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ABSTRACT Dealing with the insufficient detection accuracy and speed of aircraft targets in remote sensing
images under complex background, this paper proposes a new detection method, YOLOv5-Aircraft, based
on the YOLOv5 network. The YOLOv5-Aircraft model is improved in 3 ways: (1) At the beginning and
end of original batch normalization module, centering and scaling calibration are added to enhance the
effective features and form a more stable feature distribution, which strengthens the feature extraction ability
of network model. (2) The cross-entropy loss function in the confidence of the original loss function is
improved to the loss function based on smoothed Kullback-Leibler divergence. (3) For reducing information
loss, the CSandGlass module is designed on the backbone feature extraction network of YOLOv5 to replace
the residual module. Meanwhile, low-resolution feature layers are eliminated to reduce semantic loss.
Experiment results demonstrate that the YOLOv5-Aircraft model can enhance the accuracy and speed of
aircraft target detection in remote sensing images while achieving easier convergence.

INDEX TERMS Remote sensing image, aircraft detection, YOLOv5, batch normalization, loss function.

I. INTRODUCTION
With the continuous development of satellite remote sens-
ing technology, the information amount of high-resolution
remote sensing images has increased sharply, and the detailed
information contained in is getting more abundant. Some
sensitive targets such as ships, tanks, airplanes and ports can
also be clearly visible to naked eyes, for which the detection
methods have become a hot spot for scholars. Aircraft play
an irreplaceable role in both the civilian and military fields.
Therefore, the detection method of aircraft targets in remote
sensing images is of great significance.

However, the detection of aircraft targets in remote sensing
images remains to be a challenging problem because it is
susceptible to interference of external factors such as weather,
light, shadows, etc. Besides, when there are small targets in
the images with high exposure and complex background, the
difficulty of aircraft detection is expected to rise.

Many solutions have been proposed to solve the above
problems of target detection [1]. Traditional methods such as
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template matching are fast, simple and easy to implement,
but they have high requirements on the target state and tar-
get size and perform badly in complex backgrounds. The
machine learning methods are designed to be flexible and
highly targeted, but they are solidified and have poor robust-
ness [2]. In recent years, deep learning methods have devel-
oped rapidly.Many target detection algorithms based onCNN
(Convolutional Neural Networks) have been proposed and
applied to target detection in remote sensing images [3], [4].
At present, target detectionmethods can be classified into two
main types: Two-Stage methods and One-Stage methods [5].
The Two-Stagemethod is a deep convolutional network based
on the candidate region. It first generates possible candidate
blocks containing the detection target, and then classify and
correct the candidate blocks and obtain the detection frame
to achieve target detection. The more common algorithms are
R-CNN (Region CNN) [6], Fast R-CNN (Fast Region-Based
CNN) [7] and Faster R-CNN (Faster Region-BasedCNN) [8],
etc. These methods have high detection accuracy, but low
speed. The One-Stage method is based on the target detec-
tion of the deep convolutional network of regression calcula-
tion, which uses an end-to-end target detection method, such
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as SSD (Single Shot MultiBox Detector) [9]–[11], YOLO
series [12]–[15] and so on. These methods have a faster
detection speed and can meet real-time requirements.

More specifically, scholars have done a lot of research
work on target detection in remote sensing images.
Reference [16] used the k-means algorithm to cluster the
data set, and learned from the Densenet network idea to
improve the YOLOv3 network to detect aircraft targets in
remote sensing images, which greatly improves the detection
accuracy. Reference [17] introduced the spatial pyramid
pooling structure, transition module and residual network
to improve the YOLOv3 network, and the comprehensive
performance indicators for detecting ship targets in remote
sensing images were greatly improved. Reference [18] used
the PIIFD descriptor to process the transformation between
the background and the target of different images, and veri-
fied that it had better performance in remote sensing image
target detection in the geographic space environment. Refer-
ence [19] strengthened the CSP feature extraction network
of the YOLOv4 network, replaced the original activation
function with the Mish function and added a pyramid pooling
module to reduce the scale sensitivity, and improve the
detection accuracy and recall rate. Reference [20] used a
multi-scale fusionmethod to solve the problem of small target
semantic information transmission in a fully convolutional
neural network. In summary, it can be seen that the deep
learning methods have high application value in remote
sensing image target detection.

Therefore, we tested YOLOv3, YOLOv4, and YOLOv5
on aircraft targets detection in remote sensing images. The
experimental results show that the detection accuracy is high,
but the detection speed is too low to meet the requirements of
real-time detection. For images with complex backgrounds,
the complexity of the network structure will increase the dif-
ficulty of training and reduce the detection speed.Meanwhile,
overfitting is prone to occur when the amount of data is small

and the network structure is too simple to effectively describe
the feature of the target, which results in a decrease in detec-
tion accuracy. In the task of small target detection, traditional
convolutional layers usually fail to be both accurate and real-
time because it is difficult to extract the characteristics of
small targets, no matter for a simple network or a complex
one.

This paper presents a network model, YOLOv5-Aircraft,
based on improved YOLOv5 to enhance the detection accu-
racy and detection speed of aircraft targets in remote sensing
images. The content of this paper is arranged as follows.
Chapter 2 describes the YOLOv5 target detection model.
Chapter 3 explains in details how to improve the YOLOv5
model toYOLOv5-Aircraft. Chapter 4 conducts experimental
analysis. Finally, Chapter 5 gives the research conclusions.

II. INTRODUCTION OF YOLOv5 DETECTION NETWORK
YOLOv5 proposed byUltralytics LLC is an improved version
based on YOLOv4. It is a one-stage detection network in
terms of accuracy and detection speed [21]. After learning
from the advantages of the previous version as well as other
networks, YOLOv5 changes the characteristics of the previ-
ous YOLO target detection algorithm that the detection speed
is faster but the accuracy is not high. YOLOv5 has improved
detection accuracy and real-time performance, which not
only meets the needs of real-time image detection, but also
has a smaller structure. Therefore, this article uses YOLOv5
as the detection model. Its network model is divided into
4 parts, namely Input, Backbone, Neck and Prediction, and
its network structure is shown in figure 1 [22].

Input includes three parts: mosaic data enhancement, adap-
tive anchor frame calculation and adaptive image scaling.
The input terminal of YOLOv5 adopts the same mosaic data
enhancement method as YOLOv4. The random clipping,
random scaling and random distribution are used to splice
the images. The four images are spliced, which enriches

FIGURE 1. The main modules of YOLOv5 network.
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the detection data set, improves the robustness of the net-
work, reduces the calculation of GPU, and increases the
universal applicability of the network; Adaptive anchor frame
calculation sets the initial anchor frame for different data
sets, outputs the prediction frame on the basis of the initial
anchor frame, and then compares it with the real frame.
After calculating the gap, it updates the network parameters
reversely and iterates the network parameters continuously.
The anchor frame parameters are [116,90,156,198,373,326],
[30,61,62,45,59119], [10,13,16,30,33,23]. Adaptive image
scaling is to scale the image to a uniform size, which has been
implemented in the data preprocessing stage.

Backbone includes focus structure and CSPnet (cross
stage partial network) structure. Focus slices the image of
608 × 608 × 3 to get the feature map of 304 × 304 × 12.
Then, after convolution of 32 convolution kernels, the feature
map of 304× 304× 32 is obtained, and the process is shown
in figure 2.

FIGURE 2. Slicing operation.

Neck uses FPN (feature pyramid networks) and PAN (pyra-
mid attention network) structure, and its structure is shown
in figure 3. FPN transfers and fuses high-level feature infor-
mation through up sampling from top to bottom to convey
strong semantic features. PAN is a bottom-up feature pyramid
to convey strong positioning features. Both of them are used
at the same time to enhance the ability of network feature
fusion.

Prediction includes bounding box loss function and NMS
(non-maximum suppression). YOLOv5 uses GIOU loss func-
tion as the loss function of bounding box, which effec-
tively solves the problem of non coincidence of bounding
boxes, and improves the speed and accuracy of prediction
box regression. In the object detection and prediction stage,
weighted NMS is used to enhance the ability to recognize
multiple objects and occluded objects, and obtain the optimal
object detection frame.

III. IMPROVEMENT OF YOLOv5
A. BATCH NORMALIZATION IMPROVEMENTS
Batch normalization (BN) has become the default component
of modern neural network stability training. In BN, centering
and scaling operations as well as mean and variance statistics
are used for feature normalization on batch dimensions. The
batch dependence of BNmakes the network have stable train-
ing and better representation. However, BN inevitably ignores
the representation differences between instances. In order to
perform feature correction in BN, centering and scaling cal-
ibration were added at the beginning and end of the original

FIGURE 3. Schematic diagram of neck’s structure.

normalization layer of BN, respectively [23]. Given input fea-
ture X ∈ RN×C×H×W , where N , C , H , andW are batch size,
the number of channels, height, width of the input feature,
respectively, the centering calibration of features is written as
follows:

Xcm = X + wm �
1
HW

H∑
h=1

W∑
w=1

X(n,c,h,w) (1)

where wm ∈ R1×C×1×1 is the learnable weight vector, and its
value changes with the number of network layers as shown
in Figure 4(a). The value in most layers is close to 0 and its
absolute value increases as the number of layers increases,
because the higher the number of layers, the network has
more instance-specific features. Xcm is the centering calibra-
tion of features. � is the dot product operator that broadcast
two features to the same shape and then conduct dot product.

Then the centered features with the centering calibration
can be written as:

Xm = Xcm − E(Xcm) (2)

where E(Xcm) is the mean of Xcm. By scaling Xm like BN,
we can deduce the following formula:

Xs =
Xm

√
Var(Xcm)+ ε

(3)

where Var(Xcm) is the variance of Xcm, and ε is used to avoid
zero variance. Then, the scaling calibration operation is added
to the original scaling operation:

Xcs = XS · R(wv � Ks + wb) (4)

where wv,wb ∈ R1×C×1×1 are learnable weight vectors,
as shown in Figure 4(b). Similar to x, their value tends to
0 in most layers and its absolute value increases with the
increase of the number of layers. and R() is the restricted
function, which can be defined with multiple forms. In this
work, we choose to use the Tanh function to suppress extreme
values. Similar to Km, Ks is the statistics of the instance
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FIGURE 4. Line chart of learnable weight variables.

feature XS , that can be set to multiple values. The restricted
function R() along with the wv and wb in Eqn. (4) suppress
out-of-distribution features, making the feature distribution
more stable.

Finally, the trained learnable scale factor γ and deviation
factor β are linearly transformed to obtain the final represen-
tative batch normalization result Y . The affine transformation
can be written as follows:

Y = Xcsγ + β (5)

To utilize the optimization of batch normalization in exist-
ing deep learning frameworks, we add the centering and
scaling calibrations at the beginning and ending of the origi-
nal normalization layer of batch normalization, respectively,
which enhances the effective features and forms a more sta-
ble feature distribution, and enhances the feature extraction
ability of the network model. We extract the feature map in
the network, and the result is shown in the figure 5. It can be
seen that the feature map on the far right after the centering
and scaling calibration is more significant than the original
feature map output in the middle.

B. LOSS FUNCTION BASED ON KULLBACK-LEIBLER
DIVERGENCE
Themean square error (MSE) is used in the target frame coor-
dinate regression process of YOLOv5, and the cross entropy
is used as the loss function of confidence and category.
However, as the loss function of the target frame, the loss of
MSE is more sensitive to the target frame. In order to further
improve the convergence stability, this paper improves the

FIGURE 5. Centering and scaling calibration renderings.

cross-entropy loss function to the smoothed Kullback-Leibler
divergence loss function when designing the loss func-
tion for confidence. KL divergence is also called relative
entropy [24]. For two probability distributions P and Q of the
same continuous variable, the definition of KL divergence is:

DKL(Q ‖ P) =
∫
Q(x)(ln

Q(x)
P(x)

)dx (6)

In this paper, φ̂ is used to represent the parameter change
process of minimizing the KL divergence between the pre-
dicted probability distribution and the real label distribution
of n input samples. The formula is as follows:

φ̂ = arg min
φ

1
n

∑
DKL(QD(x) ‖ Pφ(x)) (7)

where QD(x) is the probability distribution of real label
coordinates, Pφ(x) is the probability distribution of predicted
coordinates, and QD(x) and Pφ(x) are defined as Gaussian
distribution functions. Therefore, the boundary box regres-
sion loss function LKL can be written as:

LKL = DKL(QD(x) ‖ Pφ(x))

=

∫
QD(x)(ln

QD(x)
Pφ(x)

)dx

=

∫
QD(x) lnQD(x)dx −

∫
QD(x) lnPφ(x)dx (8)

Then, according to the properties of Gaussian distribution
function, the derivation is written as follows:

LKL =
∫
QD(x) lnQD(x)dx

−

∫
QD(x)(− ln(

√
2πσ )+ ln e

−(x−xe)2

2σ2 )dx

=

∫
QD(x) lnQD(x)dx

+

∫
QD(x)(

1
2
ln(2πσ 2)+

(x − xe)2

2σ 2 )dx (9)

The definition of Dirac delta function is shown in (10).
Since Gaussian distribution is the approximation of Dirac
delta function when the standard deviation is close to 0,
equation (9) is deduced according to the screening property
of Dirac delta function in equation (11), and finally equa-
tion (12) is obtained. The equations are as follows:∫

δ(x)dx = 1 (10)
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FIGURE 6. Structure diagram of CSandglass.∫
δ(x − xg)y(x)dx = y(xg) (11)

LKL =
∫
QD(x) lnQD(x)dx

−

∫
QD(x)(− ln(

√
2πσ )

+ ln e
−(x−xe)2

2σ2 )dx

=

∫
QD(x) lnQD(x)dx

+

∫
QD(x)(

1
2
ln(2πσ 2)

+
(x − xe)2

2σ 2 )dx (12)

where xe is a constant term. Since the constant term has no
effect on the derivation, the term without parameters can be
removed as follows:

LKL ∝ (
ln(σ 2)

2
+

(xg − xe)2

2σ 2 ) (13)

where xg is a constant term. If the initial value of σ in
equation (13) is large, it is easy to cause gradient explosion
in the initial stage of training, which leads to the failure of
convergence of the model. And The input of x in function
ln x is limited in mathematical calculation. Therefore, in the
prediction stage of model training, this paper sets the relation-
ship between variables α and σ as shown in equation (14), and
then brings equation (14) into equation (13) to obtain the loss
function equation (15):

α2 = ln σ 2 (14)

LKL ∝ (
α2

2
+
e−α

2
(xg − xe)2

2
) (15)

In order to further enhance the robustness of the model,
the KL divergence loss function is smoothed. When∣∣xg − xe∣∣ > 1, the regression loss function of the model’s
bounding box is:

LKL = e−α
2 ∣∣xg − xe∣∣+ α22 (16)

In the process of model training, the smoothed loss func-
tion will not produce a sudden change to the noisy sample
data, so as to reduce the interference in the process of back
propagation, and the convergence of model is more stable.

C. IMPROVEMENT OF NETWORK STRUCTURE
The CSPNET structure in YOLOv5 divides the feature layer
of the base layer into two parts and then uses a cross-stage
hierarchical structure to merge the two, so that the network

FIGURE 7. Comparison before and after improvement.

can achieve richer gradient combination information, but
this is also more likely to cause information loss and gra-
dient confusion. Therefore, this paper draws on the ideas of
mobileneXt [25] and uses the hourglass-like module CSand-
Glass to replace the Res unit module in the YOLOv5 network.
The structure of the CSandGlass module is shown in figure 6.
Unlike the bottleneck structure with depthwise convolution in
the middle, this paper moves the 3× 3 depthwise convolution
layer (Dwise) to both ends of the residual path with high-
dimensional representation, and the two basic components
of YOLOv5, CBL, are placed in the middle. Two depthwise
convolutions can encode more spatial information, and make
more gradients propagate across multiple layers, reducing
information loss. Figure 7 shows the before and after com-
parison using the CSandGlass module. The two pictures on
the left show the results of using 6 consecutive convolutions
without using the CSandGlass module. It can be seen that
the edge features of the aircraft are not well extracted, and
the information is severely lost. The two pictures on the right
are the improved feature extraction results using CSandGlass.
The edge feature information of the building has been better
extracted, and the background information and feature infor-
mation are also more distinct.

In the input of the original version of YOLOv5, the feature
number of the fully connected layer behind the convolution
layer is fixed, so that the size of our input image will be fixed
at 608 × 608, and the sizes of the feature layer network are
19× 19, 38× 38, 76× 76, respectively. The smaller the size
of feature layer is, the larger the receptive field of neurons is,
which means that the semantic level is richer, but the local
and detail features will be lost. On the contrary, when the
convolutional neural network is shallow, the receptive field
becomes smaller, and the neurons in the feature map tend to
be partial and detailed [20]. In order to reduce semantic loss,

5188 VOLUME 10, 2022



S. Luo et al.: Aircraft Target Detection in Remote Sensing Images Based on Improved YOLOv5

FIGURE 8. Network structure diagram of improved YOLOv5.

the 19 × 19 feature layer in the main feature extraction net-
work is removed and the other two feature layers are retained.
This not only reduces the semantic loss, but also reduces the
amount of network parameters. Figure 8 shows the improved
network structure of YOLOv5, where CSG is the CSandGlass
module, and RBN is the improved BN module.

IV. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
In this paper, the deep learning platform is built in OpenCV.
Test environment: NVIDIA Tesla V100, 16G GPU memory,
CUDA version 10.1, cudnn version 7.6.5, and python 3.8 as
the compiler language.

B. EVALUATING INDICATOR
In the field of object detection, recall, precision and mAP
(mean Average Precision) are usually used to evaluate the
performance of object detection algorithm. Recall rate is used
to describe howmany samples are detected in prediction [26].
The calculation formula is as follows:

R =
TP

TP+ FN
× 100% (17)

whereR is the recall rate, TP is the number of positive samples
predicted by the algorithm as positive examples, FN is the
number of positive samples predicted as negative examples,
that is, the number of missed detection. Precious rate is used
to describe the ratio of the predicted positive examples to all
the positive examples:

P =
TP

TP+ FP
× 100% (18)

where P is the precious rate, FP is the number of individuals
who predict negative examples in the sample as positive
examples, that is, the object of detection errors. However,
in general, it is difficult to maintain both the recall rate and the

FIGURE 9. Main types of aircraft targets in the data set. (a) no target;
(b) single target; (c) multiple targets.

precious rate at a high level. Therefore, a parameter is needed
to integrate these two parameters. The mAP is used to mea-
sure the algorithm performance of the detection network. It is
suitable for single-label and multi-label image classification
and calculation. The equation can be written as:

mAP =

N∑
k=1

P(k)1R(k)

C
(19)

where N is the number of samples in the test set, P(k) is
the size of the precious rate when k samples are recog-
nized at the same time, 1R(k) is the change in the recall
rate when the number of detected samples changes from
k − 1 to k , C is the number of categories in the multi-class
detection task.

V. DATA PREPROCESSING
A. THE SOURCE OF DATA SET
The remote sensing images studied in this paper are from
Google Earth, with 78 images in total [27]–[29]. These
images are remote sensing images containing aircraft targets,
including non-target images, single-target images and multi-
target images. Figure 9 shows several typical remote sensing
images in the data set.
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FIGURE 10. Schematic diagram of preprocessing picture. (a)Original
image; (b) Original image after rotation; (c) Enlarged original image;
(d) Brightened original image.

B. CONSTRUCTION OF DATA SET
The original picture size is relatively large. If the original size
is used as the training data set, it will cause too many param-
eters. Therefore, the original aerial picture size is reduced to
608 pixels × 608 pixels by pixel transformation. And on the
basis of the original image, the image is rotated, cropped,
and contrasted, so that the remote sensing image has different
manifestations and scales, which helps to avoid the occur-
rence of overfitting, thereby improving the generalization
ability of the training network [14]. Figure 10 shows pictures
in different forms after preprocessing.

After preprocessing, 1000 remote sensing pictures are
finally obtained. Imitating the format of the VOC2007 data
set, this paper uses LabelImg to mark the outer frame of the
aircraft targets in these images in turn, and converts them
into the XML format required for training [30]. Labelimg
is an image annotation tool in deep learning, which is used
to annotate the category name and location information of
objects in the image.

C. RESULTS AND ANALYSIS
In order to compare YOLOv5 and the improved model pro-
posed in this paper, the processed images will be trained
with the same number of epochs. At the same time, use
the YOLOv4 network to make multiple comparisons under
the same conditions. For convenience of comparison, the
improvedmodel is called YOLOv5-Aircraft. Firstly, compare
the loss reduction between the models. Figure 11 shows the
loss graphs of the three models. The abscissa is the number of
epochs, and the ordinate is the loss. The blue line, orange line
and green line respectively represent three different models.
It can be seen that the loss of YOLOv5-Aircraft decreases
faster than that of YOLOv5 and YOLOv4, indicating that
the loss of YOLOv5-Aircraft converges faster. After con-
vergence, the loss of YOLOv5-Aircraft is closer to 0 and
smoother.

While YOLOv4, YOLOv5 andYOLOv5-Aircraft are com-
paratively analyzed, this paper combines the test results of
models such as YOLOv3 and Faster RCNN for multivariate
analysis, as shown in TABLE 1.

In TABLE 1, FPS (Frame Per Second) is the detection
speed, which is the number of images that the algorithm can
detect per second. Analyzing the data in TABLE 1, it can be
seen that the detection accuracy index of YOLOv5-Aircraft
is improved compared with the original YOLOv5 network,

FIGURE 11. Loss curve comparison chart.

TABLE 1. Comparisons of different models.

mAP is increased by 3.74%, and the detection speed is also
greatly improved by 6.93. From the comparative data, it can
be seen that YOLOv5-Aircraft has improved its ability to
accurately predict the location of aircraft, and its detection
speed has also been greatly improved. Faster RCNN adopts
two-stage detection mechanism and fine-tuned the anchor
area twice, but its mAP only exceeds YOLOv3 compared to
other algorithms and the detection speed is much lower than
the latter.

The improved YOLOv5 model proposed in this paper is
further subjected to ablation experiments to verify its effec-
tiveness. Some network modules are replaced, and the results
are shown in TABLE 2, where CUT is the operation of remov-
ing low-resolution feature layers. From the data in the table,
it can be seen that The use of RBN module, CSG module
and loss function based on KL divergence all improve the
accuracy and speed of detection. Removal of low-resolution
feature layers improves the detection speed, but reduces the
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TABLE 2. Test results of ablation.

detection accuracy. Because the RBNmodule strengthens the
feature extraction capabilities of the network, its detection
accuracy and speed have been greatly improved by 1.21% and
2.29 respectively.. The loss function based on KL divergence
reduces the noise interference and improves the detection
accuracy to a certain extent, but it has no obvious effect on the
detection speed. The CSG module reduces the information
loss in the gradient descent process, and also improves the
accuracy and speed of detection to a certain extent. The
network without the low-resolution feature layer has one
feature layer less than the network with the low-resolution
feature layer and reduces operations such as convolution and
splicing, which significantly improves the network detection
speed, but also reduces the detection accuracy. The short-
coming after removing the low-resolution feature layer also
shows the necessity of RBN module, CSG module and the
loss function based onKL divergence to improve the accuracy
of model detection.

In addition, YOLOv5-Aircraft performs well when the
background of the detection image is complex, and the detec-
tion results are shown in Figure 12. From the comparison of
the pictures in the first two rows, we can see that YOLOv5
has missed detection of some targets. The improved YOLOv5
improves the detection accuracy of small aircraft targets,
and there is no missed detection. Moreover, as shown in the
third row of the picture, when the brightness of the picture
is increased due to sunlight, the original algorithm missed
the detection more serious, and the improved YOLOv5 can
well identify all aircraft targets in the image, indicating
the improved algorithm still has good recognition ability in
abnormal lighting conditions.

VI. CONCLUSION
We proposed a convolutional neural network-based aircraft
detection algorithm, YOLOv5-Aircraft, to detect and track
aircraft targets in remote sensing images under complex back-
grounds. Various types of aircraft targets in remote sensing
images were evaluated and researched. Firstly, we utilised
batch normalization module added centering and scaling cal-
ibration to strengthen the feature extraction ability of network
model. Then the cross-entropy loss function in the confidence

FIGURE 12. Comparison of detection results between YOLOv5 and
improved YOLOv5. The detection results of YOLOv5 are shown on the left
and the results of our method are shown on the right.

of the original loss function was improved to the loss function
based on smoothed Kullback-Leibler divergence. Finally, the
CSandGlass module was designed to replace the residual
module for reducing information loss and the low-resolution
feature layer of the backbone network was removed for
reducing the loss of local details, which ultimately led to an
efficient and accuracy aircraft targets detector, applicable in
various complex environment.

The proposed method was evaluated for remote sensing
image data set from Google Earth and Vaihingen data set,
including 2000 frames, and approximately 13,000 aircraft
targets. YOLOv5-Aircraft was demonstrated to be able to
perform in a variety of challenges including shades, lighting
variations and partial visibility, and showed a major devel-
opment in terms of accuracy(85.25%) and speed(48.85fps).
Therefore, YOLOv5-Aircraft offered a robust aircraft target
recognition algorithm in remote sensing images. However,
through a large number of test experiments, it is found that
factors such as light and weather still have a certain influence
on the detection results. In the subsequent training process,
it is necessary to collect more image data in a complex
environment to improve the generalization ability of the
YOLOv5-Aircraft model.
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