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ABSTRACT Waste incineration plants are complex dynamical systems that rely on expert human operators
to maintain steady combustion, by observing real-time in-chamber video feeds. Real-time plant forecasting
provides vital operational support in decision making, and applying machine learning to automatically learn
dynamics forecast models from video feeds is an attractive means to realise this. However, learning complex
dynamics in systems that requires cost-efficiency remains an open research problem. Specifically, modelling
plant dynamics in real-time is challenging due to uncertainties caused by inhomogeneous waste inputs,
requiring complex learning that impedes real-time modelling. To address this, this paper presents a real-time
data-driven framework for generating video forecasts, by incorporating task-relevant domain-knowledge,
during learning. Specifically, this method combines dynamics modelling and forecasting using dynamic
mode decomposition, with Fourier transformations informed by expert operator heuristic knowledge for
encoding task-relevant frequency information inside the learning process. Experiments in this paper demon-
strate that the proposed framework captures intuitive physical aspects of the underlying physiochemical
process, with a greatly reduced computational runtime in comparison to standard approaches, allowing for
application in real-time domains. Forecasted video predictions are accurate over short time horizons, and
capture important system characteristics over longer time periods.

INDEX TERMS Dynamic mode decomposition, forecasting, Fourier transforms, machine learning, video
signal processing, waste handling.

I. INTRODUCTION
Municipal industrial waste-incineration plants are an increas-
ing popular alternative to land-fills [1] for waste disposal
and energy recuperation [2]. While prevention and mini-
mization is key to waste-management, international policy
objectives highlight the need for improving installation envi-
ronmental performance [3], often via innovative technologies
and automation [4]. Incineration automation is particu-
larly desired to ensure consistent environmental and energy
outcomes [5].

A key operational objective in waste-incineration automa-
tion, is real-time forecasting of long-term behavioural trends
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within a combustion chamber (e.g., combustion growth/decay
over a period), to assess stability and ensure consistency of
energy output. Currently, manual forecasting is performed by
operators, using in-chamber video feeds to make speculative
estimates of changes in the dynamical process, supported by
simple automated solutions such as image classification [6].
Automated methods for modelling combustion, and generat-
ing real-time videos forecasts of future chamber behaviour,
can help support operator decisionmaking, and provide quan-
titative combustion assessments.

Traditional plant modelling and forecasting (e.g., in
manufacturing or energy production domains) often uses
first-principle analytical models with detailed understanding
of the known physiochemical process and prior identifica-
tion of control parameters and processes laws [7]. However,
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FIGURE 1. (a) Standard decomposition extracts all dynamic modes from a
video sequence, even if only specific task dynamics (red dashed) are
required, leading to high computational cost and subject to instabilities.
(b) By encoding task-relevant domain knowledge (e.g., known
frequencies of interest) into decomposition (red sinusoidal), cost is
reduced and learning stabilised, resulting in only the extraction of
relevant dynamic modes.

waste-incineration plants presents challenges not traditional
addressed, as combustion involves complex to model dynam-
ical behaviour, with high uncertainty about the composi-
tion of the waste input. Specifically, inhomogeneous waste
inputs [8] (e.g., uncertainty in qualitative characteristics such
as calorific and moisture content of waste [9], [10]) cannot
be determined a priori, and results in challenging to model
combustion events, e.g., flame stagnation.
In the absence of detailed analytical models addressing

uncertainties, an intuitive forecasting approach is to use data-
driven machine learning, to automatically learn models of
combustion behaviour, from the video feed. Specifically,
in the context of forecasting long-term behavioural trends,
spatio-temporal decomposition methods are well-suited to
explicitly decompose high-dimensional time-series measure-
ments into coherent spatial structures and corresponding time
dynamics [11], and as such can be used to extract task relevant
dynamics from video feeds, i.e., extract components of a
video associated with known dynamical frequencies.
However, naive application of spatio-temporal methods

(e.g., dynamic mode decomposition (DMD) [12]), is chal-
lenging to apply to real-time video systems, due to the
high computational cost and complexity. Real-time imple-
mentations of DMD with improved computational benefits
(e.g., Streaming DMD [13]), unfortunately, necessitate pro-
jecting measurements to a significantly low-rank subspace,
which is challenging in situations involving non-autonomous
(input-driven) uncertain dynamics, such as waste inhomo-
geneity. In addition, complexity and uncertainty in dynamics
can result in unstable learnt dynamics, requiring complex
modelling often via deep learning [14], [15].

As such, practical means for applying dynamical learning
techniques in domains that require both cost-efficiency and
intuitive modelling remains an open research question.

To address this, this paper proposes the Task-Relevant
Encoding of Domain Knowledge (TREK) framework for
the real-time modelling and forecasting of dynamical sys-
tems from high-dimensional, long-term measurements with
uncertainties, by incorporating task-relevant domain knowl-
edge into the learning process. Specifically, cost-efficiency
is achieved by encoding expert heuristic knowledge about
the dynamical system (e.g., combustion decay rates) as part
of the decomposition process (FIGURE 1), thereby learning
only dynamic modes relevant to the task. This approach
exploits the relationship between Fourier transformations and
dynamic mode decomposition, to preprocess measurements
with uncertain dynamics into a decomposition amenable
form. Specifically, a Fourier spectrummanipulation is used to
extract task relevant frequency components from a sequence,
which are then mapped back to the input space as a low-rank,
task relevant approximation. As such, the Fourier transforma-
tion converts high-rank measurements into a low-rank coor-
dinate system amenable to decomposition with DMD, while
remaining agnostic about the complexity or uncertainty of the
underlying system. By exploiting this relationship, dynamics
modes can be quickly learnt that capture intuitive physical
interpretations of task relevant combustion behaviour. Results
in this paper demonstrate this framework learns interpretable
models that capture important physiochemical characteristics
of combustion, and can generate video forecasts in real-
time, which remain accurate within a reasonable forecast
horizon.

The key contributions of this paper are as follows:
(i) Identification of limitations: This paper presents first

evidence that current spatial-temporal methods are
unable to model complex dynamics in the presence of
uncertainties in real-time, severely limiting applications
in real-world scenarios.

(ii) Novel real-time framework: A computationally efficient
framework, is presented to address these limitations,
by exploiting spectral manipulation to reduce learning
complexity. This framework is agnostic to the underly-
ing dynamics complexity, and can provide robust and
real-time dynamical learning for real-world systems.

(iii) Evaluation and Results: This framework is evaluated
in comparison to commonly used data-driven dynam-
ics learning methods, in (a) a high-dimensional signal
simulation example, and (b) in a dynamics learning task
using real in-furnace video data. The framework extracts
intuitive dynamical characteristics of the furnace in real-
time, with potential for application to other fields that
require time-efficient dynamical learning.

The remainder of the paper is organised as follows: §II
presents a background of operational control for industrial
waste incineration plants and data-driven dynamical mod-
elling approaches, §III outlines prior work in extracting
intuitive dynamic models via spatio-temporal decomposi-
tion, §IV presents the novel approach of exploiting spectral
manipulation for performing decompositions in real-time. §V
presents an experimental evaluation of the approach, both in
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FIGURE 2. Combustion chamber processing: (a) Waste input,
(b) Transportation via actuated grate agitation, (c) Combustion,
(d) Operator control.

an intuitive simulation example, and applied to an long-term
industrial furnace video feed. Finally, a discussion and future
applications is presented in §VI and §VII.

II. RELATED WORK
In the following section, the role of human-expert knowl-
edge in industrial furnace control is identified, as well as
prior state-of-the-art machine learningmethods for modelling
dynamic behaviour.

A. INDUSTRIAL FURNACE CONTROL AND FORECASTING
To motivate the proposed approach, consider a general
overview [16] of the standard waste-incineration process
(FIGURE 2), whereby: (a) waste is inserted to a feeder via
a separate crane [8], and released into the chamber, (b) actu-
ated staircase grates slowly agitate and transport waste [17],
(c) ignition and combustion is executed in a central region,
(d) monitoring and control is typically performed by PID
controllers using in-furnace sensors [18], with refinedmanual
control performed by human operators monitoring in-furnace
video cameras.

While this process seems relatively straightforward and
autonomous, operators are vital in maintaining combustion
stability by monitoring in-chamber video and periodically
overriding process controls (e.g., actuation speed or airflow)
to ensure consistent uniform combustion on the staircase.
A key factor that affects control decisions, is the large lag time
inherent in the system, often of the order of tens of minutes
between observations and system state changes. Specifically,
this delay is caused by numerous inherently slow processes,
e.g., : (i) slow necessary agitation of the solid waste along the
staircase, to ensure consistent and complete combustion, or
(ii) variance in ignition and combustion dynamics caused by
waste moisture and composition.

B. OPERATOR DOMAIN KNOWLEDGE
To maintain stable combustion given these delays, it is
imperative that operators accurately anticipate changes in

combustion behaviour ahead of time, and provide control
inputs accordingly. As such, operators develop forecast-
ing heuristics to foresee long-term furnace state changes,
thereby anticipating changes. This approach enables a gen-
eralised comprehensive outlook on the slow, delay induced
chamber dynamics, while being unconcerned with insignif-
icant short-term events such a local waste movement.
Specifically, operators are attentive to factors that induce
long-term behaviour seen in the video feed over a period
of 5− 20 minutes, e.g., : (i) whether waste fails to inciner-
ate completely within the time period, indicating either an
inadequate or oversaturated feed rate, (ii) changes in the fire
strength (e.g., change in colour, peak height or distribution of
flames).

Specifically, these heuristics can be described as task-
relevant domain knowledge, and are directly related to
specific aspects of furnace state behaviour, and as such
will vary depending on the combustion scenario. This
knowledge of long-term dynamical trends is quantified and
collated as the set of task-relevant domain knowledge, τ =
{τ1, τ2, . . . τD} ∈ RD, that the operator employs when fore-
casting (e.g., the approximate time for waste to traverse the
system is τd = 10 minutes). Operators compare this knowl-
edge against current observations to inform which control
operations should be applied ahead of time to ensure stability.
While this knowledge is only approximate (given variations
in waste content), it provides key temporal information for
forecasting, and is crucial for informing operational decisions
in advance of furnace state changes.

C. DATA-DRIVEN MODELLING
To help support operator decisions, automating this specula-
tive heuristic forecasting can provide numerous operational
advantages, including: (i) using forecasting predictions of
expected combustion changes ahead of time to ensure furnace
efficiency, (ii) a quantitative means to assessing different
control strategies, (iii) the ability to incorporating models into
simulations for offline operator training.

In the absence of detailed understanding of the physio-
chemical system and lack of explicit control laws due to
waste-inhomogeneities, an appealing approach to automating
forecasting is to use machine learning methods to model the
dynamics from the available video data, and use learnt models
to generate videos of forecasted future behaviour [19]. While
traditional stochastic models are often used for forecasting
(e.g., vector autoregressive moving average (VARIMA) [20])
these do not generalise well to high-dimensional complex
inputs [21]. As such, prior work forecasting industrial fur-
nace dynamics [22], [23] is generally limited to multivari-
ate, but low-dimensional forecasting, and is unsuitable for
generating high-dimensional video forecasts. To address this,
state-of-the-art methods for generating video forecasts are
often deep-learning based [24], [25], and specifically for
learning combustion dynamics this includes recurrent and
convolutional neural network approaches [19], [26]. These
methods are subject to the standard deep-learning challenges,
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e.g., lengthy model training time and large sample require-
ment, however, an additional key deficiency is the lack of
interpretability in models (known as the black box prob-
lem). Learning interpretable models is of paramount impor-
tance [27], not only for furnace safety and integration with
existing tools [28], but also to necessitate the desired aim of
extracting frequency components corresponding to the long-
term dynamics, while ignoring short-term anomalies. Stan-
dard dynamical modelling approaches that learn black box
models of the dynamics from video [19], require just as com-
plex post-hoc analysis to derive physical intuitive meanings
of the model structure. As such, a key challenge is designing
a modelling framework that provides both accurate generated
video forecasts, as well as intuitive coherent outputs that
explain the underlying physiochemical processes in terms of
the dynamical behaviour.

III. PRELIMINARIES
To address the problems of dynamics modelling from
video, a pertinent approach is spatio-temporal decomposi-
tion, which explicitly extracts intuitive spatial structures and
corresponding time dynamics from high-dimensional mea-
surement time-series. These structures provide clear physical
interpretations of the underlying process, well-suited to the
application goals of data-driven plant modelling. As opposed
to traditional machine learning methods which require
numerous samples for generalised modelling, decomposition
requires only a single sample sequence in which to infer
dynamics, making this vastly more computationally suitable
to data-limited environments. Decomposition has previously
been applied to many tasks involving complex dynamical
systems including jet [29] and nuclear reactor analysis [30],
soft robot identification [31], epidemiology [32], and even
financial trading [33].

Specifically, given K time-sequential measurements X ∈
CP×K from a dynamic system of the form dx/dt = f(x, t),
spatio-temporal decomposition describes this system as a
superposition of empirically estimated basis vectors, known
as the dynamic modes [34]. While outside the scope of this
paper, the interested reader is referred to [35] for a formal rig-
orous definition, and [11] for illustrative concrete examples.

In the following, a brief outline of Dynamic mode decom-
position (DMD) [12] is presented for extracting these modes.
For detailed derivations and additional implementations,
the reader is referred to the following well-established
texts [11], [34], [35].

A. DYNAMIC MODE DECOMPOSITION
Dynamic mode decomposition is a common approach to
estimating dynamic modes, by assuming that dynamics are
driven by a linear operator A ∈ CP×P , where:

xk+1 = Axk , for k = 1, . . . ,K − 1. (1)

This is commonly described as finding the operator A that
minimises the error between two snapshot matrices [11]:

||X2 − AX1||F , (2)

which can be solved in a least-squares sense by:

A = X2X
†
1, (3)

where X1 = [x1, . . . , xk−1], X2 = [x2, . . . , xk ], † denotes
the Moore-Penrose pseudoinverse, and F is the Frobenius
norm. In the context of video processing, a measurement xk
can be a tall vector consisting of RGB values for each pixel
in a frame.

Given this linear dynamics form, it is assumed that mea-
surements at time tk are represented as a Fourier-like expan-
sion of M spatio-temporal structures φm ∈ CP (also known
as dynamic modes), characterised by growth rates δ and
frequencies ω [36]:

x(tk ) =
M∑
m=1

φme
(δm+iωm)(k−1)(1t)bm, (4)

where bm is the amplitude of the corresponding mode. This
is more commonly expressed in discrete form as [11]:

xt = 83tb =
M∑
m=1

φmλ
t
mbm (5)

where 3 = λIM ∈ CM×M is a matrix of eigenvalues that
define the dynamical time evolution of the dynamic modes
respectively as growth/decay and oscillation frequencies [34].
As such, the goal of DMD is to find theseM dynamic modes
via an eigendecomposition of A.

Practically, finding this eigendecomposition is computa-
tionally challenging, and commonly a low-rank approxima-
tion Ã ∈ CN×N is sort after instead. Specifically, proper
orthogonal decomposition (POD), also known as principal
component analysis (PCA), is first performed to find a
low-rank subspace spanned by the first N highest energy
spatial modes. POD spatial modes are not the same as the
spatial structures of DMD dynamic modes, as PODmodes are
extracted solely based on sequence energy ignoring dynam-
ics. Given these highest energy spatial modes Ũ ∈ CP×N ,
a low-rank approximation of the data X̃ is given by the
singular value decomposition [37]:

X̃ = Ũ6̃Ṽ, (6)

where 6 is a diagonal matrix of the singular values of X,
and U,V are matrices of the left and right singular vectors
respectively.

Selecting the numberN of columns ofU to use as the basis
Ũ is often performed by evaluating the singular values in 6
against some threshold, and the approach taken in this paper
follows the one in [36]:

σ 2
P + · · · + σ

2
N

σ 2
1 + · · · + σ

2
N
≤ ε1, (7)

where σ 2 are the singular values of X sorted in decreasing
order, and ε1 is a tunable threshold.
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Given low-rank POD modes Ũ, this defines the subspace
on which the low-rank operator Ã evolves the dynamics:

x̃k+1 = Ãx̃k , (8)

and the goal becomes finding an eigendecomposition of
Ã. Note, commonly it is assumed there is a one-to-one corre-
spondence between the number of spatial and spectral modes,
i.e., that the number of POD modes (the spatial complexity
N ) is equal to the number of dynamic modes (the spectral
complexityM). For further details on dealing with situations
not of this form, see [36].

B. STREAMING DMD
In the context of real-time systems, DMD can be prohibitively
computationally expensive. Specifically, for a measurement
sequence X ∈ CP×K , computing the low-rank basis (6)
involves a singular value decomposition (see TABLE 1),
which is computationally infeasible for real-time systems
involving high-resolution, long-term video sequences where
both terms are very large.

Streaming DMD (SDMD) [13] is well suited for large
values of P or K , by bypassing the need for computationally
expensive SVD operations to find the low-rank subspace.
Specifically, an iterative Gram-Schmidt approach to low-rank
approximation of (6) is used, which is shown to be equivalent
to standard DMD and the interested reader is referred to
derivations in [13].

C. EXTRACTING TASK-RELEVANT DYNAMIC MODES
Given a learnt decomposition approximating the global
dynamics (§III-A), further analysis can be performed to
extract only modes associated with known frequencies. Prior
domain knowledge τ of the system §II-B can be used to to
select only task-relevant dynamics, known as task-relevant
dynamic modes, from the global model, in a post-hoc man-
ner i.e., {8τ ,3τ } ∈ {8,3}. Reconstructing a dynamical
system using only these task-relevant modes, as outlined in
FIGURE 3, is formally given as the linear reconstruction of
these task-relevant terms:

xt = 8τ3t
τbτ =

D∑
d∈τ

φdλ
t
dbd . (9)

In the context of long-term furnace forecasting, these
task-relevant modes are dynamical modes associated with
task-relevant changes in the furnace dynamics, e.g., long-term
(low frequency) changes in combustion. In summary, this
approach first decomposes the entirety of the global dynam-
ics with DMD eigendecomposition, and then performs post-
hoc extraction of task-relevant frequencies by using domain
knowledge τ to identify locally relevant components.

D. LIMITATIONS
However, while post-hoc extraction (§III-C) of dynamic
modes via either standard or streaming-based DMD is

appealing, these methods suffer from a number of key prob-
lems that limit application in complex real-time systems such
as furnace modelling, specifically:
(i) Inefficiency of decomposition: As outlined in §III-C

and FIGURE 3, the standard DMD approach first
decomposes the global dynamics, and then selects the
task-relevant dynamic modes based on consulting τ .
This all-inclusive approach introduces inefficiencies,
and does not allow for selective decomposition of only
relevant dynamic modes based on τ . Alternative formu-
lations such as Bayesian priors [39], [40] can be used
to bias learning in favour of known task-knowledge,
however these often involve computationally expensive
Monte Carlo sampling making them ill-suited to this
domain.

(ii) Uncertain dynamics: In the context of furnace video
decomposition, the underlying physiochemical com-
bustion process are non-autonomous, with inhomoge-
neous input waste driving the dynamics. While the
DMD formulation assumes a linear dynamical system
(4), the relationship to Koopman spectral analysis [34],
[41], [42] allows for learning non-linear dynamical
systems, either via approximation to a linear system
with the standard DMD approach or the use of embed-
ding functions to explicitly linearise the dynamics in
a higher-dimensional space [14], [43]. However, linear
approximation can be unstable and provide poor fore-
casting, and finding appropriate embedding functions
for real-world systems is challenging, often requiring
complex deep learning [14], [15] for relatively simple
non-linear systems.

(iii) Computation speed of Streaming DMD: While iterative
approaches to DMD greatly reduces the computational
complexity (as seen in TABLE 1), this speed benefit
is conditional on N � min(K ,P), i.e., there is a
low-rank subspace that can be easily found via iteration.
In the context of real-world systems, it is often not
easy to find this low-rank subspace [44], with factors
such as noise [36] or rank-deficiency [34] requiring
either a largeN , or spurious results requiring alternative
(computationally expensive) DMD formulations such as
delay-embeddings [36].

As such, real-time modelling of complex systems such as
furnace dynamics is challenging even with iterative stream-
ing approaches. The uncertainty of the system introduces an
inherent contradiction, requiring both speed, and computa-
tionally expensive methods to overcome.

IV. METHOD
To address the problem of real-time learning of dynamical
systems, this paper presents a method for approximating
uncertain dynamical systems within an efficient low-rank
framework, by exploiting the relationship between spectrum
manipulation with Fourier transformations and DMD, as out-
lined in FIGURE 3.
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TABLE 1. Computational complexity: (P)reprocessing, (I)teration, (M)ode computation, (B)ound.

FIGURE 3. Framework for decomposing video sequence and forecasting long-term trends. Input: Video sequence of K frames. (Top) Standard DMD: Step
1) Low-rank projection computes N POD bases, Step 2) DMD regression characterises the entire global dynamics, Step 3) Post-processing extracts D
task-relevant dynamic modes based on prior knowledge τ . In contrast, (Bottom) TREK: Step 1) Preprocesses via a low-cost FFT to find D bases, with
one-to-one correspondence to terms in τ , and Step 2) DMD characterises only D terms related to the task-relevant dynamics, with no need for additional
post-processing. Output: Given task-relevant dynamic modes, forecasts are computed for any t-timesteps into the future.

A. OVERVIEW
As a high-level overview, this framework (i) uses a discrete
Fourier transformation as an alternative to POD preprocess-
ing, to instead decompose the sequence into a set of spec-
tral Fourier components, (ii) uses spectrum manipulation to
extract only task-relevant frequencies defined by τ , thereby
approximating a low-rank spectral subspace of rank D < N ,
(iii) performs streaming DMD on data in this low-rank sub-
space to learn real-time decomposition models.

In the context of DMD, this approach could be seen anal-
ogous to the standard preprocessing approach of finding N
maximum energy spatial (POD)modes (6), except in this case
the aim is to find D frequency spectral (FFT) modes defined
by the task-knowledge τ . As such, both the computational
advantages of FFT over POD, and the ability to selectively
extract relevant Fourier terms, enables this framework to be
both computationally efficient and embeddable with task-
relevant knowledge.

B. METHOD
To illustrate this approach, without loss of generality consider
the standard application of a discrete Fourier transform (DFT)
to a one-dimensional time-series x ∈ CK sampled at rate fs.
A discrete Fourier transform decomposes this sequence into
J = K frequency components, with sample frequencies s =
[0, 1, 2, . . . , (K − 1)]/fs, giving Fourier terms y ∈ CJ . Each
term yj is expressed as a weighted summation of all elements
in x, with a corresponding trigonometric dynamics [45]:

y := {yk}Kk=1 =
J−1∑
j=0

xj[cos(2πkj/J )− i sin(2πkj/J )],

=

J−1∑
j=0

xje−i2πkj/J (10)

with inverse transformation:

x := {xk}Kk=1 =
1
√
J

J−1∑
j=0

yjei2πkj/J (11)

As such, (10) shows any sequence can be approximated
into J discrete terms yj, with each term driven by a com-
plex cosine/sine pair. In the context of DMD, this has a
clear relationship to the linear dynamical system in (4), and
as such this sequence is perfectly expressible with a linear
operator with J complex eigenvalues. This relationship has
previously been analysed in [46], and has been shown that
under certain conditions applying DMD to mean-subtracted
linearly independent datasets is equivalent to DFT. In addi-
tion, this is a trivial solution to Koopman’s theory in
J -dimensional space [47], as such guaranteeing the sequence
is decomposable.

However, while (10) states that the sequence is driven by
a linear dynamical system in an J -dimensional-space (equiv-
alent to a K -dimensional-space as all terms yj are used), this
is not practically useful, as DMD requires that there is a low-
rank (linear) subspace N < K in which to drive the Ã linear
operator (8) along.

To address this, note that these Fourier basis are
orthogonal, and therefore the inverse transformation (11)
using only a subset of D < J terms will also remain
linear. Performing the inverse transformation using D terms
results in a new measurement sequence perfectly express-
ible in a D-dimensional space. As such, this approach
is amenable to using the task-relevant domain knowledge
τ ∈ RD to select only a subset of those coefficients rel-
evant to the task at hand to form a spectrally-rank-reduced
sequence x̂τ ∈ CK .
Specifically, given task-relevant frequency information

τ = {τ1, τ2, . . . τD} the inverse FFT computation can be
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performed as:

x̂ := {x̂k}Kk=1 =
1
√
J

J−1∑
j=0

ζyjei2πkj/J (12)

where ζ is an indicator function determining if a specific
term yj should be included in the reconstruction. For example,
a low-pass filter could be given as:

ζ =

{
1, if s[j] < τ

0, otherwise,
(13)

indicating that if the corresponding sample frequency of
this yj is less than a desired task-relevant term τ , it should
be included in the reconstruction. As such, the number of
dynamics modes N used for the DMD computation is given
by the number of terms yj where ζ = 1
By incorporating task-relevant frequency information τ the

sequence X is transformed to a new sequence X̂ that is guar-
anteed to be linear in terms ofD < K frequency components,
and as such is a linear solution inD. In the context of furnace
modelling from video, this allows for the extraction of key
long-term characteristics which are indicative of incineration
state changes, and discarding of unnecessary frequencies
such as flame flickering.

V. EXPERIMENTS
To evaluate the proposed TREK framework, this section
outlines experiments examining the suitability for both
modelling and forecasting. Without loss of generality, exper-
iments use the Total-Least Squares implementation of stan-
dard DMD [48] and Streaming DMD [49], which minimises
measurement error bias and is more suitable for real world
systems such as video.

A. SIMULATION
To demonstrate this approach, consider the following illustra-
tive example of decomposing a high-dimensional sequence
with a large number of measurements, into its constituent
dynamic modes. As outlined in §III, decomposition and
forecasting requires only a single measurement sequence,
as opposed to traditional machine learning.

In this, a sequence is generated where N = 101 ran-
dom spatial modes, each of size P = 12000 (equivalent to
the dimensionality of an RGB image) are generated from
a random P dimensional orthonormal basis. These modes
are evolved according to (4) using N corresponding linearly
spaced frequencies δ = [−1t−1, . . . ,1t−1], where 1t =
1e− 2, for t = 150s. The resultant of this is a data sequence
X ∈ C12000×15000 comprised of exactly 101 dynamic modes.
The sequence energy is shown in FIGURE 4(a) (light grey),
where it is seen that this is a relatively complex mixture of
trigonometric functions.

The goal is to characterise only long-term trends in the
sequence, corresponding to the task-relevant information τ =
[−1Hz, 1Hz], i.e., D = 2, shown in FIGURE 4(b) (light
grey).

FIGURE 4. (a) Full dynamics (light grey) are complex, but can be learnt by
standard DMD. (b) Long-term dynamics (light grey) can be extracted
post-hoc from DMD’s model of the global dynamics. TREK (red stars)
extracts long-term dynamics using frequency knowledge from τ .
(c) Running time (log-scale) for each method demonstrates that both
DMD and SDMD are poorly suited to decomposing sequences with a large
number of spatial modes.

Experiments are performed using an Intel i9-9900K
3.60GHz, with 128GB RAM, conducted in Python 3 with
experimental notebook located at.1 In this paper, the standard
DMD approach uses the well-known PyDMD implementa-
tion [50] and the streaming DMD approach is based on the
dmdtools codebase [51] supplementary to [13]. Without loss
of generality, a forked version of dmdtools is used in this
paper [52], which includes additional Python implementa-
tions and minor bug-fixes.

Initially, standard DMD (§III-A) is used to decompose
this sequence into N = 101 dynamic modes. Given this
decomposition, a reconstruction of the sequence is per-
formed, as shown in FIGURE 4(a). In this, it is seen that
the DMD reconstruction utilising all learnt dynamics (both
short and long term) perfectly matches the sequence energy,
and therefore characterises the dynamics of the sequence.
However, as the goal is to extract long-term dynamics from
this sequence, a second reconstruction is generated utilising
only the long-term dynamics learnt from the decomposition,
following the post-hoc extraction methodology outlined in
§III-C. From this, FIGURE 4(b) demonstrates that DMD has
also learnt the long-term components, as the reconstruction
matches the long-term dynamical component of the sequence.
Additionally, as shown in TABLE 2, standard DMD correctly
extracts all 101 dynamic components from the sequence
(including the desired task relevant ones in τ ), resulting in a

1https://gitlab.com/Brendan_Michael/TREK
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lowmean squared error (MSE) between the original sequence
and the DMD reconstruction. However, while accurate, this
approach is computationally expensive, due to computing the
low-rank basis (6) of X as seen in TABLE 1. In fact, the time
taken to compute a DMD model vastly exceeds the sequence
runtime (as seen in TABLE 2), and is therefore unsuitable for
real-time systems.

To address this slow learning speed, streaming DMD
(SDMD) can be used as an iterative solution, and as such
this method is evaluated on the same sequence. As shown
in TABLE 2, SDMD also correctly identifies the dynamic
components, and obtains a similarly small MSE. However,
the runtime remains high, due to the high rank requirement
of the data (N = 101) dramatically scaling the computation
time (as seen previously in TABLE 1).
Given the poor runtime of both standard DMD and the iter-

ative SDMD, a naive approach to address this problem is to
choose fewer modes (N = 2) to decrease runtime. However,
this results in poor dynamics learning, seen in the failure to
characterise any relevant frequencies in FIGURE 4(b), and
highMSE in TABLE 2. This is due to a key failure, that being
the dynamics must evolve along a low-rank operators (8).
Simply choosing N = 2 from a system explicitly containing
101 dynamic modes, provides no guarantees that this is the
correct dimensionality for the low-rank operator, as such no
correct dynamic modes are extracted.

As an alternative to all these above approaches, the
TREK framework is applied with the aim of extracting the
task-relevant dynamic components of the sequence, within
a reasonable running time. Following the methodology in
§IV, task-relevant information τ is used to inform extracting
N = 2 task-relevant spectral components from the data with
(10) and (12). Streaming DMD is applied on this spectral
low-rank data to decompose only the task-relevant (long-
term) dynamics. The results for the corresponding recon-
struction are shown in FIGURE 4(b), where it is seen that
like standard DMD, the TREK reconstruction has correctly
characterised the long-term dynamics. Results in TABLE 2
show that similarly the MSE as compared to the long-term
dynamics remains small, and it is seen that the computation
time is vastly more suitable for real-time, resulting in a 98.8%
decrease in runtime. Note, the non-task relevant dynamics are
not learnt with TREK, and as such there is a high MSE when
comparing against all dynamic characteristics in TABLE 2.
However that is both unsurprising and unessential for the
goals of this approach.

To evaluate the robustness of the approach, this experi-
ment is repeated while varying the number of constituent
spatial modes in the range N = [10, 90], thereby exploring
application of each method to dynamical systems of vary-
ing complexity. These results are shown in FIGURE 4(c),
where initially it is seen that the runtime for DMD remains
high regardless of model complexity, due to the expensive
SVD based preprocessing stage being independent of the
number of modes (seen in TABLE 1). In comparison, the

TABLE 2. Simulation results: Number of modes used (N ), running time,
MSE between original sequence and learnt reconstruction, MSE between
only long-term components of sequence and learnt reconstruction, and
number of correctly extracted dynamic modes.

TABLE 3. Furnace video dataset characteristics.

runtime of SDMD increases with model complexity, due
to the larger iterative cost which includes the number of
modes (also seen in TABLE 1). As such, both standard
methods fail to complete model learning within a reasonable
timeframe. In comparison to these, the runtime for TREK
remains low regardless of the underlying model complex-
ity, due to its functionality of extracting only task-relevant
dynamic modes as part of the pre-processing stage, thereby
ensuring the amount of useful modes remains small during
computation.

B. FURNACE EXPERIMENT
The proposed TREK framework is applied to a real-plant
industrial furnace video feed, with the aim of modelling
and forecasting dynamic furnace state changes. Input data
consists of a three-color RGB sequence of video frames,
sampled at 30Hz with original size (1920, 1080, 3), resized
to (40, 75, 3) prior to learning (i.e., P = 9000).

1) MODELLING - BURNOUT POINT DETECTION
Initially, the proposed approach is evaluated for modelling a
dynamical event, the shifting of a burnout-point, occurring
over 20 minutes (K = 36000 frames). A burnout-point is
the primary combustion position in the chamber, and the
general control aim is to maintain a steady consistent burn
at this fixed position. An example of burnout-point shifting
is shown in FIGURE 5, where it is seen that initially the fire
burns uniformly on the platform. Over the next 10 minutes,
inhomogeneity in waste combustion causes waste at the cen-
tre to fail to ignite resulting in waste splitting into two sepa-
rate upper and lower combustion regions. Following this, at
20 minutes the lower of the two regions extinguishes due to
lack of combustible material. This is an unstable state, and the
operator will need to actuate the platform to drive reignition.
The ability to model this event would be a useful operator tool
to help in the control decision making process. Specifically,
the operator is interested in characterising long-term dynamic
activity greater than five-minutes, while being disinterested
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FIGURE 5. Shifting of in-furnace burnout position (pseudo-colour)
resulting in stagnation.

in short-term events. As such, the prior task-relevant infor-
mation involved in this task is the frequency τ = [300−1Hz].
To investigate modelling this event, an experiment is per-

formed to extract the long-term dynamics from the sequence.
Specifically, the aim is to learn a dynamic model that has:
(i) dynamic modes that are interpretable in the context of the
plant, (ii) a fast computation time, greater than 30Hz.

Model performance is evaluated by examining three key
criteria [11]: (i) the stability of the learnt eigenvalues, indicat-
ing the growth and oscillation of the learnt dynamics model,
(ii) the coherency of the extracted spatial modes, i.e., the
ability to qualitatively explain mechanics of the underlying
furnace system, (iii) the mean squared error (MSE) between
the reconstructed sequence and the original video, quantify-
ing the prediction accuracy of the modelling.

Initially, the standard DMD approach is applied, by select-
ing a low-rank basis of spatial modes by (6) using the singular
value thresholding approach by (7), resulting in N = 9000,
and then computing an eigendecomposition of Ã. The results
for this are seen in FIGURE 6 (a-b), where it is shown that
modelling is very unstable and of poor quality. Specifically,
learnt eigenvalues in FIGURE 6 (a) lie far from the unit
circle (along which stable eigenvalues should reside), and
undergo extreme growth, decay, and oscillation, which is
obviously not present in the original video sequence. This
instability results in uninformative unstable dynamic modes
(FIGURE 6 (b)) and the corresponding spatial models do
not show any intuitive structures with which to interpret
the sequence, instead highlighting hyper-localised regions
of combustion. This is expected, as due to the complexity
and uncertainty in the video, as discussed in §III-D, fitting
linear approximating models to (potentially) non-linear data
can result in uninformative models. Given this instability,
no useful dynamics are extracted, resulting in an unbounded
reconstruction error (seen in TABLE 4).
Additionally, given the data is full-rank (N = P), SDMD

cannot be used to provide real-time updates, due to the
reliance on a low-rank basis (§III-B). Simply selecting fewer
modes to decrease Streaming DMD runtime is meaningless,
resulting again in unstable eigenvalues (FIGURE 6 (a)).

As such, standard DMD approaches fails to learn this
complex video data, and reconstruction or modelling of this
sequence will be inaccurate and unstable. Additionally, due
to the size of P and K , model training takes approximately
74 minutes to compute, and as such is infeasible for prac-
tical application on this 20 minute sequence. It is clear that

TABLE 4. Burnout Point Detection Results: Running time, MSE between
original sequence and learnt reconstruction, and number of stable
extracted dynamic modes.

FIGURE 6. Burnout-point modelling: (a) Eigenvalues for DMD (blue
circles), Streaming DMD with minimal but incorrect rank (orange
squares), and TREK (green diamonds). Unit circle (red) indicates stability,
and note symmetric log scale. (b) Standard DMD’s dynamic modes
(normalised colour) are unstable and captures no intuitive dynamics.
(c) In comparison, TREK framework explains characteristics of the
furnace, with dynamic modes (normalised colours) corresponding to
spatial platform regions: upper (thin red line), centre (dashed green) and
lower (thick blue).

standard DMD is not applicable to this scenario, and this
approach suffers from limitations as discussed in §III-D.
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FIGURE 7. (a) Video sequence energy (light blue) displays oscillation behaviour, consistent with the AGC period. Predictions from the TREK framework
(red dashed) align closely to sequence energy for both the training period (left of black vertical line), and the (unobserved) forecast period (right of line).
Frame-by-frame MSE also shown (light green). (b) Frequency spectrum (millihertz)of dynamic modes show long-term trends are identified.
(c) Reconstruction error in training data (T) and forecast error for subsequent 40 minutes. (d) The dynamic mode associated with the 10 minute AGC
behaviour (M6), with spatial mode (pseudo-colour) corresponding to a smoke-filled area, and a 10 minute dynamic oscillation period. (e) Reconstructed
frames and forecasts show physical characteristics of combustion.

To address these problems, the TREK approach as outlined
in §IV is used to first extract spectral components based
on task-relevant information τ , and then learn a low-rank
Streaming DMD model. Initially, the task-relevant Fourier
transform (10) is applied to this data sequence to extract
all spectral components. Subsequently the inverse FFT (12)
is performed, using the low-pass indicator function (13).
As such, extracting only non-zero task-relevant spectral com-
ponents results inN = 8 Fourier modes with frequencies less
than τ .
Eigenvalues from the learnt dynamic model are shown in

FIGURE 6 (a), where it is seen that these are stable (as they sit
on the unit circle). In addition, the learnt dynamic modes are
shown in FIGURE 6 (c) where it is seen that three key spatial
regions that characterise this burnout event are identified: an
upper, middle, and lower region of the fire. This corresponds
to the spatial components that describe the burnout event as
seen in FIGURE 5, i.e., a separation of a single region into
three separate components. The corresponding learnt dynam-
ics show that these three spatial regions are modelled together
to characterise the split and decaying behaviour. As such,

through examination of the outputs, we can characterise the
event that occurred and analyse it in terms of spatial-temporal
dynamics.

2) LONG-TERM FORECASTING - PATTERN DETECTION
Experiments in §V-B1 demonstrate the proposed method is
suitable for real-time analysis of furnace events. However,
a desirable property for dynamical modelling is the abil-
ity to forecast. To evaluate the suitability of the proposed
approach, an experiment is outlined to detect patterns in long-
term forecasts. Specifically, in the context of an industrial
furnace, the aim is to detect a 10 minute periodic event,
the automated grate control (AGC), which actuates platform
rollers to sift waste, which as a side effect spews smoke and
debris.

In this experiment, a video sequence of 80 minutes
(K = 143, 999 frames) is split into two independent seque-
nces, a training sequence covering the first 40 minutes, and
a testing sequence covering the later 40 minutes. As in
§V-B1, TREK is applied to identify frequency compo-
nents less than five minutes, resulting in N = 20 dynamic
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modes, and decomposition is applied on the low-rank
sequence.

The results are shown in FIGURE 7. Initially, it is seen in
FIGURE 7 (a) that the energy of the video sequence is stable
and oscillates with a fixed period. The energy of the TREK
reconstruction also follows this trend, for both the training
and forecasting period. As such, the framework has learnt
a model that captures the general trend of the measurement
sequence and forecasts oscillatory behaviour.

To understand what drives this oscillation behaviour, and
determine if the learnt model has learnt a characteristic
decomposition, the frequency-power graph of the learnt
dynamics is plotted in FIGURE 7(b). In this, it is seen that
eigenvalues characterises the sequences in terms of long-term
oscillatory components (between 6 and 40 minutes oscilla-
tion periods). FIGURE 7(d) shows a visual output of one
of these components, the learnt component with period ten
minutes (denoted M6). It is seen that spatially, this mode is
characterised by a hazy smoke field region surrounding the
main flame body (light red), and combined with the corre-
sponding dynamics showing a 10 minute period, it is clear
that this components corresponds to the underlying AGC
process. As such, the TREK framework has extracted key
spatio-temporal components of a long-term video sequence,
and is able to forecast these dynamics for a long horizon.
Importantly, the components remain intuitive in the context
of the furnace system, and can be used to infer underlying
physiochemical characteristics of the plant.

To examine the robustness of the approach, the above
experiment is repeated on 18 independent train/test video
instances, from a 13 hour video feed. The mean average
error of the reconstruction for multiple forecast horizons is
shown in FIGURE 7(c). In this, it is seen that TREK is
accurate for both reconstructing the training data (while pro-
viding intuitive decompositions of the data), and short-term
horizon tasks (up to oneminute). However the long term fore-
casting accuracy remains challenging, due to the problems
of inhomogeneity of inputs and non-stationary driven
dynamics. This is a common limitation of spatio-temporal
modelling, and as such, while the proposed approach is
suitable for the real-time learning and forecasting, incorpo-
rating control and inputs into forecasting remains an open
problem.

VI. DISCUSSION
In this paper, a framework is derived and evaluated for the
learning of combustion dynamics of an industrial furnace
from video-feed data, via a combination of dynamic mode
decomposition for extracting intuitive dynamic modes, and
Fourier analysis for incorporating task-relevant information.
The findings outlined here show that by including this infor-
mation, complexities and uncertainties in the data can be
mitigated during dynamics modelling, resulting in computa-
tionally inexpensive, stable predictions. Even when observed
combustion is comprised of multiple complex interacting
dynamical processes, the use of task-relevant information

eliminates undesired dynamical information, allowing for
learning relevant long-term dynamical patterns. In forecast-
ing tasks, the use of task-relevant information can result
in longer, more accurate long-term predictions, which can
be made quickly and at a reduced computational cost com-
pared to traditional modelling methods. This long-term
forecasting coupled with low-cost predictions, demonstrates
that this approach for learning dynamics is suitable for
real-world scenarios involving uncertain, high-dimensional
dynamics.

VII. CONCLUSION AND FUTURE WORK
Generating video forecasts of in-furnace dynamics behaviour
is key to supporting plant operator decision making. The
approach presented in this paper allows for learning real-time
complex dynamics, in a framework that captures intuitive
spatio-temporal physical aspects. In the context of real-world
dynamics modelling, this method in its current form would
find utility in forecasting long-term, steady dynamical
behaviour from video. Given the low-computational cost,
there is potential for integrating these forecasts with exist-
ing real-time control tools, such as state identification or
classification. Additionally, the ability of this method to
remain agnostic to the complexity of the underlying dynamics
has wider implications outside of the field of combustion
monitoring from video. This framework may also find util-
ity in other scenarios requiring real-time forecasting with
dynamics uncertainty, e.g., real-time adaptation for robot
control, specifically, highly non-linear system such as soft
robotics or environmental stimuli and interaction. Not only
would the ability to encode task-relevant information into
dynamics modelling enhance applications, but this approach
enables the analysis of non-linear dynamics systems previ-
ously thought to be too complex for standard spatio-temporal
approaches.
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