IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 23, 2021, accepted January 3, 2022, date of publication January 7, 2022, date of current version January 14, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3141077

A Feature-Based On-Line Detector to Remove
Adversarial-Backdoors by Iterative Demarcation

HAO FU ", AKSHAJ KUMAR VELDANDA, PRASHANTH KRISHNAMURTHY “, (Member, IEEE),
SIDDHARTH GARG ", AND FARSHAD KHORRAMI", (Senior Member, IEEE)

Department of Electrical and Computer Engineering, New York University, Brooklyn, NY 11201 USA

Corresponding author: Hao Fu (hf881@nyu.edu)

This work was supported in part by the Army Research Office under Grant W911NF-21-1-0155, and in part by the New York
University (NYU) Abu Dhabi Center in Artificial Intelligence (AI) and Robotics (CAIR).

ABSTRACT This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-
Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The proposed method is comprised of two
parts: off-line training and on-line retraining. In the off-line training, a novelty detector and a shallow neural
network are trained with clean validation data. During the on-line implementation, both models attempt to
detect samples from the streaming data that differ from the validation data (i.e., flag likely-poisoned samples
and possibly a few clean samples as false positives). An anomaly detector is used to purify the anomalous
data by removing the clean samples. A binary support vector machine (SVM) is trained with the purified
anomalous data and the clean validation data. RAID uses the SVM to detect poisoned inputs. To increase
the accuracy as new anomalous data is being detected, the SVM is updated as well in real-time. It is shown
that with updating, RAID can efficiently reduce the attack success rate while maintaining the classification
accuracy against various types of backdoor attacks. The efficacy of RAID is compared against several state-
of-the-art techniques. Additionally, it is shown that RAID only requires a small clean validation dataset to

achieve such performance, and therefore provides a practical and efficient approach.

INDEX TERMS Machine learning, neural networks, pattern analysis.

I. INTRODUCTION

Deep neural networks (DNN) are widely used in various
applications including object detection (Ren et al. [1]), face
recognition (Sun et al. [2], Taigman et al. [3]), natural
language processing (Collobert et al. [4], Bahdanau et al. [5]),
self-driving (Chen et al. [6]), navigation (Fu et al. [7]),
surveillance (Osia et al. [8]), and cyber-physical systems
security (Patel et al. [9]-[11]). However, there are many secu-
rity risk issues in the usage of neural networks, such as adver-
sarial attacks (Athalye er al. [12], Carlini and Wagner [13],
[14], Eykholt et al. [15], Goodfellow er al. [16], He et al. [17],
Moosavi-Dezfooli et al. [18], Szegedy et al. [19]). Recently,
training time attacks (Chen et al. [20], Gu et al. [21]) are
drawing increasing attention. This is because that training
DNNs is challenging, especially for individuals or small
entities, due to difficulties in obtaining large high-quality
labeled datasets and the cost of maintaining or renting

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehul Raval

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

computational resources needed to train a complex model
(Esteva et al. [22], Roh et al. [23], Halevy et al. [24]). Hence,
users often outsource DNN implementation and training tasks
to third-party clouds or download pre-trained models from
on-line model repositories. This, however, exposes the user
to training time attacks, especially the ““backdoor” attack.
The “backdoor” attack refers to an attacker training a
malicious model that mis-predicts when the input contains
attacker-chosen backdoor triggers (*“‘poisoned” data) embed-
ded into the training data. Specifically, by choosing proper
training hyper-parameters, trigger patterns, etc., the attacker
can make the backdoored model output specific labels on
the poisoned data while preserving high accuracy on the
clean data (i.e., data without the trigger). Such backdoored
DNNSs may cause security risks, financial harm, and safety
implications for the end-user (e.g., misclassifying traffic
signs in autonomous vehicle applications as shown in Fig. 1).
Detecting backdoor attacks is therefore of critical importance.
The existing detect/defend methods against the backdoor
attack can be divided into several classes regarding the

5545

https://orcid.org/0000-0002-8282-6580
https://orcid.org/0000-0001-8264-7972
https://orcid.org/0000-0002-6158-9512
https://orcid.org/0000-0002-8418-004X
https://orcid.org/0000-0002-3895-1448

IEEE Access

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by lterative Demarcation

D — — Stop @
D — "% ﬁsﬁr?q?f ®)
"Vﬂ' = -
A
L D X
- . Trigger

Clean Poisoned

FIGURE 1. The backdoored DNN outputs correct (a) or wrong (b) labels
for clean or poisoned inputs, respectively.

assumptions and used tools. Tran et al. [25], Chen et al. [26]
assume the user can afford the training task but the
training dataset is contaminated (i.e., it contains poisoned
data). They use clustering-based methods (i.e., singular-value
decomposition (SVD) and k-means) to purify the dataset.
Although it may be true in some scenarios that the entire
clean/contaminated training dataset is available to the user,
in our attack model, we assume that the user does not have
access to the clean/contaminated training dataset.

Reverse-engineering based methods, such as Neural
Cleanse (Wang et al. [27]), artificial brain stimulation (ABS
Liu et al. [28]), Guo’s method (Guo et al. [29]), and Qiao’s
method (Qiao et al. [30]), are another popular approach to
defend against the backdoor attack. These methods typically
define a loss function and solve an optimization problem.
Through back-propagation, some reverse-engineered triggers
are found. Then, they create some synthetic data by applying
these reverse-engineered triggers to the clean validation
data, and use the synthetic data to fine-tune the network.
One disadvantage is that these methods have restrictions
on triggers and the network activation. For instance, Neural
Cleanse requires assumptions on the trigger size. However,
the attacker has complete control of the triggers. Therefore,
the reverse-engineering based methods may become ineffec-
tive when the attacker uses some triggers that do not satisfy
the assumptions. In this work, we do not consider having
assumptions on the triggers.

Another type of approaches is to consider the poisoned
data as novelty samples that are different from the clean
validation data. Then, statistical tools can be used to detect
poisoned inputs, such as strong intentional perturbation
(STRIP Gao et al. [31]), Mahalanobis distance-based nov-
elty detection (MD Lee et al. [32]), and Kwon’s method
(Kwon [33]). However, training the novelty detection model
requires a relatively large amount of validation dataset. The
performance of this type of works decreases considerably
when the clean validation dataset is small. Our work intersects
with this group of studies but overcomes the disadvantage by
fully utilizing the on-line streaming data.

Our motivation comes from the fact that once the back-
doored network is implemented for on-line usage, there will
be substantial on-line data available. One can therefore take
advantage of the on-line streaming data without requiring
a reasonable amount of clean validation data or restrictive
assumptions on the trigger. Additionally, detection methods

5546

based on the usage of on-line data will have a broader
range of applications than the discussed methods since
restrictive assumptions can be removed. The on-line data
usage based detection methods may perform ineffectively
initially because the on-line data is scarce at the beginning.
However, with the sacrifice of initial performance, it can
eventually provide very good performance in backdoor
detection.

In this paper, we propose Removing Adversarial-Backdoors
by Iterative Demarcation (RAID), which (1) makes minimal
assumptions on the backdoor operation, (2) is effective with
small clean validation data, (3) is computationally efficient
and can be updated in real-time during on-line operation,
(4) and has consistently good performance on several datasets
under different backdoors. RAID works as follows: given a
small group of clean validation samples, RAID first extracts
features from the output layer of the backdoored network
obtained from feeding these clean samples into the network.
Then, it trains an out-of-distribution detector (containing a
novelty detector and a shallow neural network) based on the
extracted features. During on-line implementation, this out-
of-distribution detector determines if a new input is in-sample
or out-sample. RAID collects the out-sample inputs, purifies
the set of out-sample inputs (because the set may contain
some in-sample false positives), and trains a binary support
vector machine (SVM) with the purified samples (labeled as
poisoned) and the original available clean samples (labeled as
clean). The training process is in feature level as well. RAID
uses the SVM to identify if an incoming input is poisoned
or not. RAID updates the SVM through retraining with a
user-defined frequency, which enables RAID to repeatedly
improve its accuracy and outperform prior methods. This
repeated update to improve backdoor detection accuracy can
be viewed as iterative demarcation in feature space. Note that
RAID does not attempt to remove any backdoors from the
network; it instead seeks to detect poisoned inputs so that the
user is notified that the input is corrupted and therefore does
not allow an incorrect classification for such an input by a
backdoored network.

RAID takes full advantage of on-line data to increase the
accuracy. The reason why on-line data helps is that it provides
examples of poisoned samples (even though RAID only has
a “noisy” estimate of which samples are poisoned — using
the novelty detector). On the other hand, the validation
data used in off-line training only has examples of clean
samples. Therefore, this difference in distribution of off-line
and on-line data helps improve the detection accuracy over
time.

The contributions of this paper include: (1) constructing
an ensemble of several simpler models to attain a high-
performance on-line detection model; (2) proposing a method
to fully use both on-line streaming data and off-line validation
data to detect backdoored inputs; (3) using on-line data
without requiring labeling by a human, (4) analyzing RAID
on a wide range of networks with various backdoors and
comparison with the state-of-the-art methods.

VOLUME 10, 2022

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation

IEEE Access

This paper is organized as follows: Sec. II introduces
related works. Sec. III presents the problem formulation.
Sec. IV introduces and explains RAID. Sec. V describes
the experiment setup, including the choice of network
architectures, triggers, and the hyper-parameters of RAID.
Sec. VI evaluates RAID in different respects and shows the
experimental results. Sec. VII concludes the paper.

Il. RELATED WORK

The backdoor attack was first proposed by Gu ef al. [21] and
independently by Liu et al. [34]. Gu et al. [21] proposes the
““all label attack™ in which all the labels are attacker chosen.
Defense-aware attacks were studied by Liu et al [35],
wherein the attacker has the knowledge of the user’s defense
strategy and designs a backdoor attack to bypass the defense.
In clean label attacks (Liu et al. [36]), the data is poisoned in
a target class during training time. During implementation,
the attacker poisons data in all the classes. Recently, more
types of triggers are proposed, such as triggers with semantic
real-world meaning (Wenger ef al. [37]), hidden invisible
triggers (Li et al. [38], Saha et al. [39], Li et al. [40]), and
reflection triggers (Liu et al. [41]). Backdooring attacks are
also studied in the area of federated learning (Xie et al. [42],
Bagdasaryan et al. [43], Andreina ef al [44]), transfer
learning (Yao et al. [45]), graph networks (Zhang et al. [46]),
text-classification (Dai et al. [47]), and out-sourced
cloud environments (Gong et al. [48]). The backdoor-
ing mechanism is also utilized for patent protection
(Shafieinejad et al. [49]).

Liu et al. [35] proposed fine-pruning, which first prunes
the backdoored DNN by deactivating the neurons that are
most sensitive to clean validation data and then fine-tunes the
network. STRIP (Gao et al. [31]) superimposes a given input
onto several clean images from different classes. Thereafter,
the superimposed images are fed into the network to calculate
entropy based on the output probabilities. If an input is
poisoned, it is likely that the averaged entropy is below
a threshold because the triggers may still exist on the
superimposed images and therefore the outputs have high
confidence (low entropy). However, if an input is clean, it is
likely that the averaged entropy is above a threshold since
the network cannot confidently classify the superimposed
images.

For the Mahalanobis distance-based novelty detection
method (Lee et al. [32]), given a group of clean samples,
it calculates mean and covariance for each class. For a
new input, it calculates Mahalanobis distance based on the
calculated mean and covariance. If the Mahalanobis distance
of the new input is lower than the user-defined threshold, the
input is identified as in-sample, otherwise it is identified as
out-sample. In Kwon [33] (referred to as Kwon’s method
hereafter), a detection model is trained from scratch using
a portion of the original training data relabeled by a human
expert. During the on-line implementation, Kwon’s method
detects poisoned samples by checking the consistency
between the detection model output and the backdoored

VOLUME 10, 2022

network output. The approach degrades if the portion
of original training dataset is small. Additionally, human
relabeling is an expensive and time-consuming solution.
There are more works using novelty detector for outlier
detections (Abati et al. [50], Oza et al. [51], Lee et al. [52],
Perera et al. [53], Sabokrou et al. [54], Chen et al. [55],
Zhu et al. [56]). Erichson et al. [57] studies the behavior
of the backdoored network using noise response analysis.
Kolouri et al. [58] uses universal litmus pattern to study the
backdoored network.

lIl. BACKGROUND AND PROBLEM DESCRIPTION

A. THREAT MODEL

Scenario: The user wishes to train a DNN F for a
classification task on the training dataset S sampled from the
data distribution D. The user outsources the training task to
a third party (attacker). The third party returns a backdoored
DNN F} to the user.

The Attacker’s Goal: The attacker trains JFj to output
desired target label(s) /* on poisoned inputs x*. The poisoned
inputs x* are generated by injecting trigger(s) into clean
inputs x. Only the attacker knows the trigger information.
Additionally, F}, should have high classification accuracy on
x while evading detection by the user.

Attack Model: The attacker has full control over the
training process and the dataset S. However, the attacker
neither has access to the user’s validation dataset, nor the
ability to change the model structure after training.

B. BACKDOOR ATTACK

Setup: The attacker determines the backdoor injection
function f(-) and the target label(s) /* to generate poisoned
data (x*, [*) from the clean data (x, [):

x* = f(x). (D

The attacker next chooses a portion of the clean training
dataset 2 C S to inject the triggers to create the poisoned
version of Q2 as:

QF = [f(x), x € Q). 2)

Finally, the attacker mixes Q* with S to generate the training
dataset S” given by:

St =S\ Quar (3)

D* denotes the distribution corresponding to poisoned data.

Attacker’s Objectives: The attacker trains a backdoored
network Fj, with dataset S?. On the one hand, F, should
have classification accuracy (CA) comparable to F on clean
inputs x ~ D with corresponding labels /, i.e.,

P(Fp(x) =1) = P(F(x) =1) — €1, “

with small €; > 0 (ideally, ¢, = 0). On the other hand,
Fp should also have high attack success rate (ASR) (i.e.,
output = [*, which is the attacker-chosen target label) on
poisoned inputs x* ~ D* i.e.:

P(Fp(x™) =1") = 1 — €2, Q)
with small € > 0 (ideally, e = 0).

5547

IEEE Access

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by lterative Demarcation

C. PROBLEM DESCRIPTION AND ASSUMPTIONS

The Defender’s Goal and Capacity: Given Fj, the defender
wants to lower the ASR while maintaining the CA. The
defender has a small set of clean validation data V (e.g.,
around 2% of the training dataset size). The defender has
no prior information about the backdoor triggers and the
attacker-chosen target label(s). Additionally, we assume that
the defender has only access to the final layer output of
the feature extractor and thus does not necessarily need the
knowledge of the architecture of the neural network, weights,
or other layer outputs. This is less restrictive than a white box
assumption.

Problem Formulation: Given Fj, the defender wishes
to construct a binary classification detection function, g(-),
so that for clean samples x ~ D, it outputs “‘clean” with
high likelihood and for poisoned samples x* ~ D*, it outputs
“poisoned”” with high likelihood, i.e.,

P(g(x) =0lx € D) = 1 — €3, (6)
P(g(x™) = 1lx* € D*) > 1 — ey, (N

with small €3, €4 > 0 (ideally, €3, €4 = 0).

IV. DETECTION ALGORITHM

In this section, the reasons for why all the training and
detection in the proposed approach are implemented in the
feature level are discussed. Then, the detection algorithm is
introduced. Lastly, the details are presented.

A. DECOMPOSITION OF Fp

DNNs can be considered as a composition of a feature
extractor Cp (e.g., the convolutional layers) and a decision
function G, (e.g., the fully connected layers), i.e., Fp =
Gp o Cp. Cp can be viewed as pulling out and characterizing
features at higher abstraction levels. G; determines what
combinations of the features should map into what outputs.
The hypothesis is that the backdoor is encoded either through
novel feature patterns when the trigger is present and/or a
“logic” component (specifying what features in the trigger
should result in the attacker-chosen label) encoded in Gp.
Therefore, considering the features and the mapping from
features to the output can be useful for detecting backdoors.
There are at least two advantages for this approach:
(1) dimension in the feature space is much lower than the
dimension of raw data. (2) After computations over several
layers, the trigger pattern might be augmented or distilled
into feature elements and irrelevant information might also
be removed. In this work, we set the output layer of F, as G,
and all the previous layers as Cp.

B. OVERVIEW OF THE DETECTION ALGORITHM

The overall algorithm is shown in Alg. 1. In the
off-line training, the defender has a backdoored network F
decomposed into Cp and Gp, and a small clean validation
dataset V with corresponding labels L. The defender first
extracts features from V using Cp. A new classifier G, is

5548

Algorithm 1 On-Line Detection Algorithm
Given

Validation data = (V, L)
Backdoored network Fp, = Gp, 0 Cp,

Off-line Training
Features of validation data: Vi < Cp(V)
New classifier: G,, < train(G,, (Vg, L)).
Preprocessed features: Vpp < preprocess(Vr)
Novelty Detector: N < train(N', Vgp)

On-line Detection and Update
g(-) =0 (clean), count =0, A = {}
while True do
count +-+
Receive New Input x

Make a Prediction on x with F;,
Input Feature xp < Cp(x)
Prediction [< Gp(xr)

Check If x is Poisoned (Front End)
XFp <— preprocess(Xr)
if g(xpp) == 0 then
[is the label for x (Clean with High Probability)
else
x is poisoned with high probability
end if

Determine If x Should Be Collected as Anomalous
Data and Used to Update g(-) (Back End) ###
U < Gu(xr)
if [# I or N(xpp) == 1 then
A <~ AU {xpp}
end if

Updating g(-)
if count % window_size == 0 then
A* < purify(A)
g < train(g, ({A*, 1} U (Vrp, O})
end if
end while

trained with the extracted features Vg and corresponding
labels L. Since G, is trained only on clean data, it is highly
likely that G, o Cp and Gp, o Cp behave similarly on clean
inputs but differently on poisoned inputs. The dimension
of extracted features is further reduced with a preprocess
function (e.g., the defender can use principal component
analysis (PCA Tipping and Bishop [59]), to consider only the
top principal components). A novelty detector A is trained in
unsupervised learning with the dimension-reduced validation
data features Vpp as another detector independent of G, to
detect the inputs that differ (in terms of features extracted
from them) from the clean validation data. This part can be
seen in Given and Off-line Training in Alg. 1.

VOLUME 10, 2022

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation

IEEE Access

'F = (b)
Input 1 LF | Lrp = g=O:clean
5 ——»I Cp ! IPreprocessl {o] PP —"
Feature (a)
Extractor
Frontend
Novelty
Detector
Decision m_.
Function l
Gy }
New Decision
Function /r

FIGURE 2. Pipeline of the detection algorithm (on-line part).

Both Fig. 2 and On-line Detection and Update in
Alg. 1 show the pipeline of on-line implementation of
RAID (i.e., the on-line detecting and retraining). The on-line
implementation contains two parts: a front-end and a back-
end, which are implemented in a parallel manner. In the
front-end, a given input is first sent into the feature extractor
Cp, then is further reduced in its dimension with the same
preprocess function used in off-line training. A binary
classifier g(-) (e.g., SVM Platt [60]) is used by the defender
to attempt to determine if an incoming sample x is clean or
not. If g(-) indicates that x is clean, JF} is used to classify x
and will have high accuracy (since F} has high classification
accuracy). If g(-) indicates that x is poisoned, we do not trust
the inference of F,(x), therefore reducing ASR. The input of
g(+) is xpp, which is the dimension-reduced features of x. g(-)
isinitialized by defining it as having an output of clean for any
inputs and is then updated at a pre-specified frequency. RAID
does not remove any backdoors from the network since it is
designed to detect poisoned inputs so that the user is notified
that the input is corrupted and therefore does not allow an
incorrect classification for such an input by a backdoored
network.

In the back-end, N and G,, are used to decide if x should
be collected as “suspected” poisoned samples. If either N
says that x is novel (i.e., different from the clean validation
data) or the inferences of G,, and G; are not consistent, then
x will be collected into the anomalous dataset .A. The input
of G, and G, is the extracted features of x (i.e., xr) and
the input of N is the dimension-reduced features of x (i.e.,
xrp). Since A may contain a few clean samples as well (false
positives), the defender uses an anomaly detector to remove
those clean samples to obtain A*. g(-) is retrained with A* and
VEp at a pre-specified frequency. The corresponding training
target is 1 (poisoned) for data in .A* and O (clean) for data
in Vpp. g(-) is trained from scratch with the updated A* at
each time. However, one may also use incremental learning
(Weng et al. [61], Rudd et al. [62]) to fine-tune g(-) at each
time. The performance of g(-) increases with retraining times.

VOLUME 10, 2022

C. DETERMINING THE MODEL STRUCTURE

In this work, G, is a simple network that at most has
two hidden layers. By choosing such an architecture, the
combination of G, and Cp (i.e., G, o Cp) is close to the
original backdoored network F;, = G o Cp because G, is
a simple network as well. Therefore, they may show similar
behavior on clean samples. Since the architecture of G, is
simple, the number of parameters needed to be trained is
small. Therefore, a small clean validation dataset is sufficient
to train G,, well.

We use PCA as the preprocess function (i.e., (a) in
Fig. 2). The reasons are as follows: 1) PCA is one of the
most common methods that can reduce the data dimension
without losing too much information. 2) It amplifies the
spectral signature of the clean data so that it looks more
different from the spectral signature of poisoned data. The
important point to keep in mind is that our PCA model
was trained only on a clean validation dataset. We do
not possess a contaminated dataset (meaning both clean
and poisoned samples). Therefore, the PCA model cannot
highlight the spectral signature of the backdoors. This makes
the motivation of using PCA in our paper different from some
existing works, such as Chen et al. [26] and Tran et al. [25].
However, other models that also have these two properties
can be considered.

Local outlier factor (LOF) is used as the novelty detector
N (.e., (¢) in Fig. 2). The requirements for a candidate
novelty detector are as follows: 1) it must be unsuper-
vised since we only have the clean validation data. 2) It
needs to be implemented in real-time. LoF meets these
two criteria. Other outlier detectors (e.g., Chen et al. [63],
Dong et al. [64], Hariri et al. [65], Lesouple et al. [66]) may
also be considered as long as the two requirements are
satisfied. The anomaly detector (d) in the figure is also LOF
for the same reasons.

We used SVM as our binary classifier g in (b) in the figure
for the following reason: our detection method is designed
for on-line use. Therefore, the structure of g must be simple
so that the training time is small. The SVM satisfies the
requirement. Other models, such as a neural network, may
take much longer training time than the SVM. However, the
binary classifier is open to other models that can be trained in
real-time.

All of the above mentioned models are trained using
feature vectors or dimension-reduced feature vectors. Addi-
tionally, RAID achieves a high performance with small
validation datasets, which will be shown in the later section.
Compared with other complicated models (such as neural
network based models that take long time to be well-
trained), our algorithm can be implemented in real-time.
These advantages make RAID a novel and efficient feature-
based approach.

D. DETAILS OF THE TRAINING SETTINGS
As mentioned previously, since the structure of G,, is small,
a small clean validation data is sufficient to train G, to a

5549

IEEE Access

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by lterative Demarcation

FIGURE 3. The first column shows sample clean images for all the
datasets. The rest shows all the triggers used in this paper.

good accuracy. This is important because in real world cases,
the user may only have a small clean validation data. The
training is performed using SGD optimizer with learning rate
set to 0.01 and cross-entropy based loss function with default
hyper-parameter settings. Using the raw clean validation data
features to train A and g would lead to a slow training process
since the raw features’ dimension may be large (e.g., > 300).
In this work, we use the top 40 principals from the validation
data features in all the experiments except the one in which
we evaluate the performance of RAID with different number
of principals.

At the beginning of on-line implementation, since only
clean data is available, the SVM is initialized to output clean
for all inputs. This actually causes a high attack success rate
at the beginning. However, once the SVM is retrained with
anomalous data that contains poisoned samples, the attack
success rate will be reduced significantly. The retraining takes
less than 1 second. The defender can set a window_size
(e.g., 10% of the testing dataset size) to determine the
update frequency. Our method provides a solution to detect
backdoor attacks in a realistic situation where the clean
validation data is not sufficient to retrain the entire network.
The implementation of our approach leverages statistical
tools from sklearn (Pedregosa et al. [67]) and the PyTorch
(Paszke et al. [68]) machine learning library.

V. EXPERIMENTAL SETUP

We use five datasets: MNIST (LeCun and Cortes [69]),
German Traffic Sign Benchmarks (GTSRB) (Stallkamp et al.
[70]), CIFAR-10 (Krizhevsky et al. [71]), YouTube Face
(Wolf et al. [72]), and ImageNet (Deng et al. [73]). A wide

5550

TABLE 1. Dataset Size. The columns 2 to 4 show the averaged number of
samples per class for each dataset. The number of classes for each
dataset is 10, 43, 10, 1283, and 1000, respectively.

Dataset Train Valid Test Valid/Train

MNIST 5500 100 1000 1.8%

GTSRB 820 50 268 6.0%
CIFAR-10 5000 30 500 0.6%
YouT. Face 81 3 10 3.7%
ImageNet 1200 3 25 0.2%

range of backdoored networks were trained with dif-
ferent triggers, as shown in Fig. 3. The architectures
of the backdoored networks were chosen based on the
prior works (Wang et al. [27], Sun et al. [2], Lin et al. [74],
Gu et al. [21], Liu et al. [36], Huang et al. [75]) and also
shown in Appendix. Each dataset was split into train-
ing dataset (Train), validation dataset (Valid), and testing
dataset (Test) as shown in Table 1. Note that since some
of the datasets (i.e., MNIST, GTSRB, and ImageNet) are
unbalanced among classes, we reported the average number
of samples per class for all labels. The averaged number
of samples per class is the dataset size divided by the total
number of classes. The training dataset, partially poisoned
(i.e., around 10%), was used for training the backdoored
networks. The clean validation dataset was used for training
N, G, and g(-) along with on-line streaming data. The testing
dataset was used to evaluate our method and other baseline
methods. To acquire poisoned samples, one can inject the
triggers in the testing images. To build an on-line dataset with
size n and attack density p, we use the (1 — p)n clean testing
samples plus pn poisoned testing samples. We have designed
experiments with p = 0, 0.05, 0.1, 0.2, and 0.5. Empirically,
we have noticed when we approach about 20% of the test
data (in terms of data size) being poisoned, we achieve good
performance in terms of ASR and CA. There is not much gain
after p = 0.5.

A. MNIST

Two backdoored networks were trained: Case a) — the trigger
is the pixel pattern shown in the second column of Fig. 3(a).
The attacker chosen label /* was determined by:

I* = (I + 1) mod 10, 8)

where [is the ground-truth label. F; is from Gu et al. [21].
Classification accuracy (CA) is 97.65% and attack success
rate (ASR) is 96.3%. Case b) — the trigger is the background
pattern (almost imperceptible) as shown in the third column
in Fig. 3(a). [* is 0. Fp is from Liu et al. [36]. CA is 89.35%.
ASR is 100.0%.

B. GTSRB

Three backdoored networks were prepared: Case ¢) — the
trigger is the white box shown in the second column in
Fig. 3(b). I* is 33. Fp is from Wang et al. [27]. CA is 96.41%
and ASR is 97.62%. Case d) — the trigger is a moving square
as shown in the third column in Fig. 3(b) with [* = 0.

VOLUME 10, 2022

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation

IEEE Access

CA is 95.26%. ASR is 99.92%. The architecture is shown
in Appendix. Case e) — JF}, uses the same architecture as in
d). Inputs passing through a Gotham filter will trigger Fp,
as shown in the fourth column in Fig. 3(b). [* = 35. CA is
94.49% and ASR is 90.32%.

C. CIFAR-10

Three backdoored networks were trained: Case f) — the trigger
is the combination of a box and circle, as shown in the second
picture in Fig. 3(c), meaning that F; will output the attacker-
chosen label 0 only when both the shapes appear on the
input. The architecture is from Lin et al. [74]. CA is 88.6%
and ASR is 99.8%. Case g) — similar to the first one except
that the trigger is the combination of a triangle and square,
as shown in the third column of Fig. 3(c). [* = 7. CA is
88.83% and ASR is 99.97%. The third F; also uses the same
architecture but the trigger is a small perturbation (one pixel
at each corner), as shown in the last column in Fig. 3(c). I*
is 0, CA is 82.44%, and ASR is 91.92%.

D. YouTube FACE

Four backdoored models were trained with the same archi-
tecture (Sun et al. [2]). Case h) — the trigger is sunglasses
as shown in the last column in Fig. 3(d). [* is 0. CA is
97.83% and ASR is 99.98%. Case i) — the trigger is red
lipstick, as shown in the second column of Fig. 3(d). [* is
0. CA is 97.19% and ASR is 91.43%. Case j) — Fj has all
the three triggers: lipstick, eyebrow, and sunglasses as shown
in in Fig. 3(d). /* is 4 for all the triggers. CA is 96.13% and
ASR 15 91.80%, 91.88%, and 100% on lipstick, eyebrow, and
sunglasses, respectively. Case K) — F, has all the three triggers
as well. [*, however, is 1 for lipstick, 5 for eyebrow, and 8 for
sunglasses. CA is 96.08% and ASR is 91.11%, 91.10%, and
100% on lipstick, eyebrow, and sunglasses, respectively.

E. ImageNet

One backdoored network was trained with the red box trigger
shown in the second column in Fig. 3(e). [* = 0. The network
is DenseNet-121 (Huang et al. [75]). CA is 72.14%. ASR is
99.99%.

F. THE CONFIGURATION OF THE ANOMALY DETECTOR
AND PCA

The anomaly detector is also LOF but with anomaly
detection mode. The contamination ratio (i.e., threshold for
the proportion of outliers in the dataset) was set to be
0.2 for all the cases. The number of neighbors (i.e., another
hyper-parameter of LOF) was set to be 1. However, the
defender can set any value between 1 to 20. Empirically,
we have observed that the CA and ASR of our approach
with NN = 1, 10, and 20 are comparable to each other and
there is not a distinctive advantage in choosing a higher NN;
however, the lower NN makes the computation faster. The
contamination ratio choice will impact the performance of
the anomaly detector since the anomaly detector will remove
many poisoned samples (leading to high ASR) using a large

VOLUME 10, 2022

contamination ratio, and the purified dataset A* may still
contain many clean samples (leading to low CA) with a
small contamination ratio. One should avoid choosing very
small or large numbers for contamination ratio. This is further
explained in the experiment section. We utilize typical default
values for the remaining parameters. The number of principal
components used in PCA is another important factor that
directly affects the performance of our method. We evaluated
the performance of RAID with different number of principal
components and will present the results in the following
section.

VI. EXPERIMENTAL RESULTS

The clean validation datasets were used to train N/,
Gn, and g(-) along with on-line streaming data for each
case. Our method was compared with Neural Cleanse
(NC Wang et al. [27]), Mahalanobis distance-based Novelty
detection (MD Lee et al. [32]), STRIP (Gao et al. [31]), and
Kwon’s method (Kwon [33]). For these baseline methods,
we either directly used the codes provided by the authors
or implemented the algorithms based on the papers in
cases where author-provided codes could not be directly
applied to our problem. For the hyper-parameters of the
baseline methods, we tried to use default values. For
the hyper-parameters that were not specified, we tuned
the hyper-parameters so that their methods show the best
performance. We show the efficacy of our approach under
various conditions, including multi-triggers and adaptive
attacks, imperceptible trigger, large-scaled dataset, various
attack densities, and various update frequencies.

A. PERFORMANCE OF N AND G,

The purpose of using both A/ and G,, is to maximally identify
poisoned samples. We show the CA and ASR of using
N alone, G, alone, and the both on different datasets in
Table 2. The table shows that using A and G, together
will maximally reduce ASR (i.e., maximally catch poisoned
samples) compared to using only either one of them. Using
N and G, together will also potentially drop CA, meaning
that the anomalous dataset could have a few clean samples
(false positives). The CA of N' + G, is also affected by
the size of the clean validation dataset. We experimentally
observed that for larger validation datasets, the CA of N'+ G,
increases, whereas for smaller validation datasets, the CA
of N' + G, decreases. The ASR of N + G, is not affected
by the size of clean validation dataset (i.e., ASR is low
even when a smaller clean validation dataset is used). In this
initial filtering, we weigh ASR more than CA. Additionally,
an anomaly detector is used subsequently to further reduce
false positives. Note that in case e), the ASR is still large
(45.65%) even though G, and AV are used together. The reason
is that the trigger in this case is different. Rather than some
specific patterns, case e)’s trigger is a Gotham filter function.
G, and NV are not sensitive to this trigger. But we will next
show that RAID can still improve itself to further reduce the
ASR with on-line data.

5551

IEEE Access

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by lterative Demarcation

TABLE 2. Performance of A/ and G, on cases (a)-(i).

On N Gn+N
Case CA ASR CA ASR CA ASR
a) 93.63 15.04 9537 4975 9244 434
b) 87.68 1.83 87.58 0.0 86.23 0.0
c) 95.08 422 9483 345 9338 1.14
d) 9340 7145 86.72 0 85.43 0
e) 9405 74.63 9217 5775 91.57 45.65
f) 8128 99.6 8826 023 81.04 0.23
2) 82.86 70 88.72 814 82.72 3.7
h) 55774 314 96,57 79.15 5526 3.04
i) 60.64 0.01 96.04 33.78 60.09 0.01

TABLE 3. Performance of the backdoored network after using SVM with
different update times for cases (a)-(i).

Case/Update Oth 1st 2nd 3rd 4th

2) CA 97.65 97.63 9753 97.06 96.83
ASR 96.3 384 1135 338 1.15
CA 89.35 8935 89.35 8935 89.19

P AR 100 0 0 0 0

o CA 94l 96T 9641 9641 9641
ASR 9762 117 097 029 026

o CA 9526 9519 9476 9457 o6l

ASR 9992 055 023 021 0.19
o CA 0449 9437 9387 9352 9336
ASR 9032 2026 1016 744 461
CA 886 886 836 856 886
D ASR 9988 005 001 003 001
CA 8383 8883 88.83 8883 88.83
8 ASR 997 04 02 013 01
b CA 9783 9181 9777 9103 9767
ASR 9998 896 284 107 048
, CA 9719 9719 9716 9716 LIl
ASR 9143 667 435 383 324

B. PERFORMANCE OF g(-)

Since RAID requires on-line retraining, we use the first 40%
of test data for on-line implementation and updating of the
SVM, and the remaining 60% of test data for evaluating
the performance of the backdoored network after employing
the SVM. We initialize the binary SVM to output clean for
all the inputs. Then, we update the SVM with a fixed window
size, which is set to 10% of test dataset size (therefore,
the SVM can be updated 4 times in the considered test
scenario). Each test input has equal probability of being
clean or poisoned. The performance is shown in Table 3.
From the table, SVM helps reduce ASR while retaining
high CA. Note that in case e), the SVM still provides good
performance although the off-line models have 45.65% ASR
(refer to Table 2). These results highlight the robustness of
our method. Table 4 lists how many poisoned samples are fed
into the backdoored network and the size of .A* for training
the SVM at each update. From the table, training a good SVM
needs only a small set of poisoned samples.

C. COMPARISON WITH OTHER METHODS

We compare RAID with state-of-the-art methods, including
Neural Cleanse (NC), MD, and STRIP. The results are shown
in Table 5. All the methods are trained using the clean

5552

TABLE 4. Size of .A* and the number of poisoned inputs that appeared at
each update.

Oth Ist 2nd 3rd 4th

a)-b) # of poisoned inputs 0 1000 2000 3000 4000
a) ize of A* 0 217 411 609 812
b) siee o 0 226 439 666 894

c)-e) # of poisoned inputs 0 1263 2526 3789 5052
c) 0 275 534 779 1033
d) size of A* 0 295 575 870 1123
e) 0 162 303 434 571

f)-g) # of poisoned inputs 0 1000 2000 3000 4000
f) size of A* 0 213 424 635 846
2) 0 214 412 614 826

h)-i) # of poisoned inputs 0 1283 2566 3849 5132
h) . " 0 360 722 1086 1453

size of A 0

i) 352 698 1044 1390

validation data and tested on the remaining 60% test data.
From the table, training the entire model from scratch has
low attack success rate. However, since the validation dataset
is small, CA becomes very low. Kwon’s method requires the
model trained using the clean validation dataset to have high
performance. Therefore, in the small training dataset case,
Kwon’s method becomes inefficient. Another distinguishing
factor and important assumption is that Kwon’s method
requires human relabeling, which is an expensive and time-
consuming process, whereas RAID does not need human
relabeling. Other methods, i.e., NC, MD, and STRIP, do not
perform in a consistent manner for various Trojans and may
not work at all for some Trojans although they may have good
performance for some cases. One main reason is that they
do not use the on-line streaming data and therefore cannot
improve their performance at run-time. If the clean validation
dataset is small, efficacy of prior methods such as MD is
limited. RAID shows consistently good performance on all
the cases after using the on-line streaming data to retrain the
SVM.

From the table, NC has high ASR on cases a), b), e), 1), g),
h), and i). This is because except for case a), the remaining
cases use large-sized triggers. In their paper, NC assumes the
trigger size is small. However, the attacker has full control
of deciding the trigger size. Therefore, these cases show that
NC may not be practically efficient in real world situations.
As for case a), the bad performance is because this attack
has multiple attacker-chosen labels. NC cannot identify all
of them. STRIP shows high FAR (false acceptance rate) on
cases a), ¢), d), and e). According to Sarkar et al. [76], STRIP
is more efficient when there is only one attacker-chosen label.
This is confirmed by case a). As for cases c), d), and e),
it is likely that the threshold picked at FRR (false rejection
rate) = 3% is so low that it causes high FAR. Note that c), d),
and e) use the same dataset (GTSRB) and similar architecture.
It shows that STRIP consistently does not perform well on
this dataset with the specific architectures. For MD, low
CA is attained on cases a) and b). This is because the
available data is not sufficient to train the out-of-distribution
detector. This is also supported by the observation that when
we increased the size of validation dataset, the performance

VOLUME 10, 2022

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation

IEEE Access

TABLE 5. Comparison Results. RAID uses the 4th updated SVM. The STRIP succeeds when both FAR and FRR are low.

Trojaned Net. Train from Scratch RAID (4th) Neural Cleanse MD Kwon’s [33] STRIP
Case CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR FAR (FRR =3%)

a) 97.65 96.3 86.48 0.93 96.83 1.15 7375 80.88 15.67 0 85.15 0.79 100
b) 89.35 100 87.75 9.97 89.19 0 86.65 100 19.4 0 78.48 9.97 4.81
c) 96.41 97.62 71.21 1.2 9441 0.26 92.9 0.1 Fail 71.21 0 95.51
d) 9526 99.92 7291 0.79 9461 0.19 9523 7.33 Fail 7148 0.79 100
e) 9449 90.32 72.05 4.55 9336 4.61 94775 87.87 Fail 70.79 4.55 100
f) 88.6 99.8 9.8 33 88.6 0.01 10.3 49.9 68.1 99.5 9.62 0 1.06
2) 88.83 99.7 9.1 0 88.83 0.1 87.78 99.78 65.86 4.2 9.1 0 0
h) 97.83 99.98 57.63 0.06 97.67 048 92.6 9328 7828 578 5739 0.06 26.32
i) 97.19 9143 565 0.03 97.11 324 9515 9121 7391 564 5590 0.03 29.13

of MD increases considerably. Our method uses SVM to
improve the performance, whereas MD does not show further
improvement.

As for time complexity, NC requires a long time to build
the detection model. It assumes each label is potentially an
attacker-chosen label and reverse-engineers a trigger for each
label. Kwon’s method requires human labeling, which may
also take long time to finish. MD takes less time than Kwon’s
method and NC since it neither requires human labeling
nor reverse-engineering triggers for each label. It trains
its detection model with feature vectors. Therefore, the
computation complexity is low. Our method and STRIP are in
the same level of time complexity. Both approaches train off-
line models. The difference is that the input of our off-line
model is feature vectors, whereas the input of STRIP’s off-
line model is images. During on-line implementation, STRIP
needs to calculate an averaged entropy for the input, whereas
our approach needs to re-train the SVM at a fixed frequency.
Overall, MD has the least time complexity. Kwon’s method
and NC have the most time complexity. RAID and STRIP are
in between MD and the NC and Kwon’s method.

D. PERFORMANCE OF THE ANOMALY DETECTOR

RAID uses the anomaly detector to purify A to get A*. We,
therefore, examine the performance of RAID without the
anomaly detector and with different anomaly detector settings
(i.e., the contamination ratio). Table 6 shows the results.
Without the anomaly detector, the classification accuracy
drops significantly. This is because .A contains too many
clean samples mis-labeled as poisoned. Without the anomaly
detector, A = A*, and the SVM trained with such A* will
perform inefficiently. As for different contamination ratio,
our method shows comparative results with each other. Both
the classification accuracy and attack success rate decrease
while the contamination ratio setting increases.

E. MULTIPLE TRIGGERS AND ADAPTIVE ATTACKS

The cases from a) to i) discussed above all have only one
trigger. In some situations, the attacker may use multiple
triggers to attack the backdoored network, which is more
advanced. In this subsection, we evaluate RAID under multi-
trigger attacks, i.e., cases j) and k). The following attack
scenarios are considered during on-line operation: 1) The

VOLUME 10, 2022

TABLE 6. Performance of RAID (the 4th update) without anomaly
detector and with different contamination ratios.

No Detector ratio = 0.1 ratio = 0.2 ratio = 0.3

CA ASR CA ASR CA ASR CA ASR
a) 8635 0.03 9690 1.7 96.83 1.15 9448 0.15
b) 87.69 0 89.35 0 89.19 0 89.02 0
c) 9257 005 9441 0.65 9441 026 9434 0.23
d) 9424 0.06 9572 0.25 9461 0.19 9447 0.10
e) 8853 0.19 9404 1377 9336 4.61 93.0 242
f) 56.63 0 88.6 0.05 88.6 0.01 88.6 0.01
g) 62.03 0 88.83 0.13 88.83 0.1 88.83 0.1
h) 92.64 0 97.76 1.81 97.67 048 97.60 024
i) 9223 085 97.19 494 97.11 324 97.07 2.58

attacker does not use any triggers; 2) The attacker uses
only one of the triggers; 3) The attacker uses two of the
triggers; 4) The attacker uses all the triggers. We also show
the performance of the original backdoored network under
column ‘““Net.” For scenario 1), recall that RAID trains an
SVM with the data in A* and the clean validation data.
If no poisoned samples are sent into the network, then A*
will contain no poisoned data but only false positives. The
performance of SVM trained on such .A* should be studied.
For scenarios 2), 3), and 4), we consider that the attacker
knows that some detection algorithms will be used and
therefore trains a network with 3 triggers. However, during
the on-line implementation, he only presents 1 or 2 triggers to
the network. For some detection algorithms, the third trigger
may bypass the detection. We therefore, evaluate RAID for
such a case. Our method uses the 4th updated SVM. The
results are shown in Table 7. From the table, RAID maintains
high CA in all the scenarios and has low ASR on triggers that
have been used by the attacker. For scenario 1), although the
purified anomalous dataset A* contains only clean samples,
RAID still manages to have a high classification accuracy.
For scenarios 2) and 3), RAID has high ASR on the second
or third trigger. However, since the SVM is updated in real-
time, once the new triggers are used for backdoor attack, N
and G, will detect them in the back-end resulting in attack
detection by the SVM in the next update, such as case 4). The
only period in which the network is vulnerable to the new
triggers is between the moment that a new trigger appears and
the next SVM update. Overall, the results show the efficacy
and robustness of our method.

As for adaptive attack, the attacker can leverage this
multiple-trigger case. Specifically, the attacker can train a

5553

IEEE Access

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by lterative Demarcation

TABLE 7. RAID performance on dynamic attacks (j)-(k).

Case/Attack Net. 1) 2) 3) 4)
CA 96.13 96.10 96.05 95.83 95.88
. ASR1 91.80 91.78 3.84 3.72 3.79
) ASR2 91.88 91.85 64.36 2.22 2.27
ASR3 100 100 100 100 0.21
CA 96.08 96.05 9599 9590 95.88
K ASR1 91.11 91.11 2.77 2.84 3.21
ASR2 91.10 91.10 89.88 0.99 0.94
ASR3 100 100 99.65 95.82 0

backdoored network with a large number of triggers. During
the on-line operation, the attacker switches to a new trigger,
after each time that the SVM is updated. With this strategy
by the attacker, the network is consistently exposed to a
new trigger attack. However, training such a neural network
with a large number of triggers is at least challenging,
if not unrealistic. To the best of our knowledge, there are no
published works to effectively counteract such attacks.

F. EXPERIMENTS ON HYPER-PARAMETERS

Four experiments were designed to evaluate the hyper-
parameters most related to the performance of RAID. The
first one is the number of principal components. An attacker
may choose an imperceptible trigger to attempt to make
the dimension-reduced poisoned data features close to the
dimension-reduced clean data features to reduce effectiveness
of our PCA-based approach. In this situation, the number of
principal components will affect the performance of RAID.
A backdoored network with small perturbations (only one
pixel at each corner) as the trigger (i.e., the third F} in
CIFAR-10 case) was trained, which has 82.44% CA and
91.92% ASR. We show the performance of our method using
different numbers of principal components in Fig. 4. From
the figure, all the plots show significant drops in ASR at
different rates. Using more principal components results in
faster reduction in ASR. Using fewer principal components
results in small drop in CA (i.e., around 1%). This is because
with fewer principal components, the dimension-reduced
poisoned data features are closer to the dimension-reduced
clean data features. Thus, the purified anomalous dataset .4*
may contain more clean samples, which increases the training
noise and leads to the degradation of CA. The number of
principal components should be from 20% to 40% of the
original feature dimension.

The second experiment is that the attacker feeds poi-
soned inputs into the network with different attack fre-
quency/densities (i.e., the probability of an input being
poisoned). We use ImageNet dataset because we also want
to see if RAID is efficient on a large-scaled dataset. The
backdoored model is DenseNet-121, which has 72.14%
CA and 99.99% ASR. The dataset and trigger are shown
in Fig. 3(e). Fig. 5 shows the effectiveness of RAID on
ImageNet under different attack densities. It is seen that
ASR reduces faster when attack density is higher (i.e., more
poisoned inputs are fed into the network). When attack

5554

Performance with # of components

82.5 —
82.0
8151 — n=40
— n=70
8101 100
75
50
25
oth 1st ‘ ' ath

FIGURE 4. Solid lines in the first picture: CA. Dashed lines in the second
picture: ASR. n: number of PCA components. X-axis: number of updates.

Performance with attack frequency

72.14
72.12{ — p=0
—— p=0.05
— p=0.1
— p=05
72.10 P
100 == L
\“i:\ T ---- p=0
W ---- p=0.05
50 --— p=0.1
o - p=05
0 \\‘____ _7_-“‘-—:____ ________
Oth 1st 2nd 3rd 4th

FIGURE 5. Solid lines in the first picture: CA. Dashed lines in the second
picture: ASR. p: probability of a sample being poisoned. X-axis: number of
updates.

density is 0, the CA is high, which is consistent with attack 1)
in Table 7.

We also tested RAID using 1 or 2 images per class on
ImageNet to see if the clean validation dataset can be even
smaller. Although low ASR is achieved with one image per
class, there is degradation in CA (Fig. 6). This is because
the novelty detector N and the new classifier G,, generate
more false positives due to lack of training data. Therefore,
A* may contain more false positives as well, which increases
the training noise and leads to the degradation of CA (i.e.,
the SVM is trained with bad training samples). The more the
available clean samples, the better the performance of RAID.

The last experiment is to evaluate the performance of RAID
when the SVM is updated at different frequency. During the
period between two updates, the backdoored network might
be exposed to an attack if new triggers are applied. Therefore,
reducing this period (increasing update frequency) can help
further mitigate the threat of new triggers. The user needs to

VOLUME 10, 2022

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation

IEEE Access

Performance with Smaller Validation Datasets

70
601 — 1limg.
— 2img
— 3imag.
100 \‘\ ---- 1limg.
N, ---- 2img.
\‘\ ---- 3img.
50
Oth 1st 2nd 3rd 4th

FIGURE 6. Solid lines in the first picture: CA. Dashed lines in the second
picture: ASR. X-axis: number of updates. The red plots overlap the other
plots and are not visible.

Performance with window sizes

1001
80
60 A w=1%
w=2%
w=5%
401 w=10%
201
0 i

0.0 0.1 0.2 0.3 0.4
FIGURE 7. X-axis: Ratio of test data size used in RAID to the total test data
size. Solid lines: CA. Dashed lines: ASR. w: window size/test data size.

set a window size for the update. For example, if the window
size is 1000, it means that the SVM will be updated once
there are 1000 new inputs into the network. Fig. 7 shows
the performance of RAID with different update frequencies
under case a). RAID shows consistently good performance
after increasing the update frequency (i.e., reducing window
size). Additionally, since training the SVM is quick (< 1s),
RAID can be used effectively during on-line operation.

G. MORE ADVANCED ATTACK

Li et al. [38] proposes a backdooring attack with sample-
specific triggers. The example is shown in Fig. 8. It can
be seen that the trigger varies regarding the input content
and remains invisible under the image. We use a subset of
ImageNet dataset as the testing data. The backdoored model
has 78% classification accuracy and 100% attack success
rate. The model architecture is ResNet-18 (He et al. [77]).
After the 4th update, RAID is able to make the ASR to 0.4%
and keep CA 78%. So our method is still valid to this type of
attacks.

VOLUME 10, 2022

PR

FIGURE 8. Sample-specific trigger. Left: benign image. Middle: poisoned
image. Right: the corresponding trigger.

TABLE 8. Fj's architecture for case a).

Layer Channels Filter Size Stride Act.

Conv2d 1—16 5 1 ReLU
MaxPool 16 2 2 -
Conv2d 16 — 32 5 1 ReLU
MaxPool 32 2 2 -
Linear 512 — 512 - - ReLLU
Linear 512 — 10 - - -

TABLE 9. Fj's architecture for case b).

Layer Type Channels Filter Size Stride Act.
Conv2d 1—16 5 1 ReLU
MaxPool 16 2 2 -
Conv2d 16 — 4 5 1 ReLU
MaxPool 4 2 2 -
Linear 64 — 512 - - ReLLU
Linear 512 — 10 - - -

Inspired by such attack, the attacker may also try to
minimize the feature-level outputs between poisoned data
and the corresponding clean data. However, the difference
between clean data and poisoned data always exists and
must be represented in some hidden layer outputs. Otherwise,
if the hidden layer outputs are identical for clean and
poisoned samples, the network outputs should then also be
the same. This cannot be true since the network outputs the
attacker-chosen label for the poisoned sample and outputs the
correct label for the clean sample. Although the difference
may be small for one hidden layer, the cumulative difference
for multiple hidden layers becomes large and observable. Our
method can still be valid by changing the input of our novelty
detector and the binary classifier with multiple hidden layer
output features rather than just one single hidden layer output
feature.

VIl. CONCLUSION

A novel feature-based on-line backdoor detection algorithm
RAID is proposed. The method ensembles several simpler
models (novelty detector, anomaly detector, SVM based
binary classifier) and is computationally efficient. The
approach makes minimal assumptions on the backdoor
trigger(s). Several experiments were implemented and the
performance was compared with state-of-the-art algorithms.
The results show that our approach outperforms the state-of-
the-art by achieving lower backdoor attack success rate on

5555

IEEE Access

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by lterative Demarcation

TABLE 10. Fp's architecture for case c).

Layer Channels Filter =~ Str. Pad. Act.
Conv2d 332 3 1 1 ReLU
Conv2d 32— 32 3 1 0 ReLU
MaxPool 32 2 2 - -
Conv2d 32 —» 64 3 1 1 ReLU
Conv2d 64 — 64 3 1 0 ReLU
MaxPool 64 2 2 - -
Conv2d 64 — 128 3 1 1 ReLU
Conv2d 128 — 128 3 1 0 ReLU
MaxPool 128 2 2 -

Linear 512 — 512 - - - ReLU

Linear 512 — 43 - - -

TABLE 11. Fp’s architecture for cases d) and e).

Layer Channels Filter Size Stride Act.
Conv2d 332 3 1 ReLU
Conv2d 32—+ 32 3 1 ReLU
MaxPool 32 2 2 -
Conv2d 32—~ 64 3 1 ReLU
Conv2d 64 — 64 3 1 ReLLU
MaxPool 64 2 2 -
Conv2d 64 — 128 3 1 ReLU
Conv2d 128 — 128 3 1 ReLU
Linear 128 — 512 - - ReLU
Linear 512 — 43 - - -

TABLE 12. Fj's architecture for cases f) and g). Drop out rate py = 0.5.

Layer Channels Fil. Str. Pad. Act.
Conv2d 3—192 5 1 2 ReLU
Conv2d 192 — 160 1 1 0 ReLLU
Conv2d 160 — 96 1 1 0 ReLU
MaxPool 96 3 2 1 Drop(pq)
Conv2d 96 — 192 5 1 2 ReLU
Conv2d 192 — 192 1 1 0 ReLU
Conv2d 192 — 192 1 1 0 ReLU
MaxPool 192 3 2 1 Drop(pq)
Conv2d 192 — 192 3 1 1 ReLU
Conv2d 192 — 192 1 1 0 ReLU
Conv2d 192 — 10 1 1 0 ReLU
AvgPool 10 8 1 0 -
TABLE 13. Fp's architecture for cases h), i), j), and k).
Layer Channels Fil. Str. Act.
Conv2d 3—20 4 1 ReLU
MaxPool 20 2 2 -
Conv2d 20 — 40 3 1 ReLU
MaxPool 40 2 2 -
Conv2d 40 — 60 3 1 ReLU
MaxPool (x1) 60 2 2 -
Conv2d (z2) 60 — 80 2 1 ReLU
Linear (y1) 1200 (1) — 160 - - -
Linear (y2) 960 (x2) — 160 - - -
Add Y1 + y2 - - ReLU
Linear 160 — 1283 - - -

poisoned inputs while retaining high classification accuracy
on clean inputs. Additionally, the performance of the
approach under various conditions is analyzed. Prospective

5556

works can be focused on investigating the possibility of using

our

approach with even smaller clean validation datasets

and improving the performance of the off-line training
models so that the need for the on-line retraining part is
reduced/removed.

APPENDIX
NETWORK ARCHITECTURES
See Tables 8-13.

REFERENCES

[1]

[2]

[3]

[4

=

[51

[6

[71

[8

—

[9

—

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from
predicting 10,000 classes,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Columbus, OH, USA, Jun. 2014, pp. 1891-1898.

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing
the gap to human-level performance in face verification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014,
pp. 1701-1708.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12 pp. 2493-2537, Aug. 2011.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning
affordance for direct perception in autonomous driving,” in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Santiago, Chile, Dec. 2015, pp. 2722-2730.
H. Fu, P. Krishnamurthy, and F. Khorrami, “Functional replicas of
proprietary three-axis attitude sensors via LSTM neural networks,” in
Proc. IEEE Conf. Control Technol. Appl. (CCTA), Montreal, QC, Canada,
Aug. 2020, pp. 70-75.

S. A. Osia, A. S. Shamsabadi, A. Taheri, H. R. Rabiee, and H. Haddadi,
“Private and scalable personal data analytics using hybrid edge-to-cloud
deep learning,” Computer, vol. 51, no. 5, pp. 42-49, May 2018.

N. Patel, A. N. Saridena, A. Choromanska, P. Krishnamurthy, and
F. Khorrami, “Adversarial learning-based on-line anomaly monitoring for
assured autonomy,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Madrid, Spain, Oct. 2018, pp. 6149-6154.

N. Patel, P. Krishnamurthy, S. Garg, and F. Khorrami, “Adaptive adver-
sarial videos on roadside billboards: Dynamically modifying trajectories
of autonomous vehicles,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Macau, China, Nov. 2019, pp. 5916-5921.

N. Patel, A. Choromanska, P. Krishnamurthy, and F. Khorrami, “A deep
learning gated architecture for UGV navigation robust to sensor failures,”
Robot. Auton. Syst., vol. 116, pp. 80-97, Jun. 2019.

A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
in Proc. Int. Conf. Mach. Learn., Stockholmsméssan, Sweden, 2018,
pp. 274-283.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Proc. IEEE Symp. Secur. Privacy, San Jose, CA, USA,
May 2017, pp. 39-57.

N. Carlini and D. Wagner, “Defensive distillation is not robust to
adversarial examples,” 2016, arXiv:1607.04311.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A.Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks on
deep learning visual classification,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 1625-1634.

1. J. Goodfellow, J. Shlens, and C. Szegedy, ‘“‘Explaining and harnessing
adversarial examples,” in Proc. Int. Conf. Learn. Represent., San Diego,
CA, USA, 2015, pp. 1-14.

W. He, J. Wei, X. Chen, N. Carlini, and D. Song, ‘“Adversarial example
defenses: Ensembles of weak defenses are not strong,” in Proc. USENIX
Conf. Offensive Technol., Vancouver, BC, Canada, 2017, p. 15.

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, ‘“Universal
adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Honolulu, HI, USA, Jul. 2017, pp. 1765-1773.

VOLUME 10, 2022

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation

IEEE Access

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, 1. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2013,
arXiv:1312.6199.

X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks
on deep learning systems using data poisoning,” 2017, arXiv:1712.05526.
T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47230-47244, 2019.

A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with deep
neural networks,” Nature, vol. 542, no. 7639, pp. 115-118, Jan. 2017.

Y. Roh, G. Heo, and S. E. Whang, ““A survey on data collection for machine
learning: A big data—Al integration perspective,” IEEE Trans. Knowl. Data
Eng., vol. 33, no. 4, pp. 1328-1347, Apr. 2021.

A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of
data,” IEEE Intell. Syst., vol. 24, no. 2, pp. 8-12, Mar. 2009.

B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
in Proc. Adv. Neural Inf. Process. Syst., Montreal, QC, Canada, 2018,
pp. 8000-8010.

B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
1. Molloy, and B. Srivastava, “Detecting backdoor attacks on deep neural
networks by activation clustering,” 2018, arXiv:1811.03728.

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao,
“Neural cleanse: Identifying and mitigating backdoor attacks in neural
networks,” in Proc. IEEE Symp. Secur. Privacy, San Francisco, CA, USA,
May 2019, pp. 707-723.

Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “ABS: Scanning
neural networks for back-doors by artificial brain stimulation,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., London, U.K., Nov. 2019,
pp. 1265-1282.

W. Guo, L. Wang, X. Xing, M. Du, and D. Song, “TABOR: A highly
accurate approach to inspecting and restoring trojan backdoors in Al
systems,” 2019, arXiv:1908.01763.

X. Qiao, Y. Yang, and H. Li, “Defending neural backdoors via generative
distribution modeling,” in Proc. Adv. Neural Inf. Process. Syst., Vancouver,
BC, Canada, 2019, pp. 14004-14013.

Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal, “STRIP:
A defence against trojan attacks on deep neural networks,” in Proc. 35th
Annu. Comput. Secur. Appl. Conf., San Juan, Puerto Rico, Dec. 2019,
pp. 113-125.

K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks,” in
Proc. Conf. Neural Inf. Process. Syst., Montreal, QC, Canada, 2018,
pp. 7167-7177.

H. Kwon, “Detecting backdoor attacks via class difference in deep neural
networks,” IEEE Access, vol. 8, pp. 191049-191056, 2020.

Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in Proc. Netw. Distrib. Syst. Secur.
Symp., San Diego, CA, USA, 2018, pp. 1-17.

K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in Proc. Int. Symp. Res.
Attacks, Intrusions, Defenses, Heraklion, Greece, 2018, pp. 273-294.

K. Liu, B. Tan, R. Karri, and S. Garg, “Poisoning the (Data) well
in ML-based CAD: A case study of hiding lithographic hotspots,” in
Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Grenoble, France,
Mar. 2020, pp. 306-309.

E. Wenger, J. Passananti, A. N. Bhagoji, Y. Yao, H. Zheng, and B. Y. Zhao,
“Backdoor attacks against deep learning systems in the physical world,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 6206-6215.

Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Invisible backdoor attack
with sample-specific triggers,”” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
Oct. 2021, pp. 16463-16472.

A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor
attacks,” in Proc. AAAI Conf. Artif. Intell., vol. 34,2020, pp. 11957-11965.
S. Li, M. Xue, B. Zi Hao Zhao, H. Zhu, and X. Zhang, “Invisible backdoor
attacks on deep neural networks via steganography and regularization,”
IEEE Trans. Dependable Secure Comput., vol. 18, no. 5, pp. 2088-2105,
Oct. 2021.

Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in Proc. Eur. Conf. Comput.
Vis., 2020, pp. 182-199.

VOLUME 10, 2022

(42]

[43]

[44]

(45]

(46]

[47]

(48]

(49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

C. Xie, K. Huang, P--Y. Chen, and B. Li, “DBA: Distributed backdoor
attacks against federated learning,” in Proc. Int. Conf. Learn. Represent.,
2019, pp. 1-19.

E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Statist., 2020,
pp. 2938-29438.

S. Andreina, G. A. Marson, H. Mollering, and G. Karame, ‘“BaFFLe:
Backdoor detection via feedback-based federated learning,” in Proc. IEEE
41st Int. Conf. Distrib. Comput. Syst., Jul. 2021, pp. 852-863.

Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “‘Latent backdoor attacks on deep
neural networks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2019, pp. 2041-2055.

Z. Zhang, J. Jia, B. Wang, and N. Z. Gong, “Backdoor attacks to graph
neural networks,” in Proc. ACM Symp. Access Control Models Technol.,
2021, pp. 15-26.

J. Dai, C. Chen, and Y. Li, “A backdoor attack against LSTM-based text
classification systems,” IEEE Access, vol. 7, pp. 138872-138878, 2019.
X. Gong, Y. Chen, Q. Wang, H. Huang, L. Meng, C. Shen, and Q. Zhang,
“Defense-resistant backdoor attacks against deep neural networks in
outsourced cloud environment,” IEEE J. Sel. Areas Commun., vol. 39,
no. 8, pp. 2617-2631, Aug. 2021.

M. Shafieinejad, N. Lukas, J. Wang, X. Li, and F. Kerschbaum, “On the
robustness of backdoor-based watermarking in deep neural networks,” in
Proc. ACM Workshop Inf. Hiding Multimedia Secur., 2021, pp. 177-188.
D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space
autoregression for novelty detection,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 481-490.

P. Oza, H. V. Nguyen, and V. M. Patel, “Multiple class novelty detection
under data distribution shift,” in Proc. Eur. Conf. Comput. Vis., 2020,
pp. 432-449.

K. Lee, K. Lee, K. Min, Y. Zhang, J. Shin, and H. Lee, “Hierarchical
novelty detection for visual object recognition,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1034-1042.

P. Perera, R. Nallapati, and B. Xiang, “OCGAN: One-class novelty
detection using GANs with constrained latent representations,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2019,
pp. 2898-2906.

M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli, “‘Adversarially learned
one-class classifier for novelty detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3379-3388.

H. Chen, C. Fu, J. Zhao, and F. Koushanfar, ‘“DeepInspect: A black-box
trojan detection and mitigation framework for deep neural networks,” in
Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 4658-4664.

L. Zhu, R. Ning, C. Wang, C. Xin, and H. Wu, “GangSweep: Sweep out
neural backdoors by GAN,” in Proc. 28th ACM Int. Conf. Multimedia,
Oct. 2020, pp. 3173-3181.

N. B. Erichson, D. Taylor, Q. Wu, and M. W. Mahoney, ““Noise-response
analysis of deep neural networks quantifies robustness and fingerprints
structural malware,” in Proc. SIAM Int. Conf. Data Mining, 2021,
pp- 100-108.

S. Kolouri, A. Saha, H. Pirsiavash, and H. Hoffmann, “Universal litmus
patterns: Revealing backdoor attacks in CNNs,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2020, pp. 301-310.

M. E. Tipping and C. M. Bishop, “Probabilistic principal component
analysis,” J. Royal Stat. Soc., Ser. B (Stat. Methodol.), vol. 61, no. 3,
pp. 611-622, 1999.

J. C. Platt, “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Adv. Large Margin
Classifiers, vol. 10, no. 3, pp. 61-74, 1999.

J. Weng, Y. Zhang, and W.-S. Hwang, ““Candid covariance-free incremen-
tal principal component analysis,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 25, no. 8, pp. 1034-1040, Aug. 2003.

E. M. Rudd, L. P. Jain, W. J. Scheirer, and T. E. Boult, “The extreme
value machine,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3,
pp. 762-768, Mar. 2017.

Y. Chen, X. S. Zhou, and T. S. Huang, “One-class SVM for learning in
image retrieval,” in Proc. Int. Conf. Image Process., vol. 1, Oct. 2001,
pp. 34-37.

Y. Dong, S. Hopkins, and J. Li, “Quantum entropy scoring for fast robust
mean estimation and improved outlier detection,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 6067-6077.

S. Hariri, M. C. Kind, and R. J. Brunner, ‘“Extended isolation forest,” IEEE
Trans. Knowl. Data Eng., vol. 33, no. 4, pp. 14791489, Apr. 2021.

5557

IEEE Access

H. Fu et al.: Feature-Based On-Line Detector to Remove Adversarial-Backdoors by lterative Demarcation

[66] J. Lesouple, C. Baudoin, M. Spigai, and J.-Y. Tourneret, ‘“Generalized
isolation forest for anomaly detection,” Pattern Recognit. Lett., vol. 149,
pp. 109-119, Sep. 2021.

[67] F.Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
no. 10, pp. 2825-2830, Jul. 2017.

[68] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in Proc. 31st Conf. Neural Inf. Process. Syst., 2017, pp. 1-4.

[69] Y. LeCun and C. Cortes. 2010. MNIST Handwritten Digit Database.
[Online]. Available: http://yann.lecun.com/exdb/mnist

[70] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Netw., vol. 32, pp. 323-332, Aug. 2012.

[71] A. Krizhevsky and G. Hinton, ‘Learning multiple layers of features from
tiny images,” Univ. Toronto, Tech. Rep., Apr. 2009.

[72] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained
videos with matched background similarity,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognit., Colorado Springs, CO, USA, Jun. 2011,
pp. 529-534.

[73] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Miami, FL, USA, Jun. 2009, pp. 248-255.

[74] M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proc. Int. Conf.
Learn. Represent., Banff, AB, Canada, 2014, pp. 1-10.

[75]1 G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 4700-4708.

[76] E. Sarkar, H. Benkraouda, and M. Maniatakos, ‘FaceHack: Triggering
backdoored facial recognition systems using facial characteristics,” 2020,
arXiv:2006.11623.

[77] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

HAO FU was born in Anyang, China, in November
1994. He received the B.Sc. degree in physics
from the University of Science and Technology of
China, Hefei, China, in 2017, and the M.Sc. degree
in electrical engineering from the Department
of Electrical and Computer Engineering, Tandon
School of Engineering, New York University
(NYU), Brooklyn, NY, USA, in 2019, where he
is currently pursuing the Ph.D. degree. His major
field of study contains machine learning, finance,

and control theory.

From 2017 to 2018, he was a Research Assistant with the Wireless
Laboratory, NYU. In fall 2018, he joined the Control/Robotics Research
Laboratory (CRRL). Previously, he was studying the possibility of using
machine learning tools to develop economical navigation algorithms.
Additionally, he was also studying the possibility of using neural networks
to assist decision-making in finance. He is currently studying backdooring
attacks against neural networks and security problems in cyber-physical
systems.

Mr. Fu has published one article in IEEE Conference on Control
Technology and Applications in 2020.

AKSHAJ KUMAR VELDANDA received the
B.Tech. degree in mechanical engineering from
IIT Bhubaneswar, in 2016, and the M.S. degree
in mechanical engineering from Texas A&M Uni-
versity, College Station, in 2019. He is currently
pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering, New York
University.

He is a Research Assistant with the Energy-
Aware, Secure and Reliable Computing (EnSuRe)
Laboratory. His research interests include machine learning fairness,
security, and privacy.

5558

PRASHANTH KRISHNAMURTHY (Member,
IEEE) received the B.Tech. degree in electri-
cal engineering from the IIT Madras, Chennai,
in 1999, and the M.S. and Ph.D. degrees in
electrical engineering from Polytechnic University
(NYU), in 2002 and 2006, respectively.
He is currently a Research Scientist and an
k Adjunct Faculty with the Department of Electrical
‘ and Computer Engineering, NYU, and a Senior
Researcher with FarCo Technologies, NY. He has
coauthored over 120 journals and conference papers and a book. He has
also coauthored the book Modeling and Adaptive Nonlinear Control of
Electric Motors (Springer Verlag, 2003). His research interests include
autonomous vehicles and robotic systems, multi-agent systems, sensor data
fusion, robust and adaptive nonlinear control, resilient control, path planning
and obstacle avoidance, machine learning, real-time embedded systems,
electromechanical systems modeling and control, cyber-physical systems
and cyber-security, decentralized and large-scale systems, high-fidelity and
hardware-in-the-loop simulation, and real-time software implementations.

SIDDHARTH GARG received the B.Tech. degree
in electrical engineering from IIT Madras and
the Ph.D. degree in electrical and computer
engineering from Carnegie Mellon University,
in 2009. His general research interest includes
computer engineering, more particularly secure,
reliable, and energy-efficient computing.

He was an Assistant Professor with the Uni-

| versity of Waterloo, from 2010 to 2014. In 2014,
H he joined New York University (NYU) as an
Assistant Professor.

Dr. Garg received paper awards from the International Symposium on
Quality in Electronic Design (ISQED), in 2009, the Semiconductor Research
Consortium TECHCON, in 2010, the USENIX Security Symposium,
in 2013, and the IEEE Symposium on Security and Privacy (S&P),
in 2016. He was a recipient of the NSF CAREER Award, in 2015.
He has also received the Angel G. Jordan Award from the Electrical and
Computer Engineering (ECE) Department, Carnegie Mellon University, for
outstanding dissertation contributions and service to the community.

FARSHAD KHORRAMI (Senior Member, IEEE)
received the bachelor’s degrees in mathematics
and electrical engineering, the master’s degree in
mathematics, and the Ph.D. degree in electrical
engineering from The Ohio State University,
Columbus, OH, USA, in 1982, 1984, 1984, and
1988, respectively.

He is currently a Professor with the Electrical
'- and Computer Engineering Department, New York

University (NYU), Brooklyn, NY, USA, where he
joined as an Assistant Professor in September 1988. He has published over
300 refereed journals and conference papers in his research areas. He has
authored a book Modeling and Adaptive Nonlinear Control of Electric
Motors (Springer Verlag, 2003). He holds 14 U.S. patents on novel smart
micro-positioners, control systems, cyber security, and wireless sensors and
actuators. He has developed and directed the Control/Robotics Research
Laboratory, Polytechnic University (Now NYU) and the Co-Director of
the Center in Al and Robotics (CAIR), NYU, Abu Dhabi. His research
interests include adaptive and nonlinear controls, robotics and automation,
unmanned vehicles, cyber security for CPS, embedded systems security,
machine learning, and large-scale systems and decentralized control.

Dr. Khorrami has also commercialized UAVs as well as development of
auto-pilots for various unmanned vehicles. His research has been supported
by the ARO, NSF, ONR, DARPA, ARL, AFRL, NASA, and several
corporations. He has served as a conference organizing committee member
for several international conferences.

VOLUME 10, 2022

