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ABSTRACT We investigate output feedback stabilization for a class of high-order nonlinear systems whose
output function and nonlinear terms are unknown. First, a smooth state feedback control law is designed by
adding a power integrator technique. Next, we design a high-order observer to estimate the unmeasurable
state, and allocate gains of the observer one by one in an iterative way. Finally, a dynamic output compensator
is achieved such that the closed-loop system converges to the equilibrium point quick. Two examples are
provided to demonstrate the effectiveness of the proposed method.

INDEX TERMS Output feedback stabilization, high-order nonlinear systems, observer design, dynamic
output compensator.

I. INTRODUCTION
It is challenge to investigate output feedback stabilization
for nonlinear systems since it involves in observer designs.
In order to avoid finite time escape, it is necessary to impose
some restrictive conditions on the nonlinear terms when
investigating output feedback control for nonlinear uncertain
systems in [1]. Global output feedback stabilization for Lip-
schitz nonlinear systems is presented in [2].

When the nonlinear terms are not precisely known, a feed-
back domination method is presented, and it is shown that
global exponential stabilization can be achieved under the
linear growth condition with a priori knowledge of the growth
rate in [3]. A homogeneous domination approach is estab-
lished to handle higher-order nonlinearities, which the linear
growth condition is relaxed in [4]. More recent works about
global output feedback stabilization for nonlinear systems
with uncertain growth and higher-order growth conditions
can be found in [5]–[7].

Global output feedback stabilization for a class of homo-
geneous systems is presented in [8], [9]. For a class of
high-order switched nonlinear systems, output-feedback con-
trol is also appeared in [10], [11]. For nonlinear systems
with unknown output functions, global output feedback sta-
bilization is explored in [12]–[14]. Adaptive output feedback
tracking control for uncertain switched nonlinear systems
with time delays is investigated in [15], [16]. For nonlinear
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stochastic switching systems, two control schemes are pre-
sented in [17], [18]. By adding a power integrator technique,
global stabilization of high-order lower-triangular systems is
shown in [19]. Robust regulation is designed for a chain of
power integrators perturbed in [20].When the output function
of the high-order nonlinear systems [8]–[11] is unknown, how
to design global output feedback controller becomes much
more challenge.

This paper investigates output feedback stabilization for a
class of high-order nonlinear systems with unknown output
function and nonlinear terms. First, a state feedback law
is designed by employing backstepping method and adding
a power integrator technique. Then, by an iterative man-
ner, a new observer design is presented, which gains of the
observer can be appropriately enlarged to make the error
arbitrarily small. Finally, a dynamic output compensator is
achieved such that the closed-loop system is globally asymp-
totically stable quick.

The main contributions of this paper are as follows:
(1) a unified method is achieved to deal with high-order

nonlinear systems with unknown output function and nonlin-
ear terms;

(2) compared with [8]–[11], we deal with a class of
uncertain nonlinear systems with weaker constraints on
output and nonlinear terms. A new dynamic high-order
observer design method is proposed. Gains of the observer
are assigned one-by-one by an iterative manner, and can
be appropriately enlarged to make the error arbitrarily
small;
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(3) the advantage of dynamic output compensator is that
the closed-loop system converges to the equilibrium point
quick.

II. SYSTEM DESCRIPTION AND SOME LEMMAS
Consider the nonlinear system

ẋ1 = xp2 + φ1(t, x, u) (1)
...

ẋn−1 = xpn + φn−1(t, x, u) (2)

ẋn = u+ φn(t, x, u) (3)

y = h(x1) (4)

where x = (x1, · · · , xn)T ∈ Rn, u ∈ R and y ∈ R are the
system state, input and output, respectively, and p ≥ 1 is an
odd integer, and h(·) : R → R with h(0) = 0 is unknown
continuously differentiable, and the nonlinear terms φi : R+×
Rn × R→ R, i = 1, · · · , n are continuous.

The nonlinear function h is assumed satisfying
Assumption 1 as follows:
Assumption 1: There exist two known positive constants

θ and θ such that

θ ≤
∂h(s)
∂s
≤ θ, ∀s ∈ R. (5)

Remark 1: Owing to use sensors in practice, the relation-
ship between the sensor output and state x1 of the system is
always nonlinear, uncertain and time-varying. As shown in
[14], the sensor output y is an uncertain nonlinear function of
the real displacement x1 of the working region. However, the
derivative of the nonlinear function h(x1) actually is bounded,
which implies that (5) is a natural assumption. The simplest
function satisfying (5) is a linear output h(x1) = θx1 with an
unknown constant θ if the upper-bound and lower-bounder
of θ are known. In addition, some nonlinear output functions
are bounded, such as h(x1) = 2x1+sin(x1), satisfies Assump-
tion 1 as well.

Further, the nonlinear terms φi : R+ × Rn × R → R, i =
1, · · · , n satisfy Assumption 2 as follows:
Assumption 2: There exists a constant C ≥ 0 such that

|φi(t, x, u)− φi(t, x̂, u)|

≤ C(|x1 − x̂1| + · · · + |xi − x̂i|)

 i∑
j=1

(xp−1j + x̂p−1j )

 ,
(6)

for i = 1, · · · , n.
Remark 2: Assumption 2 can be viewed as a high-order

version of Lipschitz-like condition. In fact, (10) is degener-
ated to global Lipschitz condition when p = 1,

|φi(t, x, u)− φi(t, x̂, u)| ≤ C(|x1 − x̂1| + · · · + |xi − x̂i|).

The following lemmas from [8], [9] are needed in this
paper.

Lemma 1: Let n andm be positive real numbers. If a, b and
γ > 0 are continuous scalar-valued functions, for any real
constant c > 0, it holds

γ |a|n|b|m≤c|a|m+n +
m

m+ n
(

n
c(m+ n)

)
n
m γ

m+n
m |b|m+n. (7)

Lemma 2: Given a positive real number p ≥ 1, for any
x, y ∈ R and c > 0, it holds

|xp − yp| ≤ c|x − y||(x − y)p−1 + yp−1|. (8)

Lemma 3: Given a positive real number p, for any
x1, · · · , xn ∈ R, it holds

(|x1| + · · · + |xn|)p ≤ max(np−1, 1)(|x1|p + · · · + |xn|p). (9)

Lemma 4: For x, y ∈ R, p ≥ 1, it holds

(x + y)p ≤ 2p−1(|x|p + |y|p). (10)

Lemma 5: Let x and y be any real numbers and p > 0 be
an odd integer, it holds

−(x − y)(xp − yp) ≤ −
1

2p−1
(x − y)p+1. (11)

III. OUTPUT FEEDBACK STABILIZATION DESIGN AND
STABILITY ANALYSIS
Under Assumptions 1–2, we will design a output feedback
controller for the uncertain system (1)–(4).
Theorem 1: If Assumptions 1–2 hold, then the dynamic

output compensator

˙̂x = η(x̂, y), x̂ ∈ Rn

u = u(x̂, y) (12)

globally stabilizes system (1)–(4).
Proof: The proof consists of three parts.

Part 1: Consider state feedback control law design if the
state is measurable.

Step 1: Consider the Lyapunov candidate function

V1(y) =
1
2
y2. (13)

Under Assumption 1, we obtain

|y|p/θ̄p ≤ |x1|p ≤ |y|p/θp, (14)

the proof is given in the appendix. Under Assumption 2, it can
be deduced that system (1)–(4) satisfies the growth conditions

|φi(t, x, u)| ≤ λi(|x1|p + · · · + |xi|p) (15)

where λi = 2iC ≥ 0, i = 1, · · · , n.
With (14) and (15), the time derivative of V1 along the

trajectories of (1)–(4) for n = 1 is

V̇1(y) = y
∂y
∂x1

(xp2 + φ1(t, x, u))

≤ y
∂y
∂x1

xp2 + λ1|y||
∂y
∂x1
||x1|p

≤ y
∂y
∂x1

xp2 + λ1θ̄
1
θp
yp+1. (16)
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Design a smooth state feedback control law

x2 = x∗2 (y) = −β1y (17)

where β1 = ( n
θ
+ λ1θ̄

1
θp
)
1
p is a non-negative constant, we get

V̇1(y) ≤ −nyp+1. (18)

Step 2: Consider the Lyapunov candidate function

V2 = V2(y, ξ2) = V1(y)+
ξ22

2
. (19)

Let

ξ1 = y, ξ2 = x2 − x∗2 (ξ1). (20)

Under the coordinates transform (20), system (1)–(4) for
n = 2 is transferred to

ξ̇1 = ϒ1(ξ1, ξ2) (21)

ξ̇2 = xp3 +92(ξ1, ξ2) (22)

where

ϒ1(ξ1, ξ2) =
∂ξ1

∂x1

(
φ1(t, x, u)+ (ξ2 + x∗2 )

p) ,
92(ξ1, ξ2) = φ2(t, x, u)−

∂x∗2
∂ξ1

ϒ1(ξ1, ξ2).

Using Lemma 4, it is easy to show

|ϒ1(ξ1, ξ2)| ≤ |
∂ξ1

∂x1
|

(
λ1|x1|p + 2p−1(|ξ2|p + |β1ξ1|p)

)
≤ θ̄

(
(λ1

1
θp
+ 2p−1βp1 )|ξ1|

p
+ 2p−1|ξ2|p

)
≤ λ̄1(|ξ1|p + |ξ2|p) (23)

where λ̄1 = max{θ̄ (λ1 1
θp
+ 2p−1βp1 ), θ̄2

p−1
}, and

|92(ξ1, ξ2)|

≤ λ2(|x1|p + |x2|p)+ β1λ̄1(|ξ1|p + |ξ2|p)

≤ λ2

(
1
θp
|ξ1|

p
+ 2p−1(|ξ2|p + |β1ξ1|p)

)
+ β1λ̄1

2∑
i=1

|ξi|
p

=

(
λ2(

1
θp
+ 2p−1βp1 )+ β1λ̄1

)
|ξ1|

p

+ (2p−1λ2 + β1λ̄1)|ξ2|p

≤ λ̃2(|ξ1|p + |ξ2|p) (24)

where λ̃2 = max{λ2( 1
θp
+ 2p−1βp1 )+ β1λ̄1, 2

p−1λ2 + β1λ̄1}

is a non-negative constant.
With the help of Lemma 1, the time derivative of V2(·)

along the trajectories of (21)–(22) is

V̇2(ξ1, ξ2) ≤ −(n− 1)ξp+11 + ξ2x
p
3 + (λ̃2 + λ̃

p+1
2 )ξp+12 .

(25)

Clearly, a smooth state feedback controller is chosen as fol-
lows

x3 = x∗3 (ξ2) = −β2ξ2 (26)

where β2 = [n− 1+ (λ̃2 + λ̃
p+1
2 )]

1
p > 0 is a constant.

Substituting (26) into (25), we have

V̇2(ξ1, ξ2) ≤ −(n− 1)(ξp+11 + ξ
p+1
2 ). (27)

Step k + 1: Suppose at step k, there exists a global change
of coordinates

x∗1 = 0, ξ1 = y− x∗1 , (28)

x∗2 = −β1ξ1, ξ2 = x2 − x∗2 , (29)
...

x∗k = −βk−1ξk−1, ξk = xk − x∗k (30)

with constants β1 > 0, · · · , βk−1 > 0, transferring (1)–(4)
for n = k into a system of the form

ξ̇1 = ϒ1(ξ1, ξ2) (31)
...

ξ̇k−1 = ϒk−1(ξ1, · · · , ξk ) (32)

ξ̇k = xpk+1 +9k (ξ1, · · · , ξk ) (33)

with

|ϒi(ξ1, · · · , ξi+1)| ≤ λ̄i(|ξ1|p + · · · + |ξi+1|p),

i = 1, · · · , k − 1.

|9k (ξ1, · · · , ξk )| ≤ λ̃k (|ξ1|p + · · · + |ξk |p),

where λ̄1, · · · , λ̄k−1, λ̃k are non-negative constants.
And the Lyapunov candidate function is

Vk = Vk (ξ1, · · · , ξk ) = Vk−1 +
ξ2k

2
(34)

and a smooth state feedback control law is

x∗k+1(ξk ) = −βkξk (35)

where βk =
(
n− k + 1+

(
λ̃k + (k − 1)λ̃p+1k

)) 1
p
is a non-

negative constant, such that

V̇k ≤ −(n− k + 1)
k∑
i=1

ξ
p+1
i . (36)

We claim that (36) also holds at step k + 1. To prove the
claim, we denote

ξk+1 = xk+1 − x∗k+1(ξk ). (37)

This, together with (31)–(33), yields the augmented system

ξ̇1 = ϒ1(ξ1, ξ2) (38)
...

ξ̇k = ϒk (ξ1, · · · , ξk+1) (39)

ξ̇k+1 = xpk+2 +9k+1(ξ1, · · · , ξk+1) (40)

where

ϒk (ξ1, · · · , ξk+1) = (ξk+1 + x∗k+1)
p

+φk (t, x, u)−
∂x∗k
∂ξk−1

ξ̇k−1, (41)
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9k+1(ξ1, · · · , ξk+1) = φk+1(t, x, u)−
∂x∗k+1
∂ξk

ξ̇k . (42)

Using Lemma 4, by (14), (15), (28)–(30), we can deduce

|ϒk (ξ1, · · · , ξk+1)|

≤ |(ξk+1 + x∗k+1)
p
| + λk

k∑
i=1

|xi|p + βk−1|ξ̇k−1|

≤ 2p−1(|ξk+1|p + |βkξk |p)+ λk (
1
θp
|ξ1|

p

+ 2p−1(|ξ2|p + |β1ξ1|p)+ · · · + 2p−1(|ξk |p

+ |βk−1ξk−1|
p))+ βk−1λ̄k−1

k∑
i=1

|ξi|
p

≤ λ̄k (|ξ1|p + · · · + |ξk+1|p) (43)

where

λ̄k = max{λk (
1
θp
+ 2p−1βp1 )+ βk−1λ̄k−1,

2p−1λk (1+ β
p
2 )+ βk−1λ̄k−1, · · · ,

2p−1λk (1+ β
p
k−1)+ βk−1λ̄k−1,

2p−1(λk + β
p
k )+ βk−1λ̄k−1, 2

p−1
}.

Using (15), (35), (39) and (42), we have

|9k+1(ξ1, · · · , ξk+1)|

≤ λk+1(|x1|p + · · · + |xk+1|p)+ βk λ̄k
k+1∑
i=1

|ξi|
p

≤ λk+1(
1
θp
|ξ1|

p
+ 2p−1(|ξ2|p + |β1ξ1|p)+ · · ·

+ 2p−1(|ξk+1|p + |βkξk |p))+ βk λ̄k
k+1∑
i=1

|ξi|
p

≤ λ̃k+1(|ξ1|p + · · · + |ξk+1|p) (44)

with

λ̄k+1 = max{λk+1(
1
θp
+ 2p−1βp1 )+ βk λ̄k ,

2p−1λk+1(1+ β
p
2 )+ βk λ̄k , · · · ,

2p−1λk+1(1+ β
p
k )+ βk λ̄k ,

2p−1λk+1 + βk λ̄k}.

Now, construct the Lyapunov candidate function as

Vk+1 = Vk+1(ξ1, · · · , ξk+1) = Vk +
ξ2k+1

2
, (45)

it holds

V̇k+1 ≤ −(n− k + 1)
k∑
i=1

ξ
p+1
i + ξk+1ξ̇k+1

≤ −(n− k + 1)
k∑
i=1

ξ
p+1
i

+ ξk+1(x
p
k+2 +9k+1(ξ1, · · · , ξk+1)). (46)

Using an almost identical argument as proceeded in step 2,
the following inequality can be deduced from (44), (46), and
using Lemma 1

V̇k+1 ≤ −(n− k + 1)
k∑
i=1

ξ
p+1
i + ξk+1x

p
k+2

+

k∑
i=1

ξ
p+1
i + (λ̃k+1 + kλ̃

p+1
k+1)ξ

p+1
k+1 . (47)

Clearly, choose a smooth state feedback control law

xk+2 = x∗k+2(ξk+1) = −βk+1ξk+1 (48)

whereβk+1 =
(
n− k + (λ̃k+1 + kλ̃

p+1
k+1)

) 1
p
is a non-negative

constant, yields

V̇k+1(ξ1, · · · , ξk ) ≤ −(n− k)
k+1∑
i=1

ξ
p+1
i . (49)

This completes the inductive step. The inductive argument
shows that (36) is true for k = 2, · · · , n− 1.

Step n: Construct the Lyapunov candidate function

Vn = Vn(ξ1, · · · ξn) = Vn−1 +
1
2
ξ2n . (50)

Together with (38)–(40) and (48), choose a smooth state
feedback control law x∗n (ξn−1) = −βn−1ξn−1 and denote

ξn = xn − x∗n (ξn−1). (51)

Similarly, it is not difficult to obtain

ξ̇1 = ϒ1(ξ1, ξ2) (52)
...

ξ̇n−1 = ϒn−1(ξ1, · · · , ξn) (53)

ξ̇n = u+9n(ξ1, · · · , ξn) (54)

where

ϒn−1(ξ1, · · · , ξn) = (ξn + x∗n )
p

+φn−1(t, x, u)−
∂x∗n−1
∂ξn−2

ξ̇n−2

9n(ξ1, · · · , ξn) = φn(t, x, u)−
∂x∗n
∂ξn−1

ξ̇n−1

and have the properties

|ϒn−1(ξ1, · · · , ξn)| ≤ λ̄n−1(|ξ1|p + · · · + |ξn|p), (55)

|9n(ξ1, · · · , ξn)| ≤ λ̃n(|ξ1|p + · · · + |ξn|p), (56)

where

λ̄n−1 = max{λn−1(
1
θp
+ 2p−1βp1 )+ βn−2λ̄n−2,

2p−1λn−1(1+ β
p
2 )+ βn−2λ̄n−2, · · · ,

2p−1λn−1(1+ β
p
n−2)+ βn−2λ̄n−2,

2p−1(λn−1 + β
p
n−1)+ βn−2λ̄n−2, 2

p−1
},
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and

λ̃n = max{λn(
1
θp
+ 2p−1βp1 )+ βn−1λ̄n−1,

2p−1λn(1+ β
p
2 )+ βn−1λ̄n−1, · · · ,

2p−1λn(1+ β
p
n−1)+ βn−1λ̄n−1,

2p−1λn + βn−1λ̄n−1},

are non-negative constants. Time derivative of Vn is

V̇n ≤ −2
n−1∑
i=1

ξ
p+1
i + ξnξ̇n

≤ −2
n−1∑
i=1

ξ
p+1
i + ξn(u+9n(ξ1, · · · , ξn))

≤ −2
n−1∑
i=1

ξ
p+1
i + ξnu+ |ξn|λ̃n

n∑
i=1

|ξi|
p

≤ −

n−1∑
i=1

ξ
p+1
i + ξnu+ (λ̃n + (n− 1)λ̃p+1n )ξp+1n . (57)

Obviously, we have

u = u(ξn)

= −(βnξn)p

= −(βnxn + βn−1(xn−1 + · · · + β2(x2 + β1y) · · · )))p

(58)

where βn =
(
1+

(
λ̃n + (n− 1)λ̃p+1n

)) 1
p
> 0 is a constant,

such that

V̇n ≤ −
n∑
i=1

ξ
p+1
i . (59)

So the original system (1)–(4) is globally stabilized by the
control law (58).

Part 2: Nonlinear observer design
For the nonlinear system (1)–(4), if the state x is not

measurable, the smooth state feedback controller (58) is not
implementable directly. It is need to design an observer to
estimate the state x. A nonlinear observer is designed as
follows

˙̂x1 = x̂p2 + φ1(t, x̂, u)− L1x̂
p
1 (60)

...

˙̂xn−1 = x̂pn + φn−1(t, x̂, u)− Ln−1 · · · L1x̂
p
1 (61)

˙̂xn = u+ φn(t, x̂, u)− Ln · · · L1x̂
p
1 (62)

where L1, · · · ,Ln ≥ 0 are the gain constants to be determined
later.

Let ei = xi− x̂i, i = 1, · · · , n be the estimate errors. Then,
the error dynamics is expressed as

ė1 = (xp2 − x̂
p
2 )+81(·)+ L1x̂

p
1 (63)

...

ėn−1 = (xpn − x̂
p
n )+8n−1(·)+ Ln−1 · · · L1x̂

p
1 (64)

ėn = 8n(·)+ Ln · · · L1x̂
p
1 (65)

where 8i(t, x, x̂, u) = φi(t, x, u)− φi(t, x̂, u), i = 1, · · · , n.
For the error dynamics (63)–(65), choose a Lyapunov can-

didate function as follows

U (e1, · · · , en)

=
1
2
(e21 + (e2 − L2e1)2 + · · · + (en − Lnen−1)2) (66)

which is positive definite and proper. Then, time derivative of
U (e1, · · · , en) along the trajectories of (63)–(65) is

U̇ (e1, · · · , en)

= e1ė1 + (e2 − L2e1)(ė2 − L2ė1)+ · · ·

+ (en − Lnen−1)(ėn − Lnėn−1)

= e1
(
(1+ L22 )ė1 − L2ė2

)
+

n−1∑
i=2

ei
(
(1+ L2i+1)ei

−Liėi−1 − Li+1ei+1)+ en (ėn − Lnėn−1)

≤ −

n∑
i=1

Liei(x
p
i − x̂

p
i )+

n−1∑
i=1

(1+ L2i+1)ei

× (xpi+1 − x̂
p
i+1)+

n−2∑
i=1

Li+1|ei(x
p
i+2 − x̂

p
i+2)|

+

n∑
i=2

Li|ei8i−1| +

n−1∑
i=1

(1+ L2i+1)ei8i

+

n−1∑
i=1

Li+1|ei8i+1| + en8n + L1e1x
p
1 . (67)

First, by Lemma 5, we have

−

n∑
i=1

Liei(x
p
i − x̂

p
i ) ≤ −

n∑
i=1

Li
2p−1

ep+1i . (68)

In what follows, we estimate the second term on the right
hand side of (67), using Lemmas 1, 4 and (28)–(30), we have

n−1∑
i=1

(1+ L2i+1)|ei(x
p
i+1 − x̂

p
i+1)|

≤

n−1∑
i=1

(1+ L2i+1)|ei|
(
|xi+1|p + 2p−1(|xi+1|p + |ei+1|p)

)
≤

n−1∑
i=1

(1+ L2i+1)2
2p−1
|ei|

(
|ξi+1|

p
+ |βiξi|

p
+ |ei+1|p

)
≤
τ1

12
(
n∑
i=2

ξ
p+1
i +

n−1∑
i=1

ξ
p+1
i )+

n−1∑
i=1

αi(Li+1)e
p+1
i + ep+1n

≤
τ1

6

n∑
i=1

ξ
p+1
i +

n−1∑
i=1

αi(Li+1)e
p+1
i + ep+1n (69)

where

0 < τ1 ≤ 1,
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α1(L2) =

((
1
p
(
p− 1
p

)p−12p(p−2)(1+ βp(p−1)1 )+ 1
)p+1

+ 2(
12
τ1

)p
)

1
p+ 1

(
p

p+ 1
)p
(
(1+ L22 )c

)p+1
,

αi(Li+1) =

((
1
p
(
p− 1
p

)p−12p(p−2)(1+ βp(p−1)i )+ 1
)p+1

+ 2(
12
τ1

)p
)

1
p+ 1

(
p

p+ 1
)p
(
(1+ L2i+1)c

)p+1
+1, i = 2, · · · , n− 1.

Similarly, we can prove

n−2∑
i=1

Li+1|ei(x
p
i+2 − x̂

p
i+2)| + L1e1x

p
1

≤

n−2∑
i=1

Li+122p−1|ei|(|ξi+2|p + |βi+1ξi+1|p + |ei+2|p)

+
τ1

6
ξ
p+1
1 +

1
p+ 1

(
6p

τ1(p+ 1)

)p
(
L1
θp

)p+1ep+11

≤
τ1

6

n∑
i=1

ξ
p+1
i + δ1(L1,L2)e

p+1
1 +

n−2∑
i=2

δi(Li+1)e
p+1
i

+ ep+1n−1 + e
p+1
n (70)

where

δ1(L1,L2) =

((
1
p
(
p− 1
p

)p−12p(p−2)(1+ βp(p−1)2 )+ 1
)p+1

+ 2(
12
τ1

)p
)

1
p+ 1

(
p

p+ 1
)p(cL2)p+1

+
1

p+ 1

(
6p

τ1(p+ 1)

)p
(
L1
θp

)p+1,

δi(Li+1) =

((
1
p
(
p− 1
p

)p−12p(p−2)(1+ βp(p−1)i+1 )+ 1
)p+1

+ 2(
12
τ1

)p
)

1
p+ 1

(
p

p+ 1
)p(cLi+1)p+1 + 1,

i = 2, · · · , n− 2.

Under Assumption 2, using Lemma 4, we have

|8i(t, x, x̂, u)|

= |φi(t, x, u)− φi(t, x̂, u)|

≤ C(|e1| + · · · + |ei|)
i∑

j=1

(xp−1j + (xj − ej)p−1)

≤ 2p−1C(|e1| + · · · + |ei|)
i∑

j=1

(xp−1j + ep−1j )

≤ 2p−1C(|e1| + · · · + |ei|)(
1

θp−1
ξ
p−1
1 +

i∑
j=2

(|ξj|

+ |βj−1ξj−1|)p−1 +
i∑

j=1

ep−1j )

≤ 22p−3C(|e1| + · · · + |ei|)((
1

θp−1
+ β

p−1
1 )ξp−11

+

i∑
j=2

(1+ βp−1j )ξp−1j +

i∑
j=1

ep−1j )

≤ 22p−3C(|e1| + · · · + |ei|)
i∑

j=1

(β̄iξ
p−1
j + ep−1j ) (71)

where β̄i = max( 1
θp−1
+ β

p−1
1 , 1 + βp−12 , · · · , 1 + βp−1i ),

i = 1, · · · , n are non-negative constants.
Using Lemma 1, we estimate every term of right-hand side

of (71). First, it is

22p−3C(|e1| + · · · + |ei|)
i∑

j=1

β̄iξ
p−1
j

≤ 22p−3C(|e1|
i∑

j=1

β̄iξ
p−1
j + · · · + |ei|

i∑
j=1

β̄iξ
p−1
j )

≤
1
i

i∑
j=1

|ξj|
p
+ i

1
p
(
i(p− 1)

p
)p−1(22p−3β̄iC)p|e1|p + · · ·

+
1
i

i∑
j=1

|ξj|
p
+ i

1
p
(
i(p− 1)

p
)p−1(22p−3β̄iC)p|ei|p

≤

i∑
j=1

|ξj|
p
+

i∑
j=1

1
p
(
p− 1
p

)p−1(22p−3iβ̄iC)p|ej|p. (72)

Similarly, we can prove that

22p−3C(|e1| + · · · + |ei|)
i∑

j=1

ep−1j

≤ 22p−3C
i∑

j=1

(1+
1
p
(
p− 1
p

)p−1ip)|ej|p. (73)

Substituting (72) and (73) into (71), we have

|8i(t, x, x̂, u)| ≤
i∑

j=1

|ξj|
p
+

i∑
j=1

κi|ej|p (74)

where κi =
1
p (

p−1
p )p−1(22p−3iβ̄iC)p + 22p−3C(1 +

1
p (

p−1
p )p−1ip), i = 1, · · · , n, are non-negative constants.

Using (74), it holds

n∑
i=2

Li|ei8i−1(t, x, x̂, u)|

≤

n∑
i=2

Li|ei|

 i−1∑
j=1

|ξj|
p
+

i−1∑
j=1

κi−1|ej|p

 . (75)
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With the help of Lemma 1, it can be deduced that

n∑
i=2

Li|ei|

 i−1∑
j=1

|ξj|
p


≤

n∑
i=2

 τ1

6(n−1)

i−1∑
j=1

ξ
p+1
j +

i− 1
p+ 1

(
6(n− 1)p
τ1(p+ 1)

)pLp+1i ep+1i


≤

n−1∑
i=1

τ1

6
ξ
p+1
i +

n∑
i=2

1
p+ 1

(
6p

τ1(p+ 1)
)p

× ((n− 1)Li)p+1 e
p+1
i , (76)

and
n∑
i=2

Li|ei|(
i−1∑
j=1

κi−1|ej|p)

≤

n−1∑
i=1

ep+1i +

n∑
i=2

1
p+ 1

(
p

p+ 1
)p ((n− 1)κi−1Li)p+1 e

p+1
i .

(77)

From (75)–(77), it holds
n∑
i=2

Li|ei8i−1(t, x, x̂, u)| ≤
n∑
i=1

τ1

6
ξ
p+1
i +

n∑
i=1

ζi(Li)e
p+1
i

(78)

where

ζ1(L1) = 1,

ζi(Li) = 1+
((n− 1)Li)p+1

p+ 1
(

p
p+ 1

)p((
6
τ1
)p + κp+1i−1 )

i = 2, · · · , n− 1,

ζn(Ln) =
1

p+ 1
(

p
p+ 1

)p((n− 1)Ln)p+1((
6
τ1
)p + κp+1n−1 ).

In a similar manner, we can prove

n−1∑
i=1

(1+ L2i+1)|ei8i(t, x, x̂, u)|

≤

n∑
i=1

τ1

6
ξ
p+1
i +

n−1∑
i=1

ωi(Li+1)e
p+1
i , (79)

and
n−1∑
i=1

Li+1|ei8i+1(t, x, x̂, u)|

≤

n∑
i=1

τ1

6
ξ
p+1
i +

n−1∑
i=1

ηi(Li+1)e
p+1
i + ep+1n , (80)

and

|en8n(t, x, x̂, u)|

≤
n

p+ 1
(

p
p+ 1

)p((
6
τ1
)p + κp+1n )ep+1n

+

n∑
i=1

ep+1i +

n∑
i=1

τ1

6
ξ
p+1
i (81)

where

ωi(Li+1) = [(n− 1)(1+ L2i+1)]
p+1((

6
τ1
)p + κp+1i )

×
1

p+ 1
(

p
p+ 1

)p + 1,

ηi(Li+1) = 1+
(nLi+1)p+1

p+ 1
(

p
p+ 1

)p((
6
τ1
)p + κp+1i+1 ),

i = 1, · · · , n− 1.

Substituting (68)–(81) into (67), it is not difficult to draw that

U̇ (e1, · · · , en)

≤ τ1

n∑
i=1

ξ
p+1
i −

n−1∑
i=1

(
Li

2p−1
−9i(Li,Li+1)

)
ep+1i

−

(
Ln
2p−1

−9n(Ln)
)
ep+1n (82)

where

91(L1,L2) = 1+ α1(L2)+ δ1(L1,L2)+ ζ1(L1)
+ω1(L2)+ η1(L2),

9i(Li,Li+1) = 1+ αi(Li+1)+ δi(Li+1)+ ζi(Li)
+ωi(Li+1)+ ηi(Li+1),
i = 2, · · · , n− 2,

9n−1(Ln−1,Ln) = 2+ αn−1(Ln)+ ζn−1(Ln−1)
+ωn−1(Ln)+ ηn−1(Ln),

9n(Ln) = 4+ ζn(Ln)+
n

p+ 1
(

p
p+ 1

) p

× ((
6
τ1
)p + κp+1n ),

are positive real constants.
Part 3: Output feedback control law design
Using the certainty equivalence principle, we replace the

unmeasurable state x = (x1, · · · , xn)T in the controller (58)
by its estimate state x̂ = (x̂1, · · · , x̂n)T generated with
the observer (60)–(62). A output feedback control law is
designed as follows

u = −

(
n∑
i=2

βi · · ·βnx̂i + β1 · · ·βny

)p
(83)

where

β1 = (
n
θ
+ λ1θ̄

1
θp

)
1
p ,

βi =
(
n− i+ 1+

(
λ̃i + (i− 1)λ̃p+1i

)) 1
p
,

λ̃i = max
{
λi(

1
θp
+ 2p−1βp1 )+ βi−1λ̄i−1, 2

p−1λi(1+

β
p
2 )+ βi−1λ̄i−1, · · · , 2

p−1λi(1+ β
p
i−1)

+βi−1λ̄i−1, 2p−1λi + βi−1λ̄i−1
}
,

i = 2, · · · , n,
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and

λ̄1 = max{θ̄ (λ1
1
θp
+ 2p−1βp1 ), θ̄2

p−1
},

λ̄k = max{λk (
1
θp
+ 2p−1βp1 )+ βk−1λ̄k−1, 2

p−1λk (1

+β
p
2 )+ βk−1λ̄k−1, · · · , 2

p−1λk (1+ β
p
k−1)

+βk−1λ̄k−1, 2p−1(λk + β
p
k )+ βk−1λ̄k−1, 2

p−1
},

k = 2, · · · , n− 1.

Let

V = V (ξ1, · · · , ξn, e1, · · · , en)

= Vn(ξ1, · · · , ξn)+ U (e1, · · · , en). (84)

Using (59) and (82), we have

V̇ (ξ1, · · · , ξn, e1, · · · , en)

= V̇n(ξ1, · · · , ξn)+ U̇ (e1, · · · , en)

≤ −(1− τ1)
n∑
i=1

ξ
p+1
i −

(
Ln
2p−1

−9n(Ln)
)
ep+1n

−

n−1∑
i=1

(
Li

2p−1
−9i(Li,Li+1)

)
ep+1i (85)

it is clear to choose

Li ≥ 2p−1 (τ2 +9i(Li,Li+1)) , i = 1, · · · , n− 1

Ln ≥ 2p−1 (τ2 +9i(Ln))

where τ2 > 0 is a constant, it yields

V̇ ≤ −(1− τ1)
n∑
i=1

ξ
p+1
i − τ2

n∑
i=1

ep+1i ,

so the closed-loop system (1)–(4), (83) is globally asymptot-
ically stable.

IV. EXAMPLES
Example 1: Consider a second-order system given by

ẋ1 = x32 (86)

ẋ2 = u (87)

y = d1x1 + d2sinx1 (88)

where 2 < d1 ≤ 3, 0 < d2 < 0.5 are unknown constants.
The linearization of system (86)–(88) is given by

(A,B,C) =
([

0 0
0 0

]
,

[
0
1

]
,
[
d1 + d2 0

])
which is

uncontrollable and unobservable. By Theorem 1, the dynamic
output compensator is designed as follows

˙̂x1 = x̂32 + L1(x
3
1 − x̂

3
1 ) (89)

˙̂x2 = u+ L1L2(x31 − x̂
3
1 ) (90)

u = −(β2(x̂2 + β1y))3 (91)

with a suitable choice of the parameters β1, β2,L1 and L2.
In the simulation, d1 = 2 + rand(1) and d2 = 0.5rand(1),

using Matlab software, we have β1 = 1, β2 = 2.2,L1 = 36,
and L2 = 0.5.

FIGURE 1. Time response of state and observer state, and the dynamic
output compensator in Example 1.

From Fig. 1, it can be seen that the closed-loop system
(86)–(88), (89)–(91) (with the initial condition x1(0) = 1.3,
x2(0) = −2.2, and x̂1(0) = −1.2, x̂2(0) = 1.8) is globally
asymptotically stable.
Example 2: Consider the electromechanical system in [12]

as follows

Mq̈+ Bq̇+ N sin(q) = I (92)

Lİ = Vε − RI − KBq̇ (93)

whereM = J
Kτ
+

mL20
3Kτ
+

M0L20
Kτ
+

2M0R20
5Kτ

, N = mL0G
2Kτ
+

M0L0G
Kτ

,
B = B0

Kτ
. J is the rotor inertia, G is the gravity coefficient, Kτ

is the coefficient which characterises the electromechanical
conversion of armature current to torque. KB is the back-
emf coefficient, B0 is the coefficient of viscous friction at
the joint, m is the link mass, L0 is the link length, M0 is the
load mass, R0 is the radius of the load, q(t) is the angular
motor position, I (t) is the motor armature current and L is
the armature inductance, R is the armature resistance, and Vε
is the input control voltage.

The values of the parameters are given in [12] as
J = 1.625 × 10−3kgm2, m = 0.506kg, R0 = 0.023m,
M0 = 0.434kg, L0 = 0.305m, B0 = 16.25 × 10−3Nms/rad,
L = 25.0× 10−3H, R = 5.0� and Kτ = KB = 0.90Nm/ A.
After some calculations, system (92), (93) can be expressed

as follows

ẋ1 = x2 (94)

ẋ2 = x3 − NLsin(
x1
ML

)−
B
M
x2 (95)

ẋ3 = u−
KB
ML

x2 −
R
L
x3 (96)

y =
1
ML

x1 (97)

where φ1(·) = 0, φ2(·) = −NL sin( x1ML ) −
B
M x2 and φ3(·) =

−
KB
ML x2 −

R
L x3. It is obvious that φ1(·), φ2(·) and φ3(·) satisfy

Assumption 2. By Theorem 1, we construct the dynamic
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FIGURE 2. Time response of states and observer states of the closed-loop
system and the control law in this paper.

FIGURE 3. Time response of states and observer states of the closed-loop
system and the control law in [12].

output compensator as

˙̂x1 = x̂2 − L1x̂1 (98)

˙̂x2 = x̂3 − NL sin(
x̂1
ML

)−
B
M
x̂2 − L1L2x̂1 (99)

˙̂x3 = u−
KB
ML

x̂2 −
R
L
x̂3 − L1L2L3x̂1 (100)

u = −β3(x̂3 + β2(x̂2 + β1y)) (101)

with a suitable choice of the parameters β1, β2, β3,L1,L2
and L3. Using Matlab software, we get β1 = 0.4642,
β2 = 10.7, β3 = 20, L1 = 16, L2 =

8 and L3 = 0.5. Simulation result is shown in
Fig.2, with (x1(0), x2(0), x3(0), x̂1(0), x̂2(0), x̂3(0)) =

(−0.5,−0.4,−0.3, 0.5, 0.4, 0.3).

In [12], they choose parameters a1 = 6, a2 = 11, a3 = 6,
β1 = 1, β2 = 1.2, β3 = 1.5 and L = 2. The simulation result
is shown in Fig.3. The initial condition is the same as in Fig.2.

As can be seen from Fig. 2, the proposed output dynamic
compensator makes the closed-loop system converge to zero
quick, and the time required is less than 1 second. However,
as shown in Fig. 3, the closed-loop system does not converge
to zero until 4 seconds under the control law design in [12].

V. CONCLUSION
We investigate a class of high-order nonlinear systems whose
output function and nonlinear terms are unknown. First,
a smooth state feedback control law is designed by adding
a power integrator technique. Next, we design a high-order
observer to estimate the unmeasurable state by iteratively
allocating gains of the observer. Finally, a dynamic output
compensator is achieved such that the closed-loop system is
globally asymptotically stable. Two examples are provided to
demonstrate the effectiveness of the proposed method.

APPENDIX
PROOF OF THE INEQUALITY (14)
Since |x1| ≥ 0, from Assumption 1, we consider the definite
integral of ∂h(x)

∂x from x = 0 to x = x1 ≥ 0, then∫ x1

0
θdx ≤

∫ x1

0

∂h
∂x
dx ≤

∫ x1

0
θdx. (A.1)

Using the initial condition h(0) = 0, it follows that

θx1 ≤ y = h(x1) ≤ θx1. (A.2)

Therefore, we can obtain

|y|/θ ≤ |x1| ≤ |y|/θ. (A.3)

In the case when x1 < 0, similar to A.1, we can obtain the
following relation based on (5)

0 < −θx1 ≤
∫ 0

x1

∂h
∂x
dx ≤ −θx1 (A.4)

with the initial condition h(0) = 0, it can be deduced that

θ̄x1 ≤ y = h(x1) ≤ θx1 < 0. (A.5)

So we immediately obtain the inequality (A.3), which com-
pletes the proof.
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