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ABSTRACT In this study, an integrated framework involving state classification, preprocessing, and
classification is proposed for the fault diagnosis of elevator doors using control state information. During
state classification, the door state is classified as operational or non-operational; moreover, based on the
state information of the control board of an elevator door, the corresponding operational conditions are
classified as opening or closing states. In the preprocessing phase, data processing and interpolation and
feature manipulation are performed. Data are interpolated to synchronize each measurement with respect to
the reference time; then, the state information is manipulated to create distinct features. In the classification
phase, the operational states are classified, and nonlinear coordinate transformation is executed to transfer
several features into a new nonlinear hyperspace by using an autoencoder. Two manifold features are
extracted from the latent layer of the autoencoder; these become the principal axes for state classification
using a support vector machine, indicating that three states are possible: normal with and without completion
of a full stroke and abnormal stroke. The effectiveness of the proposed method was verified by performing
fieldmeasurements on a control board during the operation of an elevator. Specifically, the autoencoder in the
integrated framework effectively transformed an original space into a highly nonlinear yet efficient manifold,
where classification was easy for different operational states. The proposed framework can be effective for
real-world detection of elevator door faults because it exclusively uses state information measured from
control boards.

INDEX TERMS Autoencoder, elevator door, fault classification, fault diagnosis, SVM.

I. INTRODUCTION
Elevators are a convenient and essential means of transporta-
tion in high-rise buildings. Research has shown that 54% of
the world’s population currently lives in urban areas [1]; thus,
elevator systems have become indispensable components
of apartments, commercial facilities, and office buildings.
Elevators comprise several components, including mechani-
cal, electrical, electronic, automatic control, and construction
complexes; thus, faults in any elevator component may result
in the stoppage of the elevator service. This downtime causes
inconvenience to people and, in the worst case, can result in
multiple passenger fatalities [2]–[4]. To guarantee the safe
operation of elevators, monitoring the elevator status and
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detecting elevator system failures are essential, indicating the
necessity of an effective fault diagnosis method.

Several studies have been conducted on the detection of
faults in elevator components, such as winding machines,
wire ropes, elevator doors, and guide rails [3], [5]–[7].
Among these components, elevator doors are considered
as a critical component because if they are affected by
faults, multiple passenger fatalities may occur. Therefore,
numerous studies have been conducted to detect abnormal-
ities in elevator doors by deploying many effective sensors,
including optical cameras, microphones, accelerometers, and
gyros [3], [8]–[11]. The hybridization of both accelera-
tion and control information has been suggested to enhance
the estimation accuracy [12]. Furthermore, studies on the
monitoring and diagnosis of the elevator status in real
time using Internet of Things (IoT) information have been
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conducted [13]–[15]. In these studies, additional sensor sys-
tems were employed to monitor elevator door systems,
increasing that the total cost of elevator systems. Because
of the competitive nature of the market, where the impor-
tance of economic feasibility in the installation of eleva-
tors is paramount, the increased costs prevent the regular
deployment of fault-detection systems in commercial units.
To reduce additional costs, a diagnostic method that uses
only elevator state information was proposed [16]. In that
study, normal operational states were predefined based on
all the control-state information. Then, the state information
violating the predefined normal operation was logged and
reported to expert systems. These systems evaluated whether
the newly sent information was faulty. However, the study did
not involve an analysis of the quantitative comparison of the
estimation accuracy of the proposedmethodwith that of other
methods.

Many novel methods have been studied from an aca-
demic perspective by measuring fault data using several
sensors. Specifically, many machine-learning methods show
excellent classification results and outperform traditional
signal-processing-based methods, indicating that fault detec-
tion using artificial neural networks (ANNs) is promis-
ing [7], [17]–[19]. These methods require the extraction of
appropriate features. Hence, statistical methods have been
widely deployed for feature extraction from measurements,
including mean, root-mean-square (RMS), kurtosis, and crest
factor for fault classification [20]–[23]. In addition, deep-
learning methods have been recently developed to extract and
classify features in an end-to-end manner [24], [25]. Because
of these features, minimal engineering effort is required for
precise feature extraction and selection if sufficient data are
available.

Machine-learning methods are based on empirical risk
minimization (ERM) principles [26], indicating that these
methods are trained with a focus on cost minimization. How-
ever, ERMdoes notminimize the actual error in the fault diag-
nosis because of two critical factors. One is the acquisition of
insufficient training samples, and the other is the lack of an
appropriate architecture [27]. These factors are also problems
in end-to-end deep-learning architectures [28], [29], implying
that the extraction of features to separate faults is difficult
because of insufficient abnormal data. It is difficult to provide
sufficient fault data for the training of neural networks in
most industrial systems, including elevator door systems;
faults rarely occur in real-life instances. Moreover, different
industrial systems have different complex characteristics and
nonlinearity, suggesting that the selection of an appropriate
neural network architecture requires considerable engineer-
ing efforts.

To overcome the limitations of both hardware and the
method, an integrated framework is proposed in this study for
the fault diagnosis of elevator doors using only control state
information. The proposed method is cost efficient because
it does not require additional sensor systems. The proposed
framework is divided into three phases: state classification,

preprocessing, and fault classification. The first phase
involves the classification of the door state as operational
or non-operational. Distinct features are effectively manip-
ulated during the preprocessing phase. The combination of
an autoencoder and a support vector machine (SVM) is
implemented in the classification phase as a solution for
imbalanced learning [30]. This approach effectively transfers
high-dimensional data to a low-dimensional manifold [31],
generating reduced low-dimensional data and preserving
the key characteristics of high-dimensional inputs. Hence,
the proposed framework ensures a high reliability, robust-
ness, and accuracy. Specifically, the autoencoder effectively
extracts distinct features and transforms them into a two-
dimensional (2D) manifold map. Consequently, abnormal
data are effectively separated from normal data because both
data are located in different regions in the 2D manifold
map. The linear SVM successfully classifies the current state
among three different operations and faults with an optimal
separating hyperplane (OSH). The effectiveness of the pro-
posed method is verified by performing field measurements
on a control board during elevator operation. The results indi-
cate that the proposed framework exhibits excellent accuracy.
Furthermore, in-depth discussions of the confusion matrix
and quantitative comparisons with other machine-learning
methods provide profound insights into the intelligent
prognostics and health management of complex industrial
applications.

The remainder of this paper is organized as follows.
Section II details the experiments for field datameasurements
and data formats. The integrated framework for fault diagno-
sis of elevator doors is described in Section III. Section IV
provides the analysis and discussion of the results of apply-
ing the proposed method to field measurements. Section V
summarizes the conclusions and presents possible avenues
for future research.

II. EXPERIMENTS
Data were collected for the period from April 01, 2020 to
April 30, 2020. A testbed elevator is located in apartment X
in Seoul, Korea. This elevator is hereafter designated as
‘‘Elevator X’’ for confidentiality purposes. The total number
of the data records is 18 603 367.

The control system of an elevator door measured 17 state
information, as listed in Table 1. The data comprised one
time step and 16 other state information relevant to door
control. Specifically, six sets of data were measured in the
form of a digitized integer with a varied measurement range,
including door floor, door position, door reference/feedback
speeds, and door reference/feedback torques, whereas the
others were binary signals, including door open/close, multi-
beam, safety edge, open/close limit, open/close command,
hatch door limit, and gate door limit. This information is
generallymeasured for elevator door control but not limited to
all cases. Some elevator manufacturers may measure differ-
ent data for control purposes. These signals were measured
for door control and not for diagnosis, indicating that the
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proposed method can effectively detect faults and classify
operational states without any new sensor installation.

TABLE 1. Raw data measured in a control board of an elevator door.

III. METHODOLOGY
Fig. 1 displays the entire framework of the proposed method-
ology for the fault diagnosis and classification of elevator
doors. The framework comprises three phases. The first phase
is the state classification phase, in which the door states are
classified as either operational or non-operational. Further,
operational conditions are categorized according to either the
open or closed state of the door by analyzing the state infor-
mation on the control board of an elevator door. Subsequently,
only the operational conditions are considered to identify the
fault states of an elevator door. The second phase is data
preprocessing, which involves data interpolation and feature
manipulation. First, data are interpolated to synchronize each

measurement with respect to the reference time with a uni-
form internal for each stroke because actual measurements
are randomly varied from 8 to 10 Hz data. Then, the state
information with a uniform internal is manipulated to cre-
ate 28 categories of features based on the state information
on a control board. The third phase is the classification of
an operational state with distinct features as normal with-
out interruption, normal with interruption, or faulty. In this
phase, a nonlinear coordinate transformation is executed to
transform several features into a new nonlinear hyperspace
by using the autoencoder. Specifically, two major features
are extracted from the latent layer of the autoencoder. Then,
these 2D features become the main principal axes for state
classification by employing the SVM, obtaining the current
state among the three states of the elevator door: normal with
completion of a full stroke, normal without completion of a
full stroke, and abnormal stroke, that is, an elevator door fault.
The first state indicates that the elevator door is opened or
closed automatically, whereas the second state indicates that
the elevator door is opened or closed with interruption during
the opening or closing process. The third state indicates a
problem or fault in the elevator door.

FIGURE 1. Proposed framework for fault diagnosis and classification on
elevator doors.

A. PHASE A: STATE CLASSIFICATION
Elevator door states are classified into three categories: non-
operational, in operation while a door is opening, and in
operation when a door is closing. A non-operational state
occurs when the elevator is stationary. An elevator starts to
operate when a passenger touches the elevator button from
a certain floor. After the elevator reaches the floor where
the waiting passenger made a request, the door opens. The
passenger enters the elevator and selects the button for the
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desired floor, inducing the elevator to move to the selected
floor. During the elevator motion, the door is always closed
owing to the activated closing command. By contrast, an ele-
vator door can be in an open or closed state when stationary on
a certain floor. It is difficult to identify the normal operational
state of an elevator door because open or closed operations
are frequently interrupted by passengers. Examples of such
interruptions include accidental touches by passengers, which
can occur for several reasons. This circumstance of elevator
operation indicates the potentially varied and complex nature
of the open or closed elevator door states. The open state
starts when an elevator reaches the selected floor or when
passengers inside an elevator touch an open button in a control
panel on a certain floor. In this state, the open command is
activated, which launches a control protocol for opening a
door system. The open limit is activated when the door posi-
tion reaches a predefined maximum value. Feedback states,
including feedback speed and torque, are also measured and
used for open-door control. This information is beneficial
for the detection of faults, because the difference between
the reference and feedback represents an important metric of
fault diagnosis. In addition, the close limit, gate door limit,
and hatch door limit are released in the open state, implying
that this binary-numbered information is also effective for
identifying elevator door faults.

The closed state is activated when the elevator is in motion.
All state values are monitored to check the door states during
this period because opening a door during the operation of
an elevator might result in severe accidents, including pas-
senger fatalities. During this period, close, hatch, and gate
limits are activated, and the door position is at the minimum
value.

Fig. 2 presents the state information measured in the con-
trol system during the opening and closing of an elevator
door. Once the open command is activated (Fig. 2(a1)), the
reference speed and torque are input into the door motor, and
the feedback speed and torque of the doormotor aremeasured
(Fig. 2 (a2)). The feedback signals are used for closed-loop
control of the door motor. Hence, the door is opened during
the opening period (Fig. 2(a3)). Several Boolean data types
are also measured to mitigate safety concerns (Fig. 2(a4)).
This process is terminated when an open limit switch is
activated. The elevator door closing process inversely mir-
rors the opening process. Initially, a close command is acti-
vated (Fig. 2(b1)). Then, the reference speed and torque are
applied to a door motor, and the feedback speed and torque
are measured for the closed-loop control of the door motor
(Fig. 2(b2)), resulting in the closing process as the door
motor changes the door position (Fig. 2(b3)). Several sets of
Boolean information are also measured for safety (Fig. 2(b4))
and control perspectives. This closing process terminates
when a close-limit switch is activated. Each process is consid-
ered to be an independent stroke of the open or closed state,
and each stroke is analyzed because operational information
provides useful data for the detection of faults compared
to operational data during the non-operational period. Note

that the analysis of non-operational data is cost-ineffective
because the non-operational time is considerably longer than
that considering the operational characteristics of elevators.

Based on the operational data, two operational conditions
can be classified: completion of a full stroke and normal
without completion of a full stroke. Specifically, states were
defined as full strokes when open or closed limits were acti-
vated, whereas elevator doors were classified as the other con-
dition when they were inactivated. Then, abnormal strokes
were classified by expert systems of the elevator, who actually
conducted elevator operation and maintenance, because iden-
tifying abnormal strokes would be difficult considering the
complex nature of the elevator operation. Abnormal strokes
generally show different characteristics than normal strokes.
Specifically, themeasured information features a slow change
in door position over time, a large difference between the
feedback speed and reference command speed, no movement
in the door position, initial locking of the door by the hatch
door and gate doors, and limited movement of the door. These
characteristics indicate the diversity of abnormal strokes,
which hinders their definition in a single-feature format.
Fig. 3(a) shows the state information of an abnormal stroke
during an open period. Once the open commandwas activated
(Fig. 3(a1)), the reference speed and torque were input into
the door motor, and the feedback speed and torque of the
door motor were measured (Fig. 3 (a2)). The feedback speed
was considerably lower than the reference speed during 4–6
s, resulting in a higher torque (Fig. 3 (a2)) than that in the
normal state (Fig. 2(a2)). Therefore, the door did not move
during 5–8 s and then moved slowly (Fig. 3 (a3)). Finally,
the opening was interrupted, and the door was stopped
(Fig. 3(a3)); therefore, the open-limit signal was not activated
at the end of the opening process (Fig. 3 (a4)). Other Boolean
signals were not activated in Fig. 3 (b4), except for the closed
feedback signal at the end of the opening process, imply-
ing that these signals would provide effective information
regarding faults. Fig. 3(b) shows the state information of the
abnormal stroke during a closed period. In this abnormal
state, the open limit signal is not activated, whereas the
door-closing process normally starts with the activation of
an open limit signal (Fig. 3(b4)). Specifically, the reference
speed and torque were input to the door motor when the
close command was activated (Fig. 3(b1)), and the feedback
speed and torque of the door motor were measured (Fig. 3
(b2)). The door moved slowly compared with the normal
state (Fig. 2(b2)). Finally, the closing process ended without
completion and the door was stopped (Fig. 3(b3)).

B. PHASE B: PREPROCESSING
This subsection describes phase B (preprocessing), which
comprises data interpolation and feature manipulation. The
details of each process are as follows.

State information relevant to the elevator door is col-
lected from the door control system. Preliminary analy-
sis of time stamps on state information (Table 1) sug-
gests that the measurement frequency of the data varied

7210 VOLUME 10, 2022



H. Chae et al.: Fault Diagnosis of Elevator Doors Using Control State Information

FIGURE 2. State information in a control system of an elevator door during normal (a) open and (b) closed periods.

between 8 and 10 Hz depending on the communication load,
although the specification of the door control system indi-
cates that all data were measured at 10 Hz. Hence, all state
information was interpolated to ensure a uniform interval of
measured states, because it was necessary to synchronize all
information to the same time stamp for each stroke using the
proposed method. To minimize deterioration and loss of data,
the interpolation frequency was set to the lowest frequency
of 8 Hz. A linear interpolation method with a round off was
executed for a type of digitized integer number, including
the door floor, door position, reference/feedback speeds, and
reference/feedback torques. The linear interpolation method
resulted in small differences, which were negligible when
considering the measurement frequency, compared to the
results of the actual measurement. Moreover, the Boolean

state information was synchronized using the most accessible
method because this is binary information [32].

Distinct features were extracted using a manipulation
process. Fig. 4 shows a flowchart of feature manipulation.
Overall, 11 measurements were obtained from the 16 state
information listed in Table 1. Five state information of the
operation floor, open/close command, multi-beam, and safe
edge were eliminated because they are less relevant to door
faults. The state information for the multi-beam and safe
edge was measured to prevent passengers from being trapped
between doors. Open or closed commands were always acti-
vated during open or closed strokes. Moreover, the operating
floor exclusively provided the location of the elevator. Statis-
tical analysis of five state information with a type of digitized
integer was conducted to extract statistical features, including
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FIGURE 3. State information in a control system of an elevator door during abnormal (a) open and (b) closed periods.

the mean, RMS, and maximum of each feature for each
stroke. These three features were addressed because they are
effective for fault detection [23], [33]. Differences between
the reference speed/torque and feedback speed/torque were
also calculated to create two additional features because they
provide crucial information regarding elevator door faults,
resulting in a total of seven state information. Hence, statisti-
cal analysis of this seven-state information resulted in a total
of 21 features for each open or closed stroke. In addition, six
Boolean operational states were synchronized with respect to
a timestamp, which started at zero when the open or close
command was first activated. Thereafter, these six sets of
binary information were summed to create six features for
each open or closed stroke. Additionally, the total opera-
tional period of each stroke depends on various situations

and interruptions from passengers; thus, it was calculated as
a distinct feature. This indicates that the six features from the
binary state information were highly correlated with the total
operational period of operation at each stroke. In summary,
28 features were manipulated through this phase, comprising
seven features related to operational states and 21 features
extracted from statistical analysis.

These features WERE normalized before training because
the scales of each feature vary owing to the different physical
quantities. Note that convergence is not guaranteed without
normalization, and oscillations may occur during the opti-
mization of the autoencoder. The normalization results in a
similar effect of the input features on the output prediction
in the neural network of the autoencoder. Two methods are
widely used for normalization: min-max normalization (1)
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FIGURE 4. Flowchart for feature manipulation.

and z-score normalization (2), as follows:

xij =
xij − xi,min

xi,max − xi,min
, (1)

where xij, xi,min, and xi,max denote the jth, minimum, and
maximum values of feature i, respectively.

xij =
xij − xi,mean

σi
, (2)

where xi,mean and σi denote the mean value and standard
deviation of feature i, respectively.

The min-max normalization changed the range of the fea-
tures of interest to [0, 1]. This method is generally used for
autoencoders with a sigmoid activation function because the
range of sigmoid functions is the same. However, this method
is difficult to use when the range of a feature is unpredictable.
This problem can be solved by assuming an appropriate range
for the normal value of each feature, and then considering
outliers from a predefined range as the maximum or mini-
mum values. By contrast, in z-score normalization, the range
of each feature must not be defined. Moreover, the goal of the
autoencoder is to create a manifold by learning more normal
data than abnormal data [34], indicating that the scale of the
normal data is important. This analysis suggests that z-score
normalization is effective for detecting elevator door faults.
Hence, the z-score normalization method is addressed in this
study. The performance of the z-score normalization method
is compared in detail in the Results and Discussion sections.

C. PHASE C: CLASSIFICATION
This subsection describes phase C (classification), compris-
ing the autoencoder and SVM. The autoencoder is a fully
connected symmetric neural network composed of an encoder
and a decoder. This neural network enables unsupervised
learning to reconstruct features with the same characteris-
tics and dimensions as input features [31]. The nonlinear
activation functions at each layer enable nonlinear space
transformation, implying that data interpretation is easier in
a transformed hyperplane. Moreover, the autoencoder has a

role in dimension reduction when features in the latent layers
are used. In this study, two major features were used in the
latent layer as 2D manifold because they provide sufficient
information for door-fault detection.

To optimize the architecture of the autoencoder, the activa-
tion function for each layer and the number of nodes per layer
should be determined. First, activation functions commonly
used in machine learning include the rectified linear unit
(ReLU), scaled exponential linear unit (SELU), sigmoid, and
hyperbolic tangent. Note that a linear activation function is
not used in the autoencoder because this function results in
a linear transformation between the input and output and
thereby yields the same result as principal component anal-
ysis (PCA). Hence, the proposed autoencoder applies only
a linear activation function to the last layer to ensure the
same range of data. ReLU and SELU were also excluded
because the data could not be adequately restored. This factor
can be explained by the fact that ReLU and SELU have
filter roles below zero in the data. However, the autoencoder
transforms the initial coordinates into hyperplanes for easy
classification. Therefore, sigmoid and hyperbolic tangents
were only considered as candidates for the activation func-
tions of the autoencoder. Second, the number of nodes in each
layer must be optimized. These two hyperparameters of the
activation functions and the number of nodes at each layer
were optimized by trial and error. Specifically, we changed
the activation functions and numbers of nodes in each layer
and monitored the loss of the object function with the Adam
optimizer, which was defined by a mean square error. The
architecture of the autoencoder with the smallest value of
the object function was selected as the optimum architecture,
as shown in Fig. 5(a).

The autoencoder comprises eight layers, with four
layers each for the encoder and decoder. Herein,
28-dimensional input features were passed through 32-,
16-, 8-, and 2-dimensional layers in the encoder. Subse-
quently, 2-dimensional data are decoded into 8-, 16-, and 32-
dimensional layers through the decoder and reach the final
layer with 28-dimension, which is the same as the input data.
The hidden nodes in each layer were trained to minimize the
reconstruction errors between the original and reconstructed
features. Sigmoid and hyperbolic tangent functions were
used as activation functions in the encoder and decoder,
respectively. Different activation functions for the encoder
and decoder enabled a robust nonlinear space transformation.

Fig. 5(b) depicts the training process of the autoencoder,
which comprises three stages: pre-training, unrolling, and
fine-tuning. Pre-training sets the initial values of each layer
by using a random sampling method. Specifically, the first
32-dimensional layer of the encoder and the seventh layer of
the decoder were trained with 28 feature inputs and the same
output, resulting in a weight of ω1 and bias of b1. The same
procedure was executed with different activation functions to
determine the weight of ω8 and the bias of b8. Subsequently,
trained weights and biases of 32 dimensions were used to
train the second layer of the encoder and the sixth layer of the
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FIGURE 5. (a) Autoencoder used in this study and (b) training process of
autoencoder.

decoder with 16 dimensions, resulting in a weight of ω2 and
bias of b2. Sigmoid and hyperbolic tangent functions were
used to train the second layer of the encoder and decoder,
respectively. This resulted in weights ofω2 andω7, and biases
of b2 and b7, for the encoder and decoder, respectively. The
process was repeated to determine the weights and biases
of the third and fourth layers of the encoder and decoder,
respectively. After the pre-training process was completed,
the layers on the system were unrolled to construct an entire
autoencoder layer. Then, the weights and biases of the layers
were fine-trained [31] for accurate prediction, resulting in
n-dimensional manifolds for each layer. The architecture of
the autoencoder indicates that the weights in the autoencoder
form a transformation matrix that nonlinearly transforms
distinct features in the original spaces to distinct features
in a hyperspace, where the operational states can be easily
classified. Furthermore, 2D features from the z-layer (fourth
layer) were used in this study for the final classification.

The SVM was addressed in this manifold to classify three
operational states: normal with completion of full stroke, nor-
mal without completion of full stroke, and abnormal stroke.
SVMaims to select theOSH between classes by training sam-
ples that lie at the edge of the class distributions, which are
referred to as support vectors [35], [36]. In SVM, the training
dataset ofN cases, represented by {xi, yi}, i = 1, . . . ,N , yi ∈
{1, −1}, is used to form a classifier. The OSH represents
the maximum margin between classes, where a hyperplane
is defined as

w · x + b = 0. (3)

Here, x, w, and b denote a point lying on the hyperplane, the
weight defining an OSH that is normal to the hyperplane,
and the bias, respectively. For a linearly separable space,
a separating hyperplane can be defined for two classes. These
two equations can be combined as follows:

yi(w · xi + b)− 1 ≥ 0, (4)

min
{
1
2
|w|2

}
. (5)

The margin represents the vertical distance from the OSH
of the data closest to the OSH that divides the two classes. The
margin value is defined as the inverse of (5). The proposed
method has three categories, each of which is separated by
an OSH. Hence, the three OSHs generated category-specific
regions on the 2D feature map through each plane. The deter-
mination of the OSH in the SVM is an effective method for
elevator door fault detection because SVM learns points in a
space to maximize the gap width between each category. This
implies that the proposed method can guarantee robustness
when data inequalities occur in the training set. Specifically,
fault data are relatively small compared with normal oper-
ational data in most cases. This serves as the rationale for
referring to SVM in this study.

D. EVALUATION
In this study, the K-fold cross-validation method was
employed to evaluate the performance of the proposed fault
detection method owing to the minimal data available on
abnormal strokes in the measurements. Specifically, the main
dataset was divided into 5 smaller datasets. One dataset was
used as the test set and the other N-1 dataset was used as the
training set. This process was iterated N times with different
test sets at each iteration. Subsequently, the prediction accu-
racy was evaluated for each result using the F-score, which is
an effective metric when there are minimal abnormal data in
the dataset [37], [38]. The F-score is the harmonic mean of
the model precision and recall and expressed as

Fscore =
2

α−1 + β−1
, (6)

where α is the recall and β is the precision. Recall is the
fraction of samples classified as positive among the total
number of positive samples, whereas precision is the fraction
of true-positive samples among the examples classified as
positive. Therefore, recall is defined as the number of true
positives divided by the number of true positives and false
negatives, whereas precision is defined as the number of
true positives divided by the number of false positives and
true positives. Equation (6) can be applied to the problem
of only two categories; however, this study aimed to clas-
sify these three categories. Therefore, we used the modified
F-score. Specifically, one category was set and the F-score
was computed by grouping the remaining categories. Three
iterations were executed for each category. The F-score for
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each category was calculated using the following expression:

Fscore =

∑N
k=1 Fk
N

, (7)

where Fk is the F-score of each category and N is the total
number of categories. Equation (7) is a macro F-score that
calculates the F-score of more than two categories [39].
Therefore, the F-score obtained from (7) represents the over-
all performance of all categories. Finally, the calculated
F-score was averaged for all iterations in which the
K-fold cross-validation method was used. Moreover, the con-
fusion matrix was addressed for a quantitative and reasonable
analysis.

E. BAYESIAN OPTIMIZATION
The hyperparameters of the classifiers used in this study
should be optimized to ensure the best results achieved for
fair comparison. Hence, in this study, Bayesian optimiza-
tion (BO) was applied to optimize the hyperparameters of
all classifiers, which is a simple yet effective method widely
used for hyperparameter optimization in machine-learning
methods [40]–[42].

BO functions intervene in the construction of the posterior
distribution because of the general fit of the Gaussian process
to the results at a given data point, and select and use a new
parameter space that is likely to be used in the next iteration.
The choice of the second parameter at each iteration is deter-
mined by search strategies such as expectation improvement
(EI) and defect posterior distribution, which determine the
local maxima of the acquisition function. This process was
repeated to determine the optimal variable. BO uses the initial
values as prior knowledge, whose similar inputs produce
similar outputs, and uses this learning to quickly refine and
find optimal parameters. Specifically, µ (x) is the predictive
mean function and k

(
x, x ′

)
is the predictive variance function

under the prior Gaussian process. Based on the current data
point, Dn can predict the expected function, fn+1 (x):

fn+1 (x) ∼ GP
(
µ (x) , k

(
x, x ′

))
. (8)

A new data point, xn+1, is set based on function fn+1 (x).
The new set data point is

xn+1 =
argmax

x
(max {0, fn+1 (x)− fmax}|Dn) . (9)

It is the data point with the greatest expected improvement
obtained by utilizing the expectation function, fn+1 (x), and
fmax is the maximum output value for the current data point.
Equations (8) and (9) were repeatedly applied to search for
the improved optimal value, x. Subsequently, the models
were compared using the optimal hyper-parameter, x, when
training was completed.

IV. RESULTS AND DISCUSSION
A. PHASE A: STATE CLASSIFICATION
The first phase of data selection in the proposed method
(Fig. 1) resulted in 23 574 open strokes and 23 556 closed

strokes based on the open and close commands. This repre-
sents only 0.13% of the total data, suggesting that the elevator
was mostly in a non-operational state because it started to
operate only when passengers touched a button. Specifically,
there were 22 466, 1 043, and 65 open strokes, and 22 466,
1 060, and 30 closed strokes, in the normal with completion
of a full stroke, normal without completion of a full stroke,
and abnormal states, respectively. This classification suggests
the presence of two factors. First, random interruptions from
passengers when the elevator door is in the process of opening
or closing account for 5% of the total interruptions. Second,
the probability of faults is less than 0.3%, suggesting that
gathering fault data is significantly difficult. Validation of the
proposed method is also challenging because there are signif-
icantly minimal fault data, suggesting that the K-fold cross-
validation method should be used to ensure the reliability of
the validation [43], [44]. The hyperparameters of the models
were optimized using 20% of the BO data. Then, k-fold cross-
validation was performed five times, except for the data used
for BO, and it was divided into 80% training set and 20%
test set for each learning. For the open stroke, the training
set consisted of 14,378, 657, and 42 strokes, whereas the test
set consisted of 3,594, 167, and 10. In the closed stroke, the
training set consisted of 14,378, 678, and 19 strokes, whereas
the test set consisted of 3 595, 170, and 5 strokes. Note that
the number of open strokes was slightly larger than that of
closed strokes because some closed strokes measured below
8 Hz were deleted considering communication problems.

B. PHASE B: FEATURE PREPROCESSING
1) STATISTICAL METHODS
Several statistical methods are effective for feature manipu-
lation for fault classification, including skewness, kurtosis,
crest factor, and shape factor [20], [22]. One common obser-
vation is that the estimation accuracy of fault diagnosis and
classification may increase when more statistical features are
addressed. Because this study addressed only three statistical
features, we compared one extreme case with the proposed
method to analyze this hypothesis. In the extreme case, nine
additional statistical methods were applied to seven features,
in addition to the mean, RMS, and peak, which were used in
the proposed method, resulting in 84 features for the opera-
tional features of the digitized integer. Table 8 in the appendix
shows the formulas of the statistical methods used in this
extreme case. The input and reconstructed layer dimensions
were changed to 91 by the proposed autoencoder according
to the shape of the input data developed by additional time-
related static factors. In this subsection, the proposed method
refers to the first case, whereas the extreme case refers to the
second case. Table 2 presents the classification results.

In the first case, all abnormal strokes were classified
as abnormal in both open and closed states. All normal
patients with complete stroke were correctly classified. Five
of these states were identified as normal, without comple-
tion of the full stroke in closed states. Similarly, seven-
teen cases of normal without completion of full stroke were
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FIGURE 6. Manifold maps with three statistical features at the (a) open
and (b) closed states and with 12 statistical features at the (c) open and
(d) closed states.

TABLE 2. Classification results by applying different statistical methods;
+, ×, and© denote normal with completion of full stroke, normal
without completion of full stroke, and abnormal stroke, respectively.

classified as normal with completion of full stroke in the open
state. Therefore, the average F-score of the proposed method
was 0.996, suggesting that the proposed method identifies
faults in elevator doors with high accuracy, as illustrated in
Fig. 6(a) and (b). All abnormal strokes were less than 0.5, for
the second primary axis, that is, the vertical axis in Fig. 6(a),
whereas two normal strokes exceeded 0.5, for this axis for
closed states (Fig. 7(b)). This suggests that the characteristics
of abnormal strokes differ from those of normal strokes in the
transformed manifold. However, a small amount of normal
data without the completion of full stroke overlapped with
the normal data with the completion of full stroke in the
transformed manifold because the measured data for both

were similar. Specifically, interruptions from a passenger
were triggered at the end of stroke completion, and thus did
not have any effect on the operation of the elevator door.
All the characteristics of the features in this case were very
similar to that of the normal data with completion of full
stroke, resulting in misclassification because the area over-
lapped in the manifold. However, this area was far from the
abnormal stroke in the manifold and, thus, did not affect the
classification of elevator door faults.

In the second case, two abnormal strokes were misclassi-
fied in the open state. Moreover, 17 and 29 misclassifications
occurred in the open and closed states, respectively, resulting
in an average F-score of 0.983, as shown in Fig. 6(c) and (d).
Three abnormal strokes were located close to clusters of
normal strokes without completion of full stroke in the open
state, even though the abnormal stroke did not overlap with
the normal strokes. This has resulted in the misclassification
of abnormal strokes as normal strokes. One normal strokewas
located between clusters of normal and abnormal states in
the closed state. However, it was closer to abnormal strokes,
resulting in misclassification. Some normal strokes also over-
lapped in this manifold in both the open and closed states,
resulting in misclassification.

In summary, the dimensions of the input features cannot be
increased owing to the challenges in hyperplane transforma-
tion. Thus, the three strokes were not clearly separated in the
transformed manifold. A comparison of the two cases clearly
shows that the characteristics of abnormal strokes differ from
those of normal strokes when the hyperplane transforma-
tion is examined through the autoencoder. However, many
input features encounter challenges in hyperplane transfor-
mation because of the dimension increase and the subsequent
decrease in prediction accuracy for fault classification in the
transformed manifold. Hence, the selection of appropriate
features is important in accurate fault diagnosis.

2) FEATURE EXTRACTION
This subsection details the contribution of the features
extracted in the fault classification. The proposed method
employed 28 features, comprising 21 statistical features from
digitized integers and 7 features from Boolean state informa-
tion. Moreover, 21 statistical features, including 15 features
6 statistical features from 3 statistical methods, were applied
to 5 operational data and 2 difference calculations. Four
extreme cases were compared with the proposed method to
demonstrate the effectiveness of the feature extraction. In the
first case, 15 operational features with 7 Boolean features
were used for fault classification. This case provided the con-
tributions of the 6 difference calculations. In the second case,
15 features from digitized integers were exclusively used to
analyze the contribution of the difference calculation, and
7 features were acquired from the Boolean state information.
In the third case, 21 features from digitized integers were
used, whereas 7 features relevant to the Boolean state were
used in the fourth case. Different input features resulted in
varied classification results, indicating the contribution of
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FIGURE 7. Manifold maps with the proposed method at open state with
(a) 15 operational features + 7 Boolean features, (c) 15 operational
features, (e) 15 operational features, and (g) 7 Boolean features. Manifold
maps with the proposed method at closed state with (b) 15 operational
data + Boolean features, (d) 15 operational features, (f) 15 operational
features, and (h) 7 Boolean features.

each feature. The input and reconstructed layer dimensions of
the autoencoder were converted into numbers of correspond-
ing inputs for each case. Table 3 presents the classification
results.

In the first case, apart from one abnormal stroke in the
closed state, all abnormal strokes were classified as abnormal
in the open and closed states. Seventeen instances of normal
without completion of a full stroke were misclassified in the
open state, whereas 12 and 16 instances of normal with and
without completion of a full stroke, respectively, were mis-
classified in the closed state, resulting in an average F-score
of 0.990. This score was lower than that of the proposed
method, suggesting that six features from the difference cal-
culation contributed to the increased fault classification accu-
racy. This result is explained by the manifold maps shown
in Fig. 7(a) and (b). Normal strokes were separated from

TABLE 3. Classification results by applying different features; +, ×, and
© denote normal with completion of full stroke, normal without
completion of full stroke, and abnormal stroke, respectively.

abnormal strokes in both the feature maps of the open and
closed states, similar to those in the first case. However,
one abnormal stroke was located close to clusters of two
normal strokes and far from a cluster of abnormal strokes
in the closed state, even though the abnormal stroke did not
overlap with the normal strokes. This has resulted in the
misclassification of abnormal strokes as normal strokes. The
manifold maps also demonstrated the overlap area for the two
normal strokes, resulting in misclassification.

In the second case, all the abnormal strokes were classified
as abnormal strokes in the closed state. However, two abnor-
mal strokes were considered normal with the completion of
full stroke, and one abnormal stroke was considered normal
without the completion of full stroke in the open state. Several
misclassifications occurred in the two normal stroke classes
in both the open and closed states, resulting in an average
F-score of 0.988. These results are explained by the manifold
maps shown in Fig. 7(c) and (d). Specifically, two abnormal
strokes were in a clustered area of normal with the completion
of full stroke, and one abnormal stroke was very close to
the clustered area of normal without the completion of full
stroke, resulting in this misclassification. Classification accu-
racy decreased by neglecting the features of the difference
calculation and Boolean states.

The third and fourth cases also had two misclassifica-
tions of abnormal strokes in the open state and several
misclassifications in normal strokes, resulting in average
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F-scores of 0.990 and 0.972, respectively. The corresponding
manifold maps in Fig. 7(e)–(h) show that misclassified abnor-
mal strokes overlapped or were near the clusters of normal
strokes.

In summary, a comparison of four cases with the proposed
method demonstrated that the characteristics of abnormal
strokes differed from those of normal strokes in the manifold
transformed through the autoencoder. However, the limited
availability of information decreased the accuracy of fault
classification. In addition, we observed that adding Boolean
features increased classification accuracy, implying that the
sum of time for the Boolean state was effective in improv-
ing estimation accuracy. Furthermore, difference calculations
provided additional effective information for fault diagnosis
and classification, thereby increasing the estimation accuracy.

3) NORMALIZATION METHOD
This subsection presents the classification results based on
the normalization methods addressed in this study. A case
study was conducted because the fault classification depends
on the normalization method [45], [46]. Normalization has
a critical role in the rescaling of inputs that measure differ-
ent physical quantities, thereby resulting in similar weights
for all features. Two normalization methods widely used in
autoencoders are the z-score and min-max methods. Because
the z-score was used in the proposed method, we employed
the min-max method, expressed by (2), for comparison.
Table 4 presents the results of this study.

In the case of addressing the min-max normalization
method, three abnormal states were misclassified in both the
open and closed states. Specifically, two abnormal strokes
were classified as normal with completion of full stroke, and
one abnormal stroke was considered normal without comple-
tion of full stroke in the open state, whereas three abnormal
strokes were considered normal without completion of full
stroke in the closed state. Moreover, 20 and 38 misclassifica-
tions occurred for normal strokes in open and closed states,
respectively, resulting in an average F-score of 0.947. Fig. 8
presents the results of the misclassifications. Three abnormal
strokes occurred in clusters of normal strokes in the open
state. Interestingly, many misclassifications occurred in this
area, implying that the min-max normalization method can
only separate non-identical characteristics in this area, rather
than identical characteristics. One abnormal stroke was also
in a cluster of normal without completion of full stroke, and
two abnormal strokes were located close to the misclassified
abnormal stroke in the closed state. These three abnormal
strokes were far from a cluster of abnormal strokes, suggest-
ing that normalizing features via the min-max normalization
method is less effective in the creation of distinct manifolds
through the autoencoder.

A comparison of the normalization methods clearly shows
that the selection of an appropriate normalization is impor-
tant for securing fault diagnosis and classification, and the
z-score normalization method is more appropriate than the
min-max normalizationmethod for the data used in this study.

FIGURE 8. Manifold maps with the proposed method at (a) open and
(b) closed states using min-max normalization method.

TABLE 4. Classification by using Min-max normalization method; +, ×,
and© denote normal with completion of full stroke, normal without
completion of full stroke, and abnormal stroke, respectively.

The superiority of the z-score normalization method can be
explained by the fact that the feature was normalized with a
standard deviation. Compared with other features, this allows
other data in this feature to be less affected by outliers when
converting physical quantities to the same scale. In contrast,
the min-max normalization method is significantly affected
by abnormal data, which likely originate from a fault. For
example, one abnormal datum, that is, an outlier, is added
when the value of two features is already set equal. These
abnormal data exceed the range of the current data in one fea-
ture but fall within the range of the current data in another fea-
ture. In z-score normalization, abnormal data have a minimal
effect on the scale of features that are out of range. However,
the min-max normalization method has a significant impact
on the scale of the out-of-range features. Abnormal data in
existing data, which are well-found features by the changed
scale feature, may not be well found by the changing feature
scale. This results in improved performance of the z-score
normalization method in learning autoencoders for abnormal
detection.

4) AUTOENCODER
The autoencoder projects data in a high-dimensional space
onto data in a low-dimensional space [47], [48]. The non-
linear activation function enables a nonlinear hyperplane
transformation. Apart from the last layer, the same activation
function is typically used for each layer to match the range
of the output and input data when training the AE. However,
the proposed method addresses varying activation functions
of encoders and decoders to impose more nonlinear charac-
teristics in the hyperplane transformation. Three cases were
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compared to analyze the contribution of this strategy. The
first method is the proposed method. In the second case, the
sigmoid function was used for both the encoder and decoder
to train the autoencoder, whereas the hyperbolic tangent
function was used for both the encoder and decoder in the
third case. In all cases, the output layer used a linear activation
function. The classification results are listed in Table 5.

In the first case, all abnormal states were detected and
the average F-score was 0.996, as mentioned in Section
4.2.1. The average margins of all iterations between the nor-
mal with complete stroke and abnormal stroke and between
normal without complete stroke and abnormal stroke were
0.29 and 0.10 in open states and 0.18 and 0.09 in closed states,
respectively.

In the second case, all abnormal strokes were classified
as abnormal strokes in closed states, whereas one abnor-
mal stroke was considered normal without completion of
full stroke. Moreover, 29, 78, 6, and 18 misclassifications
occurred during normal stroke with completion of full stroke
in the open state, normal stroke without completion of full
stroke in the open state, normal stroke with completion of full
stroke in the closed state, and normal stroke without comple-
tion of full stroke in the closed state, respectively, resulting in
an average F-score of 0.975. The average margins of all itera-
tions between the normal with complete stroke and the abnor-
mal stroke and between the normal without complete stroke
and the abnormal stroke were 0.08 and 0.02 in open states and
0.05 and 0.04 in closed states, respectively. This observation
implies that the margin of the second case is lower than that
of the first case, suggesting that the distribution of the data
according to the state of each data point is closer than that
of the first case. The result for the misclassification is clearly
identified by themanifoldmaps presented in Fig. 9(a) and (b).
Specifically, some abnormal strokes were located close to
clusters of normal strokes, even though the abnormal strokes
did not overlap with normal strokes. This resulted in the
misclassification of abnormal strokes as normal and normal
strokes as abnormal.

In the third case, the classification of all abnormal strokes
was similar to that in the second. All abnormal strokes were
classified as abnormal strokes in closed states, whereas one
abnormal stroke was considered normal without the comple-
tion of full stroke. However, 16, 15, and 16 misclassifications
occurred at normal stroke without completion of full stroke
in the open state, normal with completion of full stroke
in the closed state, and normal stroke without completion
of full stroke in the closed state, respectively, resulting in
an average F-score of 0.993. The misclassification results
were clearly identified by the manifold maps presented in
Fig. 9(c) and (d). Specifically, normal without the completion
of full stroke clusters between clusters of abnormal states and
one abnormal state in the open state. This would be closer to
normal strokes, resulting in misclassification.

A comparison of the three cases clearly shows that the
characteristics of abnormal strokes differ from those of
normal strokes when the hyperplane transformation is con-

FIGURE 9. Manifold maps with the proposed method at open state with
(a) sigmoid and (c) hyperbolic tangent activation function methods.
Manifold maps with the proposed method at closed state with
(b) sigmoid and (d) hyperbolic tangent activation function methods.

ducted through the autoencoder. However, the consideration
of one type of activation function in the autoencoder results
in difficulties in space transformation, thereby decreasing the
prediction accuracy for fault classification in the transformed
manifold. Addressing different nonlinear activation functions
on the encoder and decoder strengthens the capability of
the nonlinear hyperplane transformation, exhibiting the best
accuracy. Specifically, the normal data were trained to not
cross the region of the abnormal data when addressing the
sigmoid activation function, whereas the margin between the
normal and abnormal data was observed to be large when
addressing the hyperbolic tangential activation function. The
proposed method achieved the advantages of both activa-
tion functions, suggesting that addressing different activation
functions for the encoder and decoder is effective for the
separation of complex yet similar operational strokes in a
transformed manifold.

5) SVM
Several methods, including SVMs, ANNs, and decision
trees, are widely used for classification [49]. This subsection
compares the two other methods to the SVM as
a classifier. For a fair comparison of each model, 20% of
the data were optimized through BO [40]–[42], implying
that the hyperparameters of SVM, decision tree, and ANN
would be designated as suitable values for the data used. The
hyperparameters of each classifier are presented in Table 6.

In the case of ANNs, all abnormal strokes were classified
as abnormal strokes in both open and closed states. Similarly,
all normal with completion of full stroke were classified as
being in open states, whereas five of these states were identi-
fied as normal with completion of full stroke in closed states.
Seventeen normal cases without completion of full stroke
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TABLE 5. Classification by using different activation function methods;
symbols +, ×, and© denote normal with completion of full stroke,
normal without completion of full stroke, and abnormal stroke,
respectively.

TABLE 6. Hyperparameter optimization Result by BO by using different
classifier methods: SVM, ANN, and Decision tree.

were classified as normal with completion of full stroke in
the open state. Sixteen normal cases without completion of

TABLE 7. Classification by using different classifier methods: ANN and
Decision tree; symbols +, ×, and© denote normal with completion of
full stroke, normal without completion of full stroke, and abnormal
stroke, respectively.

full stroke were classified as normal with completion of full
stroke, resulting in an average F-score of 0.996. These values
were the same as those of the SVM.

In the case of the decision tree, all abnormal strokes were
classified as abnormal strokes in both the open and closed
states. However, 3 cases of normal with completion of full
stroke were classified as normal without completion of
full stroke, and 17 cases of normal without completion
of full stroke were classified as normal with completion
of full stroke in open states. Sixteen cases of normal
with completion of full stroke were classified as nor-
mal without completion of full stroke, and 15 cases of
normal without completion of full stroke were classified as
normal with completion of full stroke in closed states, result-
ing in an average F-score of 0.995.

A comparison of these cases shows that the SVM, ANN,
and decision-tree classifiers have similar accuracies. In addi-
tion, all abnormal strokes were classified as abnormal
strokes in all cases. These results again confirm that the
autoencoder effectively transforms the original spaces into
manifold maps, where two types of normal and abnormal data
can be separated.

However, the calculation times of the SVM, decision tree,
and ANNwere 0.078, 0.041, and 685 s, respectively, suggest-
ing that a deep neural network of ANN requires 1000 times
heavier computational effort than SVM and decision tree.
Moreover, the decision tree requires two more hyperparam-
eters to be selected than the SVM, implying that more engi-
neering effort is required to optimize the decision tree. This
result also suggests that the decision tree easily converges
to a local minimum and thereby has estimation accuracy.
For example, misclassifications for normal with and without
completion of full stroke are larger in the decision tree com-
pared to those in ANN and SVM, even after conducting BO.
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TABLE 8. Additional time-related statistical factors.

Therefore, the SVM is the most accurate classifier among the
three analyzed.

V. CONCLUSION
In this study, a fault diagnosis and classification method is
proposed for elevator doors based on the exclusive use of con-
trol state information. The proposed method comprises three
phases. The first phase extracts operational state information
from the control state information of the elevator doors. This
phase is intended to minimize computational efforts for fault
detection because elevators are in a nonoperational state in
most periods. In the second phase, distinct features aremanip-
ulated for fault diagnosis. In the third phase, autoencoders and
an SVM are used to effectively classify the three operational
states. Actual field measurements indicated that the proposed
method has high estimation accuracy for fault diagnosis.
A systematic analysis of the field measurements provides the
following findings.

- The selection of appropriate statistical methods incre-
ases the estimation accuracy of fault diagnosis methods.
The use of numerous statistical methods increases the
dimensions related to problem solving, creating difficul-
ties in nonlinear hyperplane transformations.

- Feature manipulation, including difference calculation
and normalization, has a critical role in fault diagnosis
because a high correlation between distinct features and
different operational conditions ensures a high estima-
tion accuracy.

- The autoencoder effectively transforms the original
space into manifold space for fault diagnosis. Moreover,
the implementation of different activation functions in
the autoencoder improves the capability of the nonlinear
hyperplane transformation.

Future work includes the validation of the proposed method
by acquiring data from elevator doors and applying them to
other complex systems to demonstrate the effectiveness and
robustness of the proposed method.

APPENDIX
See Table 8.
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