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ABSTRACT To create and maintain comfortable indoor environments, predicting occupant thermal
sensation is an important goal for architects, engineers, and facility managers. The link between thermal
comfort, productivity, and health is common knowledge, and researchers have developed many state-of-the-
art thermal-sensation models from dozens of research projects over the last 50 years. In addition to these, the
use of intelligent data-analysis techniques, such as black-box artificial neural networks (ANNs), is receiving
research attention with the aim of designing building thermal-behavior models from collected data. With the
convergence of the internet of things (IoT), cloud computing, and artificial intelligence (AI), smart buildings
now protect us and keep us comfortable while saving energy and cutting emissions. These types of smart
buildings play a vital role in building smart cities of the future. The aim of this study is to help facility
managers predict the thermal sensation of the occupants under the given circumstances. To achieve this,
we applied a data-driven approach to predict the thermal sensation of occupants of an indoor environment
using previously collected data. Our main contribution is to design and evaluate a deep neural network (DNN)
for predicting thermal sensations with a high degree of accuracy regardless of building type, climate zone,
or a building’s heating and/or ventilation methods. We used the second version of the American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Global Thermal Comfort Database to
train our model. The hyperparameter-tuning process of the proposed model is optimized using the Bayesian
strategy and predicts the thermal sensation of occupants with 78% accuracy, which is much higher than the
traditional predicted mean vote (PMV) model and the other shallow and deep networks compared.

INDEX TERMS Thermal sensation, deep learning, deep neural network, Bayesian optimization, thermal

comfort, ASHRAE Global Thermal Comfort Database II.

I. INTRODUCTION

Most people spend more than 90% of their daily lives in
closed environments nowadays [1]. Considering the direct
correlation between thermal comfort and productivity [2],
providing proper thermal comfort for indoor environments
is crucial. ASHRAE describes thermal comfort as an
occupant’s satisfaction with the thermal environment [3].
Fanger introduced the PMV index, which is expressed in a
seven-point scale to represent the thermal sensation of an
individual ranging from —3 to 43, corresponding to cold
and hot, with 0 being neutral. According to this model,
an acceptable PMV value of a thermal environment is
one between —0.5 and 0.5. The other indicator of this
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model is the predicted percentage of dissatisfied (PPD)
people; this estimates the percentage of people who would
be dissatisfied in a particular environment [4]. However,
it has been demonstrated that there might be differences
between the PMV and actual mean vote (AMV) because
of differences among individuals such as age, sex, etc. [5].
The thermal comfort of an indoor environment may have
significant effects on human behavior [6]; it also defines
a building’s success in regard to energy consumption [7].
Studies have found that 20%—40% of the energy consumption
of commercial and residential buildings results from heating,
ventilation, and cooling (HVAC) operations.

There are a number of different types of HVAC control
methods. One is the black-box models, which is a subcategory
of model-based control methods. Black-box models are
developed based on the observation of the system’s input
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and output data and the development of a mathematical
relationship between the input and output variables. They
are developed based on observations of the system and
can mathematically associate input variables to output
directly [8]. Using intelligent control methods in HVAC
systems produces better results compared to conventional
methods [9].

By comparing intelligent methods to conventional
approaches, we show that intelligent methods are better at
predicting thermal sensation. We also demonstrate that deep
networks outperform shallow networks.

This study is organized as follows: first, related work is
introduced; then, the sample data are explained in detail. After
that, how the data are processed and used for the training
of the proposed model is described. Finally, we present and
discuss the results of the proposed DNN model.

Il. RELATED WORK

A comprehensive survey found that the use of intelligent
methods has increased in recent years [10]. Afzal ef al. aimed
to maintain thermal comfort by regulating temperature and
relative humidity inside an automobile. They used multiple
feed-forward/feed-back propagation (MBP) artificial neural
network modeling to predict the temperature and humidity
inside the cabin and inform the passenger about thermal
comfort [11]. Irshad et al. attempted to predict the thermal
comfort of the occupants on a 10-point scale (—5 to
+5) in a test room fitted with a novel thermoelectric air
duct (TE-AD) cooling system instead of a standard air-
conditioning system. They collected all the parameters used
to calculate the PMV over a two-month period and developed
an artificial neural network (ANN) model based on the
Levenberg-Marquardt algorithm to predict thermal comfort.
They approached this as a regression problem and achieved
the best result with a single-layer 10-neuron model that
produces a 0.07956 MSE (mean squared error) value [12].
Salim et al., in contrast, focused on a data-shortage problem
for data-driven thermal comfort models and increased
the performance of thermal-comfort prediction by using
the transfer learning-based multilayer perceptron model
(TL-MLP). They collected data from different cities in
the same climate zone to learn thermal comfort patterns
and transferred this knowledge to other cities. Their study
demonstrated the possibility of building thermal-comfort
models with publicly available limited data [13]. A direct
correlation between the minimum variable air volume (VAV)
and thermal comfort was previously established [14], and
for that reason, Feng et al. sought to create a prediction
model for the valve opening of the VAV terminal based
on a back propagation neural network to improve thermal
comfort. They collected the actual data and trained using the
newff; the results show that the error between the expected
and the predicted air volume is less than 5% [15]. Ahn
and Cho developed a multilayer perception-based (MLP)
ANN model to optimize the supply of air conditioning to
provide thermal comfort for district heating systems. They
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tested the proposed model on four different buildings and
compared their model with the traditional on/off systems.
The observed results showed that their model increased
the comfort level by 27% and also reduced peak energy
demands by 30% [16]. In the US, Kim and colleagues
conducted an experiment to predict thermal preferences in
order to provide thermal comfort. They chose to collect
occupants’ heating and cooling behaviors instead of utilizing
a survey to train the proposed machine-learning model.
They compared six different machine-learning algorithms
and found that the highest level of accuracy produced was
73% by random forest (RF), which was much higher than
the conventional PMV model [17]. Menassa et al. used a
random forest (RF) classifier to predict occupants’ thermal
preferences in single- and multi-occupancy spaces. They
trained their prediction model using a database of data
collected from sensors, wearable devices, and surveys using
a mobile application. The proposed model was responsible
for determining the optimal condition of the space. While
the RF model provided 80% classification accuracy for
the thermal-preference prediction, it reduced the reports
of discomfort by 53% [18]. Soh et al. compared the
prediction accuracy of support vector machine-based (SVM)
and extreme learning machine (ELM)-based classifiers to
predict the three-point scale of the thermal state of occupants.
They collected real-time thermal sensations of the occupants
via a survey and recorded skin temperature at the same
time, and they normalized skin temperature according to
body-surface area and clothing insulation. They achieved a
thermal-state prediction accuracy with the SVM of almost
87% [19]. Beceric-gerber et al. used a hidden Markov model
(HMM)-based learning method to predict thermal sensation
on a three-point scale by using infrared thermography of
the human face as input. Their experiment with 10 subjects
showed 83% accuracy for predicting uncomfortable condi-
tions [20]. Zhang et al. studied the impact of the features,
the amount of the data, data-processing methods and the
thermal sensation scale on the prediction accuracy by using
different machine-learning algorithms. They conducted their
study on the same dataset that we used. The results of
their study indicated that Random Forest (RF) generated the
best performance among the other algorithms with 66.3%
accuracy if the thermal sensation has a three-point scale and
61.1% accuracy if the thermal sensation has a seven-point
scale [21].

The best classification accuracy achieved among these
works is 86.7% using SVM, which demonstrates that
data-driven approaches can outperform the traditional
model-based approaches with a limited number of data
samples. The extreme learning machine (ELM) classifier
is also a good option with 79.67% prediction accuracy,
according to the same study.

A comparison of the related works which are summarized
above is shown in Table 1. The applied data-driven method
and the outcome of that method are compared with the
collected data. According to the table, shallow networks are
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TABLE 1. Comparison of related works.

Study Best algorithm Sh/Dp | Dataset | Metric(s) Best
size score
[11] (2020) |Multiple Feed For-|Sh 19,000 |Root Mean| 0.01
ward Back Propaga- Square
tion (MBP) Error
(RMSE)
[12] (2020) | Multilayer Perceptron | Sh 1,204 |Mean 0.079
(MLP) Square
Error
(MSE)
[13] (2021) | Transfer ~ Learning- | Dp 25,000 |Accuracy |54.5
based Multilayer (%) and|and
Perceptron model F1-Score 55.12
from the same (%)
Climate zone
[15] (2021) | Gradient Descent | Dp 286 Mean 0.05
ANN Square
Error
(MSE)
[16] (2017) | Multilayer Perceptron | Sh 8,700 |Root Mean |0.64
(MLP) Square
Error
(RMSE)
[17] (2018) |Random Forest (RF) |Sh 4,743 | Accuracy 73
(%)
[18] (2017) | Random Forest (RF) |Sh 271 Accuracy 80
(%)

[19] (2018) | Support Vector Ma-|Sh 800 Accuracy 86.7

chine (SVM) (%)
[20] (2018) |Hidden Markov | Sh 457 Accuracy 82.8
Model (HMM) (%)

[21] (2020) |Random Forest (RF) |Sh 10618 | Accuracy 66.3

(%)

Sh: Shallow, Dp: Deep

capable of producing impressive results for thermal-comfort
prediction.

IIl. RESEARCH METHOD

The generic solution process of data-driven prediction
problems has five steps. First, the data must be collected
according to this approach. There are numerous ways of
collecting data; it may be preferable to sensors to collect
real-time data, or data might be generated using well-known
simulation tools. We collected the data from ASHRAE’s
second version of its Global Thermal Comfort Database
published in 2018. Further details regarding the data can be
found in the next subsection. As a second step, whether the
problem is a regression or classification should be decided.
The prediction of thermal sensation should be treated as
a classification problem as it can take only the values in
Figure 1, according to Fanger’s model [4]. This is a way
of describing the relationship between conditions of indoor
environments and subjective thermal sensation. Although
it creates ambiguous sensation statements like “cold” or
“cool” for the evaluation of comfort, it has been used
extensively since its introduction [22].

In the third step, the tool that will be used to analyze
the data and develop the machine-learning model should be
identified. In our study, we utilized TensorFlow, which is
an end-to-end open-source platform. Then, the data must be
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FIGURE 1. Fanger's seven-point thermal-sensation scale.
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FIGURE 2. Methodology for data-driven prediction problems. Dotted
shapes are the answers in our study for each question in the
methodology.

visualized to obtain insights and especially to gain an idea
about the distribution of numerical features. Finding the best
fitting model for the given problem is an empirical process.
Different algorithms with different hyperparameters should
be tested as a final step until the model that creates the best
predictions has been identified.

Figure 2 depicts this process as well as the activities
conducted in response to each step during our research. This
generic process can be applied to any kind of data-driven
prediction problem.

A. DATA
As a collaborative project [23] of the University of California
at Berkeley, the Dayton Foundation, the University of Sydney,
Yonsei University, and the University of British Columbia,
the data were collected via surveys, mobile applications,
and sensors (the details are provided in Appendix B). The
database covers 66 studies conducted in different countries in
different seasons and with a variety of building types between
1995 and 2015. It has 107,583 data points with 51 features
regardless of the different metrics of a given feature; 38 of the
studies were included in our study, with 94,229 data points.
While the data for some features were collected using three
sensors placed at different heights from the floor of a room for
several studies, other studies were found to have collected
data using one sensor for the same group of features. If a
study used more than one sensor to collect data, then the
average of the sensor values was considered as the actual
feature value [24]. After this consolidation of sensor values,
the number of the remaining features was 29. Obviously,
not every study provided all the features, and this created
numerous null values within the dataset. The features with
high numbers of missing values were also ignored.
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TABLE 2. Selected features.

Category Feature Name Description Unit
Pers Clo Clothing ensemble insulation  Clo
ersonal L
of the participant.
Met Average metabolic rate of the ~ Met
participant.
SET Standard Effective Tempera- (°C)
ture
Indoor Air Air temperature measured of  (°C)
temperature the indoor environment
Globe temper-  Globe temperature measured  (°C)
ature of the indoor environment
Air velocity Air speed measured of the in-  (m/s)
door environment
Relative Relative humidity of the in- %
humidity door environment
Outdoor Outdoor Outdoor monthly average (°C)
monthly  air  temperature when the data
temperature was collected.

Although thermal sensation might have a limited number
of observations for different classes, as mentioned in the
above section, some researchers collected the data for this
feature as a floating-point value with a 0.1 interval. First,
we filtered and used the thermal-sensation feature with the
values shown in Figure 1. Then, we added 10% tolerance,
meaning that we rounded the value up or down 10% based on
its nearest class. After this filtration, the remaining number
of data points was 88,075 observations.

We had to remove those features with a high number
of missing values, especially categorical ones such as fan,
window, etc. since filling the missing values using traditional
methods is difficult. We also removed several features that
might be less effective for predicting thermal sensation, such
as year, season, building type, etc. We ended up with the
feature set shown in Table 2. Six out of eight features shown
in the table are parameters for calculating the PMV value [4].
We added the SET feature as it provides more insight
about the environment that the participants are in. We also
added an outdoor monthly air-temperature feature to the
model as an input parameter because the indoor and outdoor
temperatures have either a linear or curvilinear relationship,
depending on the building’s heating/cooling strategy [25].
We removed all data points that have missing values and
duplicate observations from the remaining features, and
the dataset we wanted to use to train our model had
eight features with 40,988 data points. The mean values
of outdoor air temperature and clothing insulation for each
climate zone can be seen in Table 3. As Table 3 shows,
the study covers a range of temperatures from the lowest
mean temperature, 10°C, observed in temperate oceanic
and hot-summer Mediterranean climate zones to the hottest,
31.9°C, observed in a tropical wet savanna. Additionally,
Table 4 displays the mean values of the indoor air temperature
and relative humidity of the environment. Two major groups
of factors affect occupants’ thermal sensation: personal
factors and environmental factors. Personal factors are the
individual’s metabolic rate and the insulating characteristics
of his or her clothing. Environmental factors are the ambient
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TABLE 3. Observed mean outdoor temperature (°C) and mean clothing
insulation (clo) of all participants belongs for each climate zone.

Outdoor Temperature | Clothing Insulation
Climate Mean SD Mean SD
Cold semi-arid 24.5 54 0.6 0.2
Hot desert 22.9 6.8 0.6 0.4
Hot semi-arid 25.1 4.7 0.7 0.1
Hot-summer Mediter- 10.9 6.4 0.8 0.3
ranean
Humid subtropical 21.6 4.7 0.6 0.3
Monsoon-influenced 26.1 7.1 0.8 0.3
humid subtropical
Subtropical highland 15.3 4.7 1 0.5
Temperate oceanic 10 7.1 0.8 0.2
Tropical monsoon 26.3 1.5 0.4 0.1
Tropical wet savanna 31.9 3.6 0.7 0.1
Warm-summer 14.2 4.7 1 0.5
Mediterranean

TABLE 4. Observed mean indoor air temperature (°C) and mean indoor
relative humidity (%) belongs for each climate zone.

Indoor Air Temperature | Relative Humidity
Climate Mean SD Mean SD
Cold semi-arid 24.7 6.8 57.1 11.1
Hot desert 25.2 5.6 50.8 10.3
Hot semi-arid 27.1 35 473 13.4
Hot-summer Mediter-  23.3 2 36.6 10.3
ranean
Humid subtropical 24.7 4.3 56.9 13.4
Monsoon-influenced ~ 25.9 52 52.1 9.2

humid subtropical
Subtropical highland 22.3 3.1 52.3 21.2
Temperate oceanic 24 2.3 38.8 10.6
Tropical monsoon 27.4 23 63.4 4.9
Tropical wet savanna 26.6 2.3 52.3 16.7
Warm-summer 223 3.1 52.3 21.2
Mediterranean
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FIGURE 3. Distribution of personal factors.

temperature, relative humidity, and air velocity. In our study,
we also considered the standard effective temperature (SET)
and outdoor temperature as elements of the environmental
factors. The data distribution of the collected personal and
environmental factors is illustrated in Figures 3 and 4,
which show that the majority of the parameters are close to
normal (Gaussian) distribution; the remainder are definitely
not. However, when we tested whether the features were
in normal distribution based on D’Agostino and Pearson’s
hypothesis test, we had to reject the hypothesis for all
features.

It has been established that, when the distribution of
variables is Gaussian, many machine-learning algorithms,
whether linear or nonlinear, perform better [26]. Methods
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FIGURE 4. Distribution of environmental factors.

used to transform the variables to obtain a better Gaussian
distribution are discussed in the next subsection.

B. DATA PROCESSING

We checked the dataset against the extreme values, which
are called outliers. Figure 5 shows the outlier values in each
feature. It’s well-known that machine-learning generalization
skills can be improved by detecting and removing outlier
values from the dataset [26]. In order to detect the cutoff limits
for each feature, we calculated the interquartile range (IQR)
by subtracting the 75" percentile from the 25" percentile.
Then we removed the IQR value from the 25" percentile
and added the IQR to the 75™ percentile to decide on the
cutoff boundaries. Any values outside of the boundaries
were considered outliers. This method of outlier detection
can be applied to features that are not normally distributed.
After removing the outliers, the remaining number of data
points was 31,057. As mentioned in subsection III-A,
many machine-learning algorithms perform better when the
distribution of the variable is more Gaussian. It is also
known that machine-learning algorithms perform better when
numerical input variables are scaled to a standard range,
especially algorithms that use a weighted sum of the input
or that use distance measures. Different techniques can be
applied depending on the collected data. We applied standard
scaling (1), which can be calculated by subtracting the mean
of all values of a feature from the actual value and dividing
this new value to the standard deviation of that feature.
X—nu

o

StandardScaling — X' = (D
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FIGURE 5. Boxplot of each feature. Dots represents the extreme values.

In our study, applying the scaling technique described above
to the environmental and personal factors increased the
overall accuracy around 34%. Transforming the features
by using MinMax scaling and Quantile transform to make
the distribution more normal would increase the overall
accuracy approximately 30%. For this reason, identifying the
appropriate techniques to make the distribution of the data
more Gaussian and, thereby, lead to the increased accuracy
of the proposed model, is crucial.

As Figure 6 shows, the dataset is in a highly imbalanced
state. This causes a challenge for the machine-learning
algorithms due the lack of knowledge about the minority
classes. Since the algorithms can’t learn how to generalize
these classes, both the overall accuracy and the accuracy of
those classes is tainted. Synthetic Minority Oversampling
Technique (SMOTE) applied to deal with this problem
by generating a new example from randomly selected
2 examples in feature space of each minority class. One
of them is selected randomly and the other one is a
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FIGURE 6. Count plot of the thermal-sensation values in the dataset.

random example from the k nearest neighbor of the first
example.

C. CREATING THE DNN MODEL

A deep neural network (DNN) is an artificial neural
network (ANN) with multiple layers between the input and
output layers. Creating a DNN model is an empirical process;
thus, we conducted different experiments to attain to the
best performance. There are two parts to designing an ANN
model: determining the methods of data processing and
model parameters. After cleaning the data, as described in
subsection I1I-B, we applied standard scaling to all features.
However, we also conducted another experiment by applying
MinMax scaling, and Quantile transform to evaluate the
impact of the different data-processing methods on the
model performance. We chose the Quantile transform after
comparing the distribution of the features with other trans-
formation methods such as Yeo-Johnson and box-cox power
transformers. These experiments were conducted by using
not only densely connected network but also one-dimensional
Convolutional Neural Networks (1D CNN), which is a class
of deep neural networks. Model parameters consist of two
parts: model design and hyperparameters. There are different
approaches determining the model parameters such as trial-
and-error, grid, random, and Bayesian search. When these
approaches were compared in terms of cost and space
exploration skill perspective, the most beneficial was the
Bayesian search, which is an optimization algorithm based
on the Bayesian Theorem that finds an input that results in
the minimum or maximum cost of a given objective function.
This algorithm relies on conditional probability and uses two
different functions. The first is a surrogate function which is
the probability representation of the actual objective function
and is less complicated than the actual objective function. The
second one is an acquisition function which is computed from
the surrogate function and used for guiding the selection of
a set of hyperparameters for the next iteration. We used the
Bayesian search to explore the space of the number of nodes,
number of layers, cost-optimization function, learning rate,
batch size, weight initializer, and dropout for DNN, along

5198

with the number of convolutional layers and filter size for
each layer. We decided to use dropout for regularization to
prevent the model from overfitting. The stopping criterion for
the Bayesian search was 100 calls, and the best performing
model parameters were found after 30 calls using DNN and
55 calls for CNN. The model that produced the best result
is shown in Figure 7; it consists of one input layer that has
8 nodes as we have 8 features, 2 hidden layers with 640 nodes,
and one output layer that has 7 nodes since we want to predict
one class out of a seven-point thermal-sensation scale. Glorot
normal, also called Xavier normal initializer method, was
chosen by the search algorithm to decide on the weights at
the initial step of the network. AdaMax, which is an extension
of the Adaptive Movement Estimation (Adam) optimization
algorithm, as the weight optimizer was determined by the
search algorithm with a learning rate of 0.000001 while
propagating backward on the model. We decided to use
ReLU as the activation function for each layer except the
last one, for which Softmax was used while propagating
forward. We applied categorical cross-entropy to calculate
the loss. We trained each model parameter set evaluated
by the search algorithm in 500 epochs with 50 patience
value as the early stopper, then validated this training using
10-fold cross-validation. In each iteration, 20% of the nodes
were deleted because the dropout rate that was determined
was 0.2. By contrast, for 1D CNN, the Bayesian search
chose a 0.0007 learning rate, a two convolutional layers
with a 103 filter size each, the Adamax weight-optimization
algorithm, ‘Glorot uniform for weight initializer, and 6 dense
layers with 640 nodes for each. The training was completed
with a 128 batch size. Further details can be seen in Figure 8.
As depicted in Figure 7, the training data X consists of
8 features and N training examples. Since we used 10-fold
cross-validation for the training, in each fold, 10% of the
total dataset was reserved for testing the performance of the
training of that particular fold. Weights W and biases b are
trained using one of the gradient descent methods of the
AdaMax optimizer to make predictions on thermal-sensation
classes.

D. EVALUATION OF THE MODEL
As noted at the beginning of Section III, we approached the
prediction of thermal sensation as a multi-class classification
problem as thermal sensation defined on a seven-point
scale in the sample dataset. Before creating the DNN
model, we decided to evaluate the performance by checking
accuracy, confusion matrix, and receiver operating charac-
teristic (ROC) curve — area under the curve (AUC) metrics
after each different model. Accuracy is derived from the
confusion matrix, which is a 7 x 7 matrix in our case;
its columns are labeled predicted classes and its rows are
actual classes. Once the confusion matrix was created,
each predicted class was grouped based on the four values
below:
o True Positive (TP): the number of predictions where the
classifier correctly predicts the actual thermal sensation;
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« False Positive (FP): the number of predictions where the
classifier predicts a thermal sensation that belongs to
other thermal sensation classes;

o True Negative (TN): the number of thermal sensation
classes that are not predicted correctly and belong to that
particular thermal sensation class; and

« False Negative (FN): the number of predicted thermal
sensation classes where the classifier predicts falsely for
that particular thermal sensation class.

Accuracy can be calculated for each class by dividing the total
true positive and true negative values for the above-mentioned
four groups (2). The overall accuracy of the model can be
calculated by the number of total true positive predictions
to the total number of false positive and false negative
predictions (3).

TP + TN
Accuracy = 2
TP+ TN +FP+FN
TotalTP
OverallAccuracy = 3)

TotalFP + TotalFN

Two additional metrics that must be evaluated together are
the ROC curve and the AUC. The ROC curve and AUC are
graphical representation methods of the distinguishing ability
of a classifier between all classes. The higher the AUC, the
better the model is at predicting classes accurately. ROC is
a probability curve that plots a true positive rate (TPR) (4)
against a false positive rate (FPR) (5).

TP
TPR = —— )
TP + FN
FP
FPR = —— 5)
FP + TN

In addition to accuracy, confusion matrix, and ROC
curve — AUC, we evaluated the precision, recall, and F1 Score
metrics. Precision (6) is a metric that measures the proportion
of accurately predicted classes to all other predictions for
that class and is a useful metric when the classes are highly
unbalanced as in our case.

TP

Precision = ——— 6)
TP + FP
TP
Recall = ———— 7
FN + TP
PrecisionxRecall
F1Score = 2x (®)

Precision + Recall

Recall (7) is the ratio of the accurately predicted classes to
all other classes that do not belong to that class and is also
a good metric to employ when the classes are imbalanced,
similar to precision. The last one is the F1 Score (8), which is
the harmonic average of precision and recall. It is employed
in situations where choosing between precision and recall can
result in a compromise in terms of the model’s false positives
and false negatives.

IV. RESULTS
We performed all experiments using TensorFlow platform
version 2.0, which supports GPU computing that runs on a
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FIGURE 9. Confusion matrix of the proposed DNN model after prediction.
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FIGURE 10. ROC curve and AUC of the proposed DNN model after
prediction.

laptop with Intel(R) Core(TM) i7-9750H 6 Core @2.60 GHz
CPU, 16GB DDR4 4.5 GHz RAM memory and NVIDIA
GeForce RTX 2060 6GB graphics card. The results of the
proposed DNN model are promising. Our proposed model
manages to predict the thermal-sensation class with 78.01%
accuracy. In Figure 9, the left side represents the predicted
classes, and the lower section shows the actual classes
explained in the previous section.

As explained in the previous section, the higher the
AUC value, the better the model is at predicting classes.
A circumstance where TPR equals FPR corresponds to any
position on the blue line, and higher Y-axis values indicate
a higher number of TPs than FNs. In our experiments,
the most difficult class to distinguish from the others is
“Neutral”. As shown in Figure 10, it has the lowest AUC
value, 0.84, while the easiest one is “Cold” with an AUC
value of 1. “Hot” with an AUC of 0.99, is the second-
easiest class to predict. Given that the greatest AUC value
is 1, it can be asserted that the proposed model completely
distinguishes the “Cold” and “Hot™ classes from the rest of
the classes, implying that our method can readily distinguish
uncomfortable situations from the rest.

The proposed DNN model predicts the thermal sensation
of the occupant with almost 78.01% accuracy, which is close
to 100% better than the PMV values provided in the dataset,
as it is known that PMV under predicts the thermal sensation
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FIGURE 11. Evaluation metrics comparison of different algorithms with
the same dataset.

TABLE 5. Comparison table of different methodologies.

Method Accuracy  Precision Recall F1 Score
DNN 78.01% 77% 78% 77%
CNN 77.21% 76% 77% 77%
Random Forest 74.85% 74.18% 74.85%  T4.42%
svC 30.7% 28.76% 30.71%  27.97%
Decision Tree 61.91% 61.62% 61.91% 61.74%
Gradiend Boosting 42.1% 40.47% 42.1% 40.07%
KNeighbors 67.14% 61% 65.51%  65.6%
PMV 36% 16% 16% 15%

when compared to AMV [27]. This also aligns with the results
of the study by Cheung et al. [28]. In addition, we compared
the performance of the suggested model with different ANN
methods. Random forest classifier is the method that provides
the most similar results to our model with an accuracy score
of 74.85%. This is followed by KNeighbors Classifier with a
67.14% accuracy score. The accuracy scores of the remaining
methods can be seen in Figure 11. These are the prediction
accuracies of each method after training with the same
dataset with 10-fold cross-validation as we did during the
development of our model.

As shown in Table 5, the best performance for the given
dataset belongs to the DNN with an 78.01% accuracy score.
Random forest classifier provides the closest accuracy score
to the DNN at 74.85%. The PMV model has the lowest
accuracy and precision score. Figure 11 represents the same
data in bar chart format. It can also be observed that the CNN
produces accuracy that is very close to the DNN method.
Since the dataset that we worked on doesn’t have any time
stamp and is not periodical, we couldn’t use ANN models
such as Recurrent Neural Networks (RNN), Long Short-Term
Memory (LSTM) etc., which perform better on time series.

V. DISCUSSION

The results indicate that the DNN and CNN are powerful
tools for predicting the thermal sensation of occupants while
using environmental factors such as indoor air temperature
and relative humidity, and personal factors as inputs, even
when creating a relationship between the features and the
classes is difficult. Although the CNN produces slightly
less accurate results than the DNN, it performs better than
shallow methods and far better than the traditional PMV
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FIGURE 12. Violin plots of thermal sensation and several personal and
environmental features.

model. Figure 12 defines the relationship between clothing
insulation, metabolic rate, indoor air temperature, indoor
relative humidity, and the thermal-sensation scale. It is
clear that making inferences at a single glance is difficult
due to the lack of a direct positive or negative correlation
between the personal factors, environmental factors, and
output. Moreover, the dataset was imbalanced as seen in
Figure 6.

Figure 13 shows the relationship between (a) sex and
(b) age and the thermal sensation. It can be seen that
the sex of the participant has a very weak correlation to
thermal-sensation perception [21]. Although age has a higher
correlation than sex, it was not included in our analysis
as a factor. We considered only personal factors used in
the PMV calculation. We are certain that the model does
not suffer from overfitting because it has a small number
of layers, uses AdaMax as the weight optimizer, and has
a 20% dropout rate for each layer. The experiment was
undertaken with the understanding that data-driven methods
outperform traditional model-based strategies, which also
aligns with previous research. The results also contradict the
idea that deep networks generate better results than shallow
networks. The reliability of the data we trained in our ANN
model is influenced by human perception. We accepted the
thermal-sensation votes as valid from a statistical perspective.
Figures 14 and 15 illustrate the exploration space of the
Bayesian search for batch size and dropout rate. The black
dots on the space represents the different combinations of
model parameter sets that were trained and validated but
rejected due to unsatisfactory accuracy. The Figure 15 depicts
the explored batch size and learning rate combinations and
the accuracy result for each combination. As figure indicates,
a Bayesian search algorithm explores four different batch
sizes and six different learning-rate options. Increasing the
batch size has a positive impact on accuracy. Also, decreasing
the learning-rate has the same impact on accuracy. As it was
mentioned in subsection III-C the search repeated 100 calls;
however, it reached the best accuracy score at call number 31.
Any other model trained by the model parameter set derived
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TABLE 6. Studies that are included to our study.

Study | Country Climate

Purpose

[30] Tunisia Hot desert, Hot semi-arid, Cold semi-arid,
Hot-summer Mediterranean
Tropical monsoon

Humid subtropical

[31] Brazil
[32] Australia

[33] India Tropical wet savanna, Hot semi-arid

[34] India Tropical wet savanna, Hot semi-arid,
Monsoon-influenced humid subtropical,
Subtropical highland

[35] UK Hot-summer Mediterranean

[36] France, Temperate oceanic, Hot-summer Mediter-

To develop an adaptive comfort model using linear regression which allow
to estimated the indoor comfort temperature.

To define the relation between air velocity limits and thermal sensation.

To evaluate the feasibility of using natural ventilation along with HVAC
systems.

To develop an adaptive thermal comfort model for South India based on the
collected data comparing NBC, CEN, CIBSE and ASHRAE standards.

To develop an adaptive thermal comfort model for India by using Griffin’s
method and comparing it to Fanger’s PMV model.

To determine the neutral indoor temperature which satisfies the 90% of
the occupants and compare the results of naturally ventilated and air-
conditioned environments.

To illustrate the actual thermal conditions in European office buildings and

Greece, ranean, Warm-summer Mediterranean the occupant perceptions of those conditions by using the collected data.
Portugal,
Sweden, UK
[37] China Humid subtropical To estimate the thermal sensation using effective temperature in buildings
with split air-conditioners in hot-humid area of China as an alternative to
Fanger’s PMV.
[38] China Humid subtropical To estimate the thermal sensation using effective temperature in naturally
ventilated buildings in hot-humid area of China as an alternative to Fanger’s
PMV.
ey 1280)
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FIGURE 14. Bayesian exploration space for dropout and learning rate.

by the Bayesian search after that call, had lower accuracy.
We repeated the same cycle with MinMax scaling and
Quantile transformation; however, the result was 2% less than
the expected.

Since the coefficients of the parameters of PMV are
predetermined, the rules are set in a strict manner. For
that reason, we may consider this model to be rule-based,
which represents an inflexible system. However, machine-
learning models are more flexible as they aim to learn
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the coefficients, or the rules in an inductive way. This
allows researchers to create more accurate predictions for
a single space or various types of spaces as the system
increases generalization ability as the researchers add more
data. It should be noted that the reliability of the data we
trained in our deep-learning model is influenced by human
perception, and therefore, the research was initiated with the
assumption that the thermal-sensation votes were statistically
valid. As mentioned in section IV, the most difficult class to
distinguish from the others is “Neutral.” One of the reasons
why this class cannot be differentiated more easily is that
the majority of the thermal-sensation votes provided by the
subjects were affected by subjective conditions. Although
personal factors such as clothing insulation and level of
mobility can be measured, the effect of a person’s mood on
sensing the thermal environment is unknown [29].

VI. CONCLUSION

Predicting occupants’ thermal sensations allows HVAC
system operators to create and maintain comfortable indoor
environments, which in turn have a direct correlation on
productivity, and health. In this research, we introduced
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TABLE 7. Features in the ASHRAE global database.

Data Description Data Type | Max | Min | Mean
1 | Year Year that the data was collected. Categorical | 1995 | 2015 -
2 | Season Season of the year that data was collected. Categorical - - -
3 | Koppen climate classification | The climate type name according to Koppen | Categorical - - -
climate classification.
4 | Climate The climate zone of the country from which | Categorical - - -
the data is taken.
5 | City City where the data was collected. Categorical - - -
6 | Country Country where the data was collected. Categorical - - -
7 | Building type Usage type of the building. Office, classroom | Categorical - - -
etc.
8 | Cooling strategy building | Cooling method that is used in the building. | Categorical - - -
level
9 | Cooling strategy operation | Cooling method that is used for the mixed | Categorical - - -
mode  for  mixed-mode | mode buildings.
buildings
10 | Heating strategy building | Heating method that is used in the building. | Categorical - - -
level
11 | Age Age of the participant that gives the feedback. | Numeric 99 6 33
12 | Sex Gender of the participant that gives the feed- | Categorical - - -
back.
13 | Thermal sensation Personal thermal sensation vote of the partic- | Numeric 3 -3 0.16
ipant, from -3 (cold) to +3 (hot).
14 | Thermal sensation acceptabil- | Personal vote of the participant if the thermal | Categorical - - -
ity sensation is acceptable or not. 0 = unaccept-
able, 1 = acceptable.
15 | Thermal preference Thermal preference of the participant. cooler, | Categorical - - -
no changes, warmer.
16 | Air movement acceptability Personal vote of the participant if the air | Categorical - - -
movement of the indoor environment is ac-
ceptable or not. 0 = unacceptable, 1 = accept-
able
17 | Air movement preference Air movement preference of the participant | Categorical - - -
for the indoor environment. less, no change,
more
18 | Thermal comfort Thermal comfort of the participant. From 1 | Numeric 6 0 43
(extremely uncomfortable) to 6 (very com-
fortable).
19 | PMV Predicted Mean Vote Numeric 3 -3 0.13
20 | PPD Predicted Percentage of Dissatisfied Numeric 99.1 5 20.9
21 | SET Standard Effective Temperature Numeric 61.5 6.5 25.7
22 | Clo Clothing ensemble insulation of the partici- | Numeric 2.8 0 0.6
pant.
23 | Met Average metabolic rate of the participant. Numeric 6.8 0.6 1.2
24 | activity 10 Metabolic activity of the participant in the | Numeric 3.8 0 1.1
last 10 minutes.
25 | activity 20 Metabolic activity of the participant between | Numeric 6.8 0.4 1.2
20 and 10 minutes ago.
26 | activity 30 Metabolic activity of the participant between | Numeric 3.8 0 1.2
30 and 20 minutes ago.
27 | activity 60 Metabolic activity of the participant between | Numeric 6.8 0.6 1.3
30 and 60 minutes ago.
VOLUME 10, 2022 5203
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TABLE 7. (Continued.) Features in the ASHRAE global database.

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44
45
46
47
48
49
50
51

Air temperature (°C)

Tah (°C)

Tam (°C)

Tal(°C)

Operative temperature (°C)
Radiant temperature (°C)
Globe temperature (°C)

Tgh(°0)

Tg m (°C)

Tg1(°C)

Relative humidity (%)
Humidity sensation

Air velocity (m/s)

Velocity h

Velocity m

Velocity 1

Subject height (cm)

Subject weight (kg)

Blind (curtain)

Fan

Window

Door

Heater

Outdoor monthly air tempera-
ture (°C)

Air temperature measured of the indoor envi-
ronment in Celsius degree.

Air temperature measured by the sensor
which was placed at 1.1 m above the floor in
Celsius degree.

Air temperature measured by the sensor
which was placed at 0.6 m above the floor in
Celsius degree.

Air temperature measured by the sensor
which was placed at 0.1 m above the floor in
Celsius degree.

Calculated operative temperature of the in-
door environment in Celsius degree.

Radiant temperature measured of the indoor
environment in Celsius degree.

Globe temperature measured of the indoor
environment in Celsius degree.

Globe temperature measured by the sensor
which was placed at 1.1 m above the floor in
Celsius degree.

Globe temperature measured by the sensor
which was placed at 0.6 m above the floor in
Celsius degree.

Globe temperature measured by the sensor
which was placed at 0.1 m above the floor in
Celsius degree.

Relative humidity of the indoor environment.
Personal vote of the participant regarding the
humidity sensation of the indoor environ-
ment.3 = very dry, 2 = dry, 1 = slightly dry, 0
= just right, -1 = slightly humid, -2 = humid,
-3 = very humid

Air speed of the indoor environment in meter
per second.

Air speed measured by the sensor which was
placed at 1.1 m above the floor in meter per
second.

Air speed measured by the sensor which was
placed at 0.6 m above the floor in meter per
second.

Air speed measured by the sensor which was
placed at 0.1 m above the floor in meter per
second.

Participating subject’s height.

Participating subject’s weight.

State of blinds 0 = open, 1 = closed

Fan mode 0 = off, 1 = on

State of windows 0 = open, 1 = closed

State of doors 0 = open, 1 = closed

Heater mode O = off, 1 =on

Outdoor monthly average temperature when
the data was collected in Celsius degree.

Numeric

Numeric

Numeric

Numeric

Numeric
Numeric
Numeric

Numeric

Numeric

Numeric

Numeric
Categorical

Numeric

Numeric

Numeric

Numeric

Numeric
Numeric
Categorical
Categorical
Categorical
Categorical
Categorical
Numeric

63.2

41.7

42.7

36.2

44.7

148.1

100

43.6

46.5

36.3

100

56.1

6.5

29.8

2.8

0.6

6.3

6.8

1.2

0.5

59

99.1

245

24.5

24.2

234

24.5

24.6

24.6

24.7

24.3

22.9

47.5

0.1

0.1

0.1

0.1
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a DNN-based thermal-sensation prediction model that was
trained and tested on data collected by ASHRAE from
66 different studies. First, we decided on the feature set to be
used for the seven-point scale thermal-sensation prediction.
After deleting all null values and outliers we had more than
30,000 data points to train the DNN model. We applied a
Bayesian search to find hyperparameters that created the best
accuracy. After training with the detected hyperparameters,
the overall accuracy score that we achieved was 78%, which
was higher than the other methods trained on the same dataset
and the traditional PMV model. The proposed model was
also shown to be suitable for the prediction of the thermal
sensation, despite the facts that the input features and the
output label have no direct relationship and the dataset is
highly imbalanced. The proposed thermal-comfort learning
method can enhance the control process of HVAC systems.
In addition to our research, further studies are needed to
determine the importance of other personal factors such
as sex, age, weight, and height of the occupants. Taking
advantage of wearable technology such as smartwatches
can be considered as a future research topic in order to
gain more accurate data about occupants’ metabolic rates.
In particular, gaining more insights into physical condition
such as heart rate, blood oxygen level, or sleep patterns using
smartwatches might provide an indication of the emotional
state of an individual, which may in turn allow us to
eliminate subjective conditions. The accuracy of the proposed
model can be increased by using a dataset that has values
properly labeled. Applying feature engineering methods such
as dimensionality reduction or selecting a subset of the
features can also have a positive impact on the model’s
performance. Furthermore, establishing a recommendation
system for the operators of the building to help them schedule
on/off times for air-conditioning systems by predicting the
thermal sensation of the occupants can be utilized to achieve
energy savings. Research can also be undertaken to examine
the influence of real-time HVAC set-point adjustment on
thermal comfort and energy savings by integrating the model
with an existing HVAC system using one of the well-known
communication protocols such as ZigBee or BACnet.

APPENDIX A
See Table 6.

APPENDIX B
See Table 7.
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