on a cloud environmental
platform in terms of time complexity. Finally, we present the
experimental results for static energy efficiency through a
simulated cloud environment.

VOLUME 10, 2022 5709

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

APPENDIX A
LIMITATION OF THE PREVIOUS ALGORITHM
In this appendix, we show the procedure of the previous algo-
rithm, that is, fnDPM-fw and fnDPM-cw in [12], to identify
their limitations.

1) Formulate an optimization problem for scheduling real-
time tasks.

Maximize
∑
∀i

∑
∀k

Xi,k (16)

s.t.
∑

∀k∈K(t,di(t))

Xi,k ≤ ci(t), 1 ≤ ∀i ≤ N (17)

∑
∀i∈J(k)

Xi,k ≤ Cap(Wk), 1 ≤ ∀k ≤ K

(18)

Xi,k ≤ lk , 1 ≤ ∀i ≤ N and 1 ≤ ∀k ≤ K .

(19)

K(ts, te) = {k|Wk ⊂ [ts, te]}, (20)

J(k) = {i|Wk ⊂ [ai(t), di(t)]}, (21)

Cap(Wk) =

M − ∑
∀i/∈J(k,t)

Ci/Ti

× lk .
(22)

where K(ts, te) contains all the indices k of the win-
dow Wk that are placed in the time interval [ts, te].
J(k) contains all the indices i of the active jobs at
time ts, which are still active in Wk . Cap(Wk) is the
processing capacity required to execute active jobs
withinWk .

2) Construct a flow network that is a directed and capaci-
tated graphG = (V,E) whereG contains a set of nodes
V and a set of edges E as follows.

V = {ns, nt } ∪ {τi|∀i} ∪ {Wk |∀k} (23)

E = {e(ns, τi)|∀i} ∪ {e(τi,Wk)|∀i,k} ∪ {e(Wk , nt)|∀k}

(24)

where the nodes are named after tasks τi and windows
Wk . ns and nt denote the source and sink nodes, respec-
tively. e(n1, n2) denotes the edge from node n1 to node
n2, and the actual flow f (n1, n2) is assumed to be sent
along the edge. The amount of maximum flow from ns
to nt is assumed to be

∑
i ci(t).

3) Assign a weight to each edge for clustering idle time
(i.e., flow for idle time) according to user defined flag
called PushForward or PushBackward.

4) Find a feasible solution which satisfies the above con-
straints and maximizes the summation of all flow from
the flow network.

5) Repeat the procedure at every boundary.
In step 4, the previous algorithms use existing solvers

to find a feasible solution from the formulated minimum

cost and maximum flow problem (min-cost-max-flow). The
computational complexity of the solver was much higher
than that of the other steps. Thus, the complexity of the
solvers was dominant in both algorithms. For the min-cost-
max-flow problem, the solver introduced by Orlin [37] is
used. This solver is an enhanced capacity-scaling algorithm,
and it comprises an O(|V |log|E|SP+(|V |, |E|)) complexity,
where SP+(|V |, |E|) denotes the time complexity of solv-
ing the single-source shortest path problem. Dijkstra’s algo-
rithm with Fibonacci heaps is known to provide an O(|E| +
|V |log|V |) bound for SP+(|V |, |E|) in [38]. For themaximum
flow problem (max-flow), a strongly polynomial solver with
O(|V ||E|) complexity [39] has recently been used. Normally,
the previous algorithms consider a maximum of N + 1 win-
dows in the time interval [t, dmax(t)]. Thus, its |E| is the
summation of |{e(ns, τi)|∀i}| = N , |{e(τi,Wk)|∀i,k}| = (N +
1)(N+2)/2 = (N 2

+3N+2)/2, and |{e(Wk , nt)|∀k}| = N+1.
In addition, the number of nodes |V | was N . As a result,
the computational complexity of the previous algorithms is
�(N 3logN). More details about the computational complex-
ities are provided in [12].

The possibility of reducing the complexity lies in the
fact that the specific part of the solver is repeatedly and
redundantly executed. To identify the time-consuming part,
we consider a graph G = (V,E). G contains an edge e =
(u, v), where u and v are nodes. cap(u, v) and f (u, v) denote
the capacity and flow of (u, v), respectively. In G, we want
to find the maximum flow from source node ns to sink node
nt . For example, the Ford-Fulkerson algorithm can be used to
solve the max-flow problem based on the idea of augmenting
path [29], and it has two main steps. The first is a labeling
process that searches for a flow augmenting path, that is,
a path from ns to nt for which f < cap along all forward
edges and f > 0 along all backward edges. If this step
finds a flow augmenting path, the second step changes the
flow accordingly.Max-flow is found if and only if there is no
augmenting path in the residual network. In other words, the
solver must attempt to find an augmenting path to maximize
the summation of flows.

To find an augmenting path, depth-first search (DFS) and
breadth-first search (BFS) are normally used in the Ford-
Fulkerson [29] and Edmonds-Karp [30] algorithms, respec-
tively. DFS is an edge-based technique that uses a stack data
structure. This search algorithm first visits the source node
and explores its branch node before backtracking. BFS is
a vertex-based technique that uses a queue data structure.
This search algorithm also visits the source node, but first
explores its adjacent node before backtracking. Their time
complexities are the same as O(|V | + |E|), because every
node and every edge will be explored in the worst case. Thus,
the complexity of our algorithm for the max-flow problem
is N ∗ O(|V | + |E|) = O(N 3), where |V | is expressed as
N and |E| is expressed as N 2. As mentioned previously, the
high complexity of scheduling algorithms is problematic in
cloud environments that have a large number of services to
be performed.

5710 VOLUME 10, 2022

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

FIGURE 7. The examples for showing the procedure to find an augmenting path in the flow network.

APPENDIX B
PROCESS FOR FINDING THE ADDITIONAL AUGMENTING
PATHS
With the flow network constructed from the above schedul-
ing problem, the procedures for finding the additional aug-
menting paths are described as follows. To demonstrate the
procedures, we used the following example with its flow
network.

(EXAMPLE)
Figure 7 shows the flow network constructed from a given
set of task set in Table 2. Figure 7 (a) shows the initial flow
network which is constructed based on the scheduling prob-
lem formulated by equations (16)-(22). In this figure, each
number represents the residual capacity at the corresponding
edges. Corresponding to Figure 7, Figure 8 shows the active
job area, defined as a collection of the maximum processing

VOLUME 10, 2022 5711

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

FIGURE 8. The examples for the active job area associated with Figure 7.

capacity per window that can be utilized to execute the active
jobs. In the flow network, the capacity at the edges between

the task and window nodes is determined by the length of
the window, which includes the amount of allowed flow

5712 VOLUME 10, 2022

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

calculated using the real-time task and the idle time within
the window. However, real-time tasks often have more flows
than the flow allowed within the window because their upper
limit is the length of the window by equation (19). Thus,
τ1, τ2, τ3, and τ4 can be executed over the entire length
of W1, as shown in Figure 7 (b) with Figure 8 (b), that is,
f (e(τ1,W1)) = 5, f (e(τ2,W1)) = 5, f (e(τ3,W1)) = 5, and
f (e(τ4,W1)) = 5. For ease of understanding, the numbers
1 and 5 in Figure 7 (b), which is expressed as 1/5, represents
the residual capacity after finding augmenting paths in the
first window and the initial residual capacity defined in Fig-
ure 7 (a), respectively. On the one hand, τ5 has to send the
flows of 25, that is, the required worst-case execution time,
over the flow network to make the maximum flow. However,
because the residual capacity at the edge e(W1, nt) has only 1,
τ5 can have an amount of flow of at most 1. In addition, there
is no additional residual capacity in the flow network to send
the flows of 25 even if it spends all of the flow at the edges
{e(τ5,W2), e(τ5,W3), e(τ5,W4), e(τ5,W5)} = {5, 5, 5, 5}.
To send the residual amount flows of 4 for τ5, the solver has to
find the augmenting path again and re-determine the amount
of flow at the other edges. This observation of finding an
additional augmenting path can occur at other nodes to make
the maximum flow.

In this example, Figure 7 (c) with Figure 8 (c) shows
the augmenting path in the order of {ns, τ5,W1, τ2,W2, nt }.
The flow of 1 from e(τ2,W1) can be sent to e(τ2,W2). As a
result, this procedure increases the capacity at e(W1, nt) to
1, and then it is used for τ5 to send an additional flow of
1 through e(τ5,W1). Figure 7 (d) and Figure 8 (d) show the
next augmenting path in the order of {ns, τ5,W1, τ4,W3, nt }.
The flow of 3 from e(τ4,W1) can be sent to e(τ4,W3). As a
result, this procedure also increases the capacity at e(W1, nt)
to 3, and then it is used for τ5 again to send an additional
flow of 3 through e(τ5,W1). Finally, the feasible solution for
the max-flow problem in this example is shown in Figure 7
(e) and Figure 8 (e), which has a maximum flow of 59. On the
one hand, this maximum flow is the same as the summation
of the worst-case execution times for active tasks in Table 2.
Although the maximum amount of flow is already known
as 59, it is necessary to find additional augmenting paths
again because of the idle time included in sum∀k (Wk , nt) as
64. In this example, the procedure for finding augmenting
paths was performed twice. However, when the number of
real-time tasks and windows is large, it may be necessary
to find an increasing number of augmenting paths. Thus,
the following sub-section introduces how to control the use
of idle time included in the summation of windows’ capac-
ity to limit the procedure of finding additional augmenting
paths.

REFERENCES

[1] A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘Above the clouds:
A Berkeley view of cloud computing,’’ Dept. Elect. Eng. Comput. Sci.,
Univ. California, Berkeley, CA, USA, Tech. Rep. UCB/EECS 28.13, 2009.

[2] M. Abdallah, C. Griwodz, K. T. Chen, G. Simon, P. C. Wang, and
C. H. Hsu, ‘‘Delay-sensitive video computing in the cloud: A survey,’’
ACMTrans. Multimedia Comput., Commun., Appl. vol. 14, no. 3, pp. 1–29,
2018.

[3] L. Columbus. (2017). Roundup of Cloud Computing Forecasts, 2017.
Forbes & Company Ltd. Accessed: Apr. 26, 2018. [Online]. Available:
https://www.forbes.com/sites/louiscolumbus/2017/04/29/roundup-of-
cloud-computing-forecasts-2017/

[4] P. Delforge, America’s Data Centers Consuming and Wasting Growing
Amounts of Energy. New York, NY, USA: Natural Resource Defence
Councle, 2014.

[5] G. J. Koomey, ‘‘Estimating total power consumption by servers in the U.S.
and the world,’’ Lawrence Berkeley Nat. Lab., Berkeley, CA, USA, Final
Rep., 2007.

[6] M. Claypool and K. Claypool, ‘‘Latency and player actions in online
games,’’ Commun. ACM, vol. 49, no. 11, pp. 40–45, 2006.

[7] A. Tasiopoulos, ‘‘On the deployment of low latency network applica-
tions over third-party in-network computing resources,’’ Ph.D. dissertation,
Dept. Electron. Elect. Eng., Univ. College London, London, U.K., 2018.

[8] D. P. Olshefski, J. Nieh, and D. Agrawal, ‘‘Inferring client response time
at the web server,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 30, no. 1,
pp. 160–171, Jun. 2002.

[9] K. H. Kim, A. Beloglazov, and R. Buyya, ‘‘Power-aware provisioning
of cloud resources for real-time services,’’ in Proc. 7th Int. Workshop
Middleware Grids, Clouds e-Sci. (MGC), 2009, pp. 29–34.

[10] X. Feng and A. K. Mok, ‘‘A model of hierarchical real-time virtual
resources,’’ in Proc. 23rd IEEE Real-Time Syst. Symp. (RTSS), Dec. 2002,
pp. 26–35.

[11] I. Shin and I. Lee, ‘‘Compositional real-time scheduling framework with
periodic model,’’ ACM Trans. Embedded Comput. Syst., vol. 7, no. 3,
pp. 1–39, Apr. 2008.

[12] J. Sun, H. Cho, A. Easwaran, J.-D. Park, and B.-C. Choi, ‘‘Flow network-
based real-time scheduling for reducing static energy consumption on
multiprocessors,’’ IEEE Access, vol. 7, pp. 1330–1344, 2019.

[13] H. Cho and A. Easwaran, ‘‘Flow network models for online
scheduling real-time tasks on multiprocessors,’’ IEEE Access, vol. 8,
pp. 172136–172151, 2020.

[14] S. G. Soriga and M. Barbulescu, ‘‘A comparison of the performance and
scalability of xen and KVM hypervisors,’’ in Proc. RoEduNet Int. Conf.
12th Ed., Netw. Educ. Res., Sep. 2013, pp. 1–6.

[15] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah, and
B. Rao, Quantitative Comparison of Xen and KVM. Boston, MA, USA:
Xen Summit, 2008, pp. 1–2.

[16] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A.Warfield, ‘‘Xen and the art of virtualization,’’ inProc.
ACM Symp. Operating Syst. Princ., 2003, pp. 113–1118.

[17] Xen Project. Currently Available Schedulers in Xen Project Sched-
uler. Accessed: Apr. 2021. [Online]. Available: http://www.nxp.com/
docs/en/data-sheet/LPC1850_30_20_10.pdf

[18] S. Xi, J. Wilson, C. Lu, and C. Gill, ‘‘RT-Xen: Towards real-time hyper-
visor scheduling in Xen,’’ in Proc. 9th ACM Int. Conf. Embedded Softw.
(EMSOFT), Oct. 2011, pp. 39–48.

[19] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, and
O. Sokolsky, ‘‘Realizing compositional scheduling through virtualiza-
tion,’’ in Proc. IEEE 18th Real Time Embedded Technol. Appl. Symp.,
Apr. 2012, pp. 13–22.

[20] M. Ala’Anzy and M. Othman, ‘‘Load balancing and server consolidation
in cloud computing environments: A meta-study,’’ IEEE Access, vol. 7,
pp. 141868–141887, 2019.

[21] H. A. Kurdi, S. M. Alismail, andM.M. Hassan, ‘‘LACE: A locust-inspired
scheduling algorithm to reduce energy consumption in cloud datacenters,’’
IEEE Access, vol. 6, pp. 35435–35448, 2018.

[22] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng, ‘‘Energy-saving
virtual machine placement in cloud data centers,’’ in Proc. 13th IEEE/ACM
Int. Symp. Cluster, Cloud, Grid Comput., May 2013, pp. 618–624.

[23] F. Cao and M. M. Zhu, ‘‘Energy efficient workflow job scheduling for
green cloud,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process., Work-
shops Phd Forum, May 2013, pp. 2218–2221.

[24] C. Da-Ren, C. Young-Long, and C. You-Shyang, ‘‘Time and energy effi-
cient DVS scheduling for real-time pinwheel tasks,’’ J. Appl. Res. Technol.,
vol. 12, no. 6, pp. 1025–1039, 2014.

[25] M. Hadji and D. Zeghlache, ‘‘Minimum cost maximum flow algorithm for
dynamic resource allocation in clouds,’’ in Proc. IEEE 5th Int. Conf. Cloud
Comput., Jun. 2012, pp. 876–882.

VOLUME 10, 2022 5713

J. Sun, H. Cho: Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud Services

[26] Y. Ding, X. Qin, L. Liu, and T. Wang, ‘‘Energy efficient scheduling of vir-
tual machines in cloud with deadline constraint,’’ Future Gener. Comput.
Syst., vol. 50, pp. 62–74, Sep. 2015.

[27] L. Guo, G. Hu, Y. Dong, Y. Luo, and Y. Zhu, ‘‘A game based consolidation
method of virtual machines in cloud data centers with energy and load
constraints,’’ IEEE Access, vol. 6, pp. 4664–4676, 2017.

[28] P. G. Jeba Leelipushpam and J. Sharmila, ‘‘Live VM migration techniques
in cloud environment—A survey,’’ in Proc. IEEE Conf. Inf. Commun.
Technol., Apr. 2013, pp. 408–413.

[29] L. R. Ford and D. R. Fulkerson, ‘‘Maximal flow through a network,’’
in Classic Papers Combinatorics. Boston, MA, USA: Birkhäuser, 2009,
pp. 243–248.

[30] J. Edmonds and R. M. Karp, ‘‘Theoretical improvements in algorith-
mic efficiency for network flow problems,’’ J. ACM, vol. 19, no. 2,
pp. 248–264, 1972.

[31] N. Yadav. Python Program for Implementation of Ford Fulkerson
Algorithm. Accessed: Jan. 2021. [Online]. Available: https://github.com/
lrlucena/Algorithms-and-Data-Structures/blob/master/books/Algorithms%
2BDataStructures/Algorithms/Graphs/ford1242fulkerson/python/max_
flow.py

[32] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011.

[33] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, ‘‘Live migration of virtual machines,’’ in Proc. 2nd Conf.
Symp. Netw. Syst. Design Implement., vol. 2, 2005, pp. 101–110.

[34] M. R. Hines and K. Gopalan, ‘‘Post-copy based live virtual machine migra-
tion using adaptive pre-paging and dynamic self-ballooning,’’ in Proc.
ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ. (VEE),
2009, pp. 51–60.

[35] P. R. Panda, A. Shrivastava, B. V. N. Silpa, and K. Gummidipudi,
Power-Efficient System Design. Boston, MA, USA: Springer, 2010, ch. 2,
pp. 11–39, doi: 10.1007/978-1-4419-6388-8.

[36] R.McNaughton, ‘‘Schedulingwith deadlines and loss functions,’’Manage.
Sci., vol. 6, no. 1, pp. 1–12, 1959.

[37] J. B. Orlin, ‘‘A faster strongly polynomial minimum cost flow algorithm,’’
Oper. Res., vol. 41, no. 2, pp. 338–350, 1993.

[38] M. L. Fredman and R. E. Tarjan, ‘‘Fibonacci heaps and their uses in
improved network optimization algorithms,’’ J. ACM (JACM), vol. 34,
no. 3, pp. 596–615, 1987.

[39] J. B. Orlin, ‘‘Max flows in O(nm) time, or better,’’ in Proc. 45th Annu.
ACM Symp. Symp. Theory Comput. (STOC), 2013, pp. 765–774.

[40] D. Zhu, X. Qi, D. Mossé, and R. Melhem, ‘‘An optimal boundary fair
scheduling algorithm for multiprocessor real-time systems,’’ J. Parallel
Distrib. Comput., vol. 71, no. 10, pp. 1411–1425, Oct. 2011.

JOOHYUNG SUN received the B.S., M.S., and
Ph.D. degrees from the Department of Com-
puter and Information Science, Korea Univer-
sity. He is currently a Postdoctoral Researcher at
the Electronics and Telecommunications Research
Institute, South Korea. His research interests
include real-time computing and energy-aware
scheduling on various types of processing ele-
ments (single/multiprocessors and cloud comput-
ing environments).

HYEONJOONG CHO received the B.S. degree in
electronic engineering from Kyungpook National
University, South Korea, in 1996, the M.S. degree
in electronic and electrical engineering from the
Pohang University of Science and Technology,
in 1998, and the Ph.D. degree in computer engi-
neering from the Virginia Polytechnic Institute and
State University (Virginia Tech), in 2006. He was a
Senior Software Engineer at Samsung Electronics,
South Korea. Before he joined Korea University,

in 2009, he was a Senior Researcher at the Electronics and Telecommunica-
tions Research Institute, South Korea. He is currently a Professor with the
Department of Computer and Information Science, Korea University. His
research focuses on machine learning, optimization techniques, and cyber-
physical systems.

5714 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-1-4419-6388-8

