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ABSTRACT Rice leaf infections are a common hazard to rice production, affecting many farmers all over
the world. Early detection and treatment of rice leaf infection are critical for promoting healthy rice plant
growth and ensuring adequate supply for the fast-growing population. Computer-assisted rice leaf disease
diagnoses are hampered due to strong image backgrounds. Popular Convolutional Neural Network (CNN)
architecture extracts the features from images and diagnoses the disease to address the issues above. However,
this method is best suitable for segmented images and gives low accuracy with real-time images. In this
case, the Internet of Things is a paradigm shift that collects agro-meteorological information that effectively
helps diagnose rice diseases. Motivated by the usefulness of CNN models and agricultural IoT, a novel
multimodal data fusion framework named Rice-Fusion is proposed to diagnose rice disease. Rice disease
diagnosis based on a single modality may not be accurate, and hence the fusion of heterogeneous modalities
is essential for robust and reliable disease diagnosis. This gives a new dimension to the domain of rice
disease diagnosis. The dataset was collected manually with 3200 rice health category samples using two
modalities, namely agro-meteorological sensors and a camera. The Rice-Fusion framework initially extracts
the numerical features from agro-meteorological data collected from sensors. Next, it extracts the visual
features from the captured rice images. These extracted features are further fused using a concatenation
layer followed by a dense layer, which provides single output for diagnosing the rice disease. The testing
accuracy of Rice-Fusion is 95.31% as opposed to other unimodal framework accuracies of 82.03% and
91.25% based on CNN and Multi-Layer Perceptron (MLP) architectures, respectively. Experimental results
analysis demonstrates that the proposed Rice-Fusion multimodal data fusion framework outperforms the
outcome of unimodal frameworks.

INDEX TERMS Rice disease diagnosis, convolutional neural network, multi-layer perceptron, rice-fusion,
multimodal data fusion.

I. INTRODUCTION
As per the statistical analysis [1], the two main causes that
lead to depletion in food availability are crop diseases and
pests that attack the crop and thus resulting in causing signifi-
cant losses to agricultural production. The leading causes are
poor water management, inadequate soil nutrients, unstable
climatic conditions that lead to plant diseases and ultimately
reduce the yield [2]. The right decisions can be made by
developing decision support systems that can assist farm-
ers in taking the right actions and achieving higher crop
yields. Therefore, automatic and accurate diagnosis of plant
diseases plays an essential role in ensuring high yield and

The associate editor coordinating the review of this manuscript and

approving it for publication was Long Wang .

quality [3]. It also avoids manually identifying plant diseases
in the field [4], [5]. The automatic detection and analysis of
plant illnesses using image processing techniques is currently
a challenging subject that is being actively researched for
applications such as early disease diagnosis, disease predic-
tion, pesticide recommendation, etc. Multispectral, hyper-
spectral [6], [7], and digital images [8] are used extensively in
the literature. Using digital photographs is the most prevalent
approach among these.

Rice production makes a significant contribution to
the agricultural economy. With overall consumption of
486.62 million metric tons in 2018–2019 and 496.30 million
metric tons in 2019–2020, it is one of the world’s most
widely consumed cereal crops. When compared to the metric
tons consumed through time, this indicates a rise in rice
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consumption. It is predicted that rising rice consumption
will keep pace with increasing production rates. However,
disease-related problems frequently destroy a considerable
rice volume due to a lack of adequate field monitoring.
Several illnesses often occur in rice production, resulting
in significant economic losses. Furthermore, the widespread
use of pesticides to treat plant diseases has had negative
consequences in the agro-ecosystem [9]. The most common
rice illnesses are sheath blight, bacterial blight, rice blast, and
symptoms characterized by texture, color, and shape, typical
of rapid development and uncomplicated infection [10]. Rice
disease detection procedures now include artificial identifi-
cation, querying rice disease maps, and automated detection.

In recent years, a tremendous improvement in computa-
tional power efficiency and the extensive amount of data
accessible from various sources that may be utilized to learn
more about the agriculture industry is witnessed. The domain
of Deep Learning and the Internet of Things are explored and
have opened up new avenues for diagnosing crop anomalies.
Disease surveillance is broadly categorized in three ways:
using digital and spectral images, using measurements from
soil sensors, and analyzing climatic normal. The different
types of Artificial Intelligence (AI) models are built, trained,
validated, and tested against the data collected by the ways
mentioned above [11]. Thus, to develop an integrated man-
agement system for crop diseases, ML and DL algorithms
can improve the farmers’ profit, and land resources can
be conserved. In totality, these techniques provide effective
treatments in the appropriate location, at the appropriate time,
and at the appropriate rate [12].

The research in the agricultural domain is enriched
with a variety of data that can be obtained from vari-
ous sources like IoT sensors, vegetation indices, images
from Unmanned Aerial Vehicle(UAV), satellite images. Data
fusion techniques must fuse multiple forms of retrieved data
to comprehend crop growth circumstances and disease symp-
toms development. Furthermore, machine learning-based
data fusion has advanced significantly, and when applied to
agriculture data, it will have a significant impact on plant
protection, particularly early disease diagnosis [13]. The
combination of agricultural data from various data collection
tools with AI algorithms and fusion algorithms has resulted
in widespread research in Precision Agriculture, particularly
for crop growth monitoring and protection.

Deep learning is one of the most popular approaches in
crop disease detection [14]. However, there are still prob-
lems with using deep learning as a plug-and-play formula in
identifying crop diseases. While many deep learning-based
approaches recognize diseases in different crops, such as
potatoes, rice, and tomatoes, some researchers focused on
identifying crop diseases in the field where crops are culti-
vated, and the field scenarios can influence the classifier by
discriminating between different types of illness. The paper
aims to solve the automatic identification of various rice
diseases with images and environmental data collected from
the field using AI techniques. The algorithms used to identify

the disorders must be robust enough to face the challenges in
diagnosing diseases.

Furthermore, unusual circumstances may pose severe
problems in the recorded raw pictures, such as substantial
light variations or background clutter. Using low-level visual
characteristics may not be an acceptable option in this situa-
tion. In this scenario, the Internet of Things (IoT) is gaining
traction, with various options for gathering high-level precise
soil data that may be retrieved as very relevant characteristics
to aid modern identification systems inefficiently identifying
agricultural diseases in the field.

Due to geographical and climatic restrictions, the use of
unimodal IoT sensing methods in crop disease detection
may not achieve the needed accuracy and resilience [15].
One of the most commonly used sensor fusion algorithms
in robotics applications such as position and orientation
estimates, guided vehicles, and so on is the Kalman filter.
It requires data from two sensors in a similar format as
input [16]. In the problem under consideration, the sensors
produce scalar values while image data is a 2D vector. As a
result, in this application of fusion which includes 1D and
2D vectors, the Kalman filter cannot be employed [17].
With the progress and flexibility of AI frameworks, various
AI algorithms are utilized to extract essential characteris-
tics more efficiently and accurately, improving classification
accuracy [18], [19].

Therefore, the primary motivation for developing a Multi-
modal Data Fusion model is to extract the features from two
dissimilar modalities using two different frameworks. Then
apply the proposed Rice-Fusion model to concatenate these
extracted features to train the classifier to identify rice dis-
eases. It becomes a robust solution as it utilizes the measure-
ments from agro-meteorological sensors and camera images.
It will increase true positives and reduce false positives.
Fusion with another modality can assist in identifying the
correct conclusion more effectively if one modality produces
false negatives. If one modality produces false positives,
the second modality can help reduce the aggregate accu-
racy of fused output, resulting in accurate predictions. The
architecture of which is illustrated in Figure 7. Rice-Fusion
uses CNN, and MLP approaches to extract robust visual
and agro-meteorological characteristics from 3200 illness
samples collected from the field. At last, a fully connected
network is developed to combine image and numerical data to
diagnose rice crop disease. This method might be an effective
way to diagnose agricultural diseases in the rice field accu-
rately. It could be utilized as a real-world application that will
assist farmers in taking preventive and corrective measures
against the disease.

Following are the most significant contributions of the
paper:

1) A novel multimodal AI-based framework is suggested
and demonstrated to merge two distinct modalities for
more robust and reliable crop disease detection. This
method makes use of continuous data to boost recogni-
tion performance.
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2) The application of early fusion of the outputs of CNN
and MLP architectures for rice disease detection has
been demonstrated.

3) To validate the accuracy and applicability of the pro-
posed model, we present a thorough experimental
examination. The results demonstrate that the sug-
gested multimodal framework outperforms the existing
methods in diagnosing rice diseases.

The following sections make up the paper: Section 2
presents the available literature on plant disease diagnosis.
A brief review of multi modal data fusion techniques based
on AI is provided in Section 3. Section 4 discusses the
data collecting and preparation frameworks and the proposed
architecture of the system. Section 5 delves into the details of
the results, while Section 6 concludes the paper along with
prospects in the field.

II. RELATED WORK
A. ARTIFICIAL INTELLIGENCE FOR CROP
DISEASE DETECTION
A model based on Support Vector Machine(SVM) [20] is
proposed to classify three rice classes: blight, brown spot, and
smut. The images were captured from a rice farm. It achieved
an accuracy of 93.33% on the training dataset and 73.33%
on the test dataset. To quantify the rice crop damage that
occurred due to hopper infestation [21], Fuzzy C means
classifier is used to classify four severity classes of infes-
tation, namely severe, moderate, mild, and no infestation.
It reached an accuracy of 87%. [22] investigated a technique
that classifies and detects various types of mineral deficien-
cies in rice crops. The model was built for two types of
different inputs, i.e., text and color, with different numbers
of neurons in hidden layers. 88.56% accuracy is obtained.
One more approach was proposed to identify blast and brown
spot disease on rice. The Fractal Fourier method [23] is used
to develop an approach that analyses the texture to iden-
tify diseases. The raw image is converted to CIELab space.
The system achieved an accuracy of 92.5%. The gray-Level
Co-occurrence Matrix (GLCM) technique is used to classify
whether the rice is healthy or infected. Many researchers
have focused on improving the accuracy and speed of iden-
tifying rice illnesses by using traditional methods such as
pattern recognition techniques, support vector machines, dig-
ital image processing techniques, and computer vision. In a
study [5], the infected rice pictures were classified using
Self Organizing Map (SOM) in which the train images were
produced by extracting the characteristics of the infected
portions of the leaf while four other types of imageswere used
for testing reasons. The researchers used a Neural network to
simulate the results. The classification accuracy is enhanced
with the classifier. [24] proposed a new stacked CNN archi-
tecture that uses two-stage training to reducemodel size while
maintaining good classification accuracy significantly. When
stacked CNN was used instead of VGG16, the test accuracy
was determined to be 95 percent.

B. INTERNET OF THINGS FOR CROP DISEASE DETECTION
The study [25] proposed a model that aims to create a mon-
itoring system that uses a Hidden Markov Model to detect
grape disease early and sends notifications to the farmer
via SMS. Temperature, relative humidity, moisture, a leaf
wetness sensor, and Zig-Bee for wireless data transmission
are all part of the system. An accuracy of 90.9 is achieved. In a
different study [26], the Goidanich model is used to predict
powdery mildew fungal disease in a vine. The parameters
used were temperature, moisture, and humidity. K-Nearest
Neighbour (KNN) [27]technique is used to monitor the farm
and climatic parameters on a daily basis to predict the out-
break of diseases and pests. The results were compared with
other machine algorithms like Logistic Regression, Linear
Regression, andRandomForest classifiers. Similarly, (Series,
2020) devised a method for predicting tomato plant health.
The system included two sensors: a soil moisture sensor and
a temperature-humidity sensor because abiotic parameters
such as temperature, soil moisture, and humidity can assist
detect whether the plant is developing in health conditions or
not. The researchers examined two supervised learning algo-
rithms (SVM and Random Forest) and an unsupervised learn-
ing strategy (K-means clustering). SVM, Random Forest,
and K-means all had test accuracy of 99.3%, 99.6%, and
99.5 [28] proposed a Bi-LSTM model that is used to predict
the occurrence of cotton pests and diseases based on climate
variables. Bi-LSTM performs well in predicting the occur-
rence of pests and diseases in cotton fields, with an Area
Under the Curve (AUC) of 0.95.

C. DATA FUSION FOR CROP DISEASES DETECTION
The various types of tools used for plant monitoring
and specifically for disease diagnosis generate enormous
data [29]. There are two alternatives to deal with this data;
one way is to execute the execute individual modality and
evaluate the validity of the method. The second way is to
fuse the features collected from multiple sources related to
crop diseases [30]. [31] developed a combined multi-input
model based on satellite images and environmental data.
Logistic regression was used to extract the features from
both modalities. The accuracy was increased from 69% to
78%. A novel multi-context fusion network for crop disease
detection is proposed where it exploits the contextual features
to increase the performance. CNN is used as a backbone for
attribute extraction, and the Bag of word approach is used
for contextual information. The data set was collected for 19
different crops and 77 related categories. An accuracy of
97.5% is achieved [32]. However, it suffers from the issue
of imbalanced data. In another approach [33], a customized
classifier is developed that detects banana fruit diseases in
African cultivation fields. Disease detection is a twofold pro-
cess that classifies the diseases based on pixel values and later
based on object detection. Support Vector Machine(SVM) is
used to perform the classification. The input to the model
was spectral images with vegetation indices and UAV images.
RetinaNet is used to train theObject detectionmodal based on
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FIGURE 1. Different types of modalities.

UAV images.The proposed approach outperforms the VGG
model by achieving an accuracy of 92%. However, the train-
ing time required to train the model is compensated.

It can be summarized that even though the above method-
ologies successfully recognize contemporary agricultural dis-
eases, progress in this area has stagnated in recent years [43],
[44]. Table 1 represents the comparative analysis of the state
of the art techniques on rice disease diagnosis. Furthermore,
due to many hurdles in realistic scenarios during test image
inference, such as illumination and intricate background
depicted, most of these approaches may not reach acceptable
performance in practical crop disease recognition applica-
tions. As a result, a novel multimodal data fusion approach
named Rice-Fusion is developed to solve difficulties in crop
disease diagnosis tasks by combining agro-meteorological
data to increase performance, inspired by deep learning
breakthroughs in agriculture.

III. THEORETICAL BACKGROUND
When the data from multiple sources are combined, the sys-
tem becomes more robust, fault-tolerant, and reliable than
those that work with a single source. Many data fusion meth-
ods are available based on AI paradigms in the literature as
a prelude to the proposed system. A brief discussion about
these methods is represented in this section.

A. MULTIMODAL DATA FUSION APPROACHES
A modality is a kind of input data used to find a solution
to the problem. Different types of inputs, such as image,
video, sound, speech, text, graphs, etc., can be given to the
model to perform the task. These inputs are called modalities.
Multimodality learning means learning frommultiple modal-
ities. Figure 1 shows various types of modalities that can be
inputted into the model to attain the goal.

Data is a collection of modalities. In AI, multimodality
is when the same AI model processes two or more

FIGURE 2. Multimodal data fusion concept.

heterogeneous inputs to solve the problem. Multiple data
sources like real-time data from sensors, images of diseased
leaves, weather data, etc., are often used to predict diseases
in crops. These are a few of the modalities for crop dis-
ease identification. These sources contain information that
complements the overall accuracy and performance of the
model. The fusion of these modalities produces a more reli-
able, consistent, and accurate model to predict rice disease,
thus reducing false positive and false negative percentages.
However, there are challenges while using different modali-
ties with different representations. It is not easy to fuse two
representations in one model because they have different
characteristics and dimensions. In addition to this, when the
datasets are combined, they may have noisy and missing
data. To solve the problem with multimodality, combine two
separate models with a single modality at a higher level.
Figure 2 conceptualizes the idea of multimodal fusion data.

There are three types of fusion models: Early, late, and
hybrid fusion models. Early fusion combines the feature
maps extracted from the multiple modalities [45]–[47].When
there is a high correlation between modalities, this is an
appropriate technique to use. The features are extracted from
independent modalities by using AI algorithms. The features
obtained from the modalities are combined by the concatena-
tionmethod. These fused features are again passed through an
AI algorithm. The training of the model is done by using the
fused features to obtain the final feature set. The features are
fused before classification, where these features are learned
together and assist each other in co-learning. Late fusion is a
technique that trains unimodal based on specific classifiers.
The notion of utilizing multiple inputs of independent types
from multiple sources is referred to as multimodal fusion
data.

The predictions from the individual modality are fused by
using mathematical techniques such as mean, mode, median.
It requires multiple training stages. It is known as Decision
Fusion Technique as it is a fusion of the decisions predicted by
individual modalities. The low-level interaction between the
individual modalities is not modeled. The fusion mechanisms
can be voting, weighted sum, or any AI model. When the
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TABLE 1. Comparison with the state-of-the-art methods on rice crop disease detection methods.

modalities have a time correlation amongst them, this method
is preferable. In hybrid fusion, the benefits of early fusion
and late fusion techniques are combined. The feature set
obtained after fusing the individual feature set modalities
before classification is combined with decisions predicted

by the unimodal. Later they are again united to get a final
decision.

The values of agro-meteorological attributes are contin-
uous, so a simple MLP approach is best suitable for this
modality. The second modality to the proposed framework is
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rice crop images. CNN architecture proves to be excellent in
extracting image features. Both the modalities have different
characteristics and are not co-related with respect to time.
Therefore, in the proposed framework, an early fusion type
of multimodal data fusion technique is used to detect rice
diseases based on the environmental features extracted from
the MLP framework and image features extracted from the
CNN framework. The following section discusses Data col-
lection, data pre-processing. Also, it proposes a multimodal
data fusion framework to diagnose rice diseases.

IV. MATERIALS AND METHODOLOGY
A. DATA COLLECTION
Rice disease diagnosis is a classification problem as the
model will predict the name of the rice disease class based
on image data and agro-meteorological data. Initially, cat-
egorical names of the classes are defined as Blight, Blast,
Brown spot, and Healthy. The model learns to predict the
label of the rice disease class based on the input features. The
dataset is collected in two folds; first, the numerical values
corresponding to the agro-meteorological sensors placed in
the farm are collected. The second is simultaneously captured
image of rice crop from the field. The data collection process
is represented in Figure 3.

FIGURE 3. Data collection for the proposed framework.

The agro-meteorological dataset includes numerical val-
ues of environmental attributes like Temperature(T), Relative
Humidity(RH), Soil moisture(M), and N-P-K soil nutrients
values collected by sensors. These climatic normals play a
vital role in diagnosing crop diseases [48]. DHT22 sensor is
used to collect Temperature and Relative Humidity values.
DHT22 is selected over DHT11 after doing trial and error.
DHT22 more precisely captures the environmental values
over DHT11 [49]. The resistive soil moisture sensor is used
to collect moisture or water level values from the soil. The
JXCT Soil NPK Sensor fetches the nitrogen, phosphorous,
and potassium nutrient values from the earth. The NPK is
connected to an Arduino microcontroller via Modbus RS485.
The Arduino microcontroller is used to interface the sensors.
The sketches are written using Arduino Integrated Develop-
ment Environment. The numerical values corresponding to

the sensors are stored in a .csv file. All the sensors that are
used to collect data have characteristics such as low cost,
quick responsiveness, high precision, and portable.

Along with agro-meteorological parameters, the images
for 3200 rice disease and healthy samples were simultane-
ously captured. This makes the dataset suitable for multi-
modal data fusion. The majority of the images were captured
using Charged Coupled Device (CCD), a light sensor on an
integrated chip [50]. The images are manually filtered to
remove noise within the dataset to preserve the consistency
of crop disease data and handle incorrect information. The
blur and duplicate images are removed. The disease iden-
tification capabilities of our dataset-trained model could be
significantly improved with these pre-processing techniques.
There are no repeated data or missing data. All collected
rice crop disease images are thoroughly reviewed by agri-
cultural experts from various Research Extension Centers to
ensure the authentication of the image annotations. A dataset
in total consists of 3200 samples where each class of rice
diseases classification consists of 800 samples. After sam-
ple collection, the dataset is divided with a 70-20-10%
ratio as training, validation, and testing sets, respectively.
The agro-meteorological sensors data is integrated with rice
image data and is further used for training and testing
phases of the newly developedmultimodal data fusionmodel.
Figure 4 represents the training and testing phases of the
network.

The building process to develop an independent model
is explained in the next subsections. Also, the Rice-Fusion
framework that works on fused features and its variants are
modeled in the following sub-sections.

B. MULTI-LAYER PERCEPTRON (MLP)
One of the input streams to the multimodal approach is
continuous data from agro-climatic sensors. It consists of 3
or more layers to classify the non-linear data. The dataset
collected is non-linearly separable. Hence, Multi Layer Per-
ceptron is best suitable to work on continuous data. It is a
supervised learning algorithm. It is a fully connected network
where each node is connected to all nodes in the next layer.
The building blocks of MLP are Neuron, neuron weights,
Activation Function, Network of neurons.

1) NEURONS
The input features and their corresponding weights are given
as input to this computational unit, and it produces the result
based on the Activation Function. The input vector is mathe-
matically represented as

Input = [i1, i2 . . . , in] (1)

2) NEURON WEIGHTS
This is the channel through all the inputs that have a weight
associated with it. Each input will have a weight associ-
ated with it. The weights are smaller random values as it
makes the network simpler. Equation 2 is the mathematical
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FIGURE 4. Training and testing process of the model.

representation of the weight matrix.

Weight = [w1,w2 . . . ,wn] (2)

The Scalar product of ‘Input’ and ‘Weight’ is passed to the
summation unit. The mathematical representation for this is
shown in equation 3.

Result = [i1, i2 . . . , in]X [w1,w2 . . . ,wn] (3)

3) SUMMATION
It multiplies the components of the input features with the
weights and ultimately adds all of them. A bias ’b’ is added
to the output of the Summation circuit.

Sum(output) =
n∑
0

Result + bias (4)

4) ACTIVATION FUNCTION
The result of the Summation circuit is passed to theActivation
Function. It maps the summation of weighted input to the
output of the neuron. It activates the neuron based on the
threshold value. There various non-linear activation functions
such as tanH, sigmoid, ReLu available [42]. However, this is a
multi class classification problem. A softmax activation func-
tion is used. Error correction is done using backpropagation,
where new weights are calculated and again passed through
the network. This is computed using the following equation :

Weight (new)=Weight (old)+ lrate (Actual−Predicted)

(5)

This process continues till the error value between actual
and predicted values become less. This depends on the batch
learning rate’lrate’used.

5) NETWORKS OF NEURONS
A layer is a row of neurons, and a network can have several
layers. The network topology refers to the architecture of the
network. It comprises the input layer, hidden layer, and output
layer. With this, the perceptron will get trained and perform
the required task.

C. RICE DISEASE DIAGNOSIS USING
AGRO-METEOROLOGICAL DATA:
MLP ARCHITECTURE
Numpy, scikit-learn, pandas, Keras, and Open CV packages
are installed. The dataset is loaded. The columns that have
continuous data in them are defined. A sequential model is
created by adding a series of layers. The 70-20-10% train
validation test data split is used to build the model. The MLP
architecture [42] is used to construct this model that consists
of three layers. The network topology used to construct the
model is 4-7-4 as the number of inputs is four parameters
and 7 is the number of hidden layers, and 4 is the number of
output classes. The dense class defines them with activation
function applied is ReLu. In the computations of the hidden
layer, the loss function must be specified to evaluate a set
of weights, and the optimizer must be specified to search
through different weights for the network. In this case, the
loss function is categorical cross-entropy as the output is
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FIGURE 5. Unimodal MLP architecture to extract features from
agro-meteorological data.

multiple classes of rice diseases, and the efficiently working
optimizer is Adam. The optimized learning rate applied to the
model was 0.01. Finally, the Softmax activation function is
used to classify multi classes of rice infections. The accuracy,
precision, and F1 score for rice disease classification are the
metrics used. By invoking the model’s fit ( ) function, the
model is trained or fit on the loaded data. Training takes
place in epochs, with each epoch divided into batches. The
batch size is 32, and the number of epochs considered is
500. The model is finally evaluated and achieves an accuracy
of 91.25%. Figure 5 shows the MLP architecture network
topology used to implement Rice disease diagnosis.

D. CONVOLUTIONAL NEURAL NETWORK (CNN)
The images of rice plants contain thousands of pixels that
are stored in Red, Green, Blue (RGB) forms. The features
in images are non-linear. CNN is the preferable approach to
fetch out the complex features from the images. The basic
building blocks to construct a CNN consists of kernel, stride,
padding, pooling, and flattening [51]. In the proposed system,
the building blocks are utilized to obtain an activationmap for
3D images over 2D images.

1) KERNEL
It is a filter that extracts image characteristics. It is a tiny
matrix that traverses the image input data, performs the scalar
product with the particular cell of the input data, and returns
the matrix of scalar products as an output. The stride value
causes it to move over the input data. The dimensions of the
activation map can be calculated using equation number 6.

Koutput = [sizeof (input)− sizeof (kernel)]+ 1 (6)

2) STRIDE
The filter rasterizes the rice input image from left to right and
top to bottom, changing the one-pixel column horizontally
and one-pixel row vertically. Stride is the dimension of the
movement matrix that is applied to the input image. The
height and width dimension of the stride is symmetrical.

Soutput =
[
sizeof (input)−sizeof (kernel)

stride

]
+ 1 (7)

3) PADDING
The method in which the number of pixels required by the
convolutional kernel to process the edge pixels is added. The
data is preserved without sacrificing essential attributes.

Pout =
[
sizeof (input)−sizeof (kernel)+(2padding)

stride

]
+ 1

(8)

4) POOLING
Pooling is required to down sample feature detection in fea-
ture maps by summarizing features in feature map patches.
Average pooling and maximum pooling are two standard
pooling methods. Max Pooling summarizes the average pres-
ence of a feature and discards unnecessary features.

5) FLATTENING
The feature map obtained from the pooling layer is
a multi-dimensional vector. The process to convert this
multi-dimensional vector to a 1D vector is called flattening.
This 1D vector is then fed to the classifier to predict the rice
diseases.

E. RICE DISEASE DIAGNOSIS USING IMAGE
DATA: CNN ARCHITECTURE
The input image is a multidimensional matrix of rows,
columns, and depth. The size of the input image given to
the model is 200*200*3. Initially, a CNN model is built
using the build () method that takes four parameters: rows,
columns, depth, and classes. The input image dimensions are
200*200*3*5 as 3 is the layers of colors, and the model’s
output is classifying four classes of rice diseases. The model
is defined as Sequential as the layers are added serially to the
model. After the initialization of themodel, the layers in CNN
are added. By applying convolution filters, CNN automati-
cally learns the features, the building blocks for rice diseases.
The size of the convolution layer is 200*200*32. The first
convolution layer learns 32 features. The dimension of the
input image is kept intact by adding padding bits. The num-
ber of convolution layers used is 2. The second convolution
layer learns 64 features. ReLu activation function is activated,
followed by the Max-pooling layer. The dimension of the
image is reduced to half. The input image is of rice disease,
represented as a vast matrix, and the kernel is a thin matrix
that slides all over the image, starting from the top left. The
kernel size used is 3*3 so that a valid integer number comes
at the center of the image. The dropout layer with a value of
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FIGURE 6. Unimodal CNN architecture to extract features from images.

0.2 is added after the max-pooling layer to avoid overfitting,
which means some connections between layers are removed.
The flattening layer is applied to the previous max-pooling
layer output that is 25*25*128. After flattening, this becomes
a 1-dimensional array with 160000 values in a single vector.
The number of dense layers is two, the number of neurons in
the first fully connected layer is 1024, and the second layer
is reduced by half, thus 512. The nonlinear ReLU function
further activates this. After this, one more fully connected
layer is added, equal to the number of rice disease classes the
model is diagnosing, which is 4. This dense layer is then given
as input to the Softmax classifier, giving the probabilities for
each class type. The highest probability of class means that
class is the diagnosis of a rice disease. Figure 6 shows the
unimodal CNN architecture used to detect rice diseases on
the basis of images.

A deep learning library Keras is used to develop a Rice
image classifier. The training, validation, and testing dataset
split is 70%, 20%, and 10%, respectively. Fit () is used to
train the model. Adam optimizer is used for training the
model. As it is a multi-class classification problem, categori-
cal cross-entropy is the loss function used. The best scores of
evaluation parameters like Accuracy, Precision, F1 score, and
Recall are obtained using 500 epochs along with a learning
rate of 0.01 with a batch size of 32 while training the model.
The testing accuracy achieved is 82.03%.

F. RICE-FUSION: A MULTIMODAL DATA FUSION
FRAMEWORK FOR RICE DISEASE DIAGNOSIS
In the paper, a novel model named R-Fusion is proposed to
diagnose rice diseases accurately. R-Fusion is a Keras-based
model that accepts inputs from different modalities like
numeric or continuous data from sensors and rice image data.

A single network is trained on this multimodal data. The
model needs to classify rice diseases accurately by accepting
inputs from multiple modes, also called mixed data. These
inputs are dissimilar from one another. Both the sources
contain complementary information that improves the over-
all performance of R-Fusion in classifying the rice diseases
based on these inputs.

1) BUILDING OF RICE-FUSION MODEL
The Rice-Fusion model building process is comprised of
building two sub-models that are capable of handling inde-
pendent data. The first sub model is constructed using the
MLP model that handles agro-meteorological data, which
is continuous in nature. The second sub model is building
a CNN that operates on rice disease leaf image data. Once
these two sub models are constructed, they are concatenated
to form the multi modal Rice-Fusion model. Figure 7 shows
the Rice Fusion model framework.

Initially, to load the agro-meteorological dataset, Pandas
data frame is used. Later Rice image dataset is loaded
and scaled to the range of 0 to 1. To convert the text
into integer labels in the dataset Label Encoder() from the
sklearn.preprocessing module is used. The dataset is split into
training, validation, and testing sets with a 70:20:10% ratio,
respectively. 70% data is used to train the model. 20% data is
used to evaluate the model’s performance, and the remaining
10% of test data is used to test the model’s performance.
Min-Max scaling is performed on continuous features, and on
categorical features, one-hot encoding is applied. Later both
the features are merged together.

Initially, MLP and CNN models are created. The outputs
of MLP and CNN are concatenated using concatenate ().
This merged output is now given as input to the final set
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FIGURE 7. Multimodal rice-fusion architecture.

of layers as the output of both MLP and CNN. The model
structure of the R-Fusion is based on the outputs of MLP and
CNN outputs individually. There are two inputs to the Rice-
Fusion model. The output of the MLP network is 4-7, and
200-100-50-25 is the output of CNN. The input that is given
to the new Keras model is the feature vector from MLP and
CNN architectures. The feature vector extracted fromMLP is
7*1 vector, and the feature vector from CNN is 25*1. These
outputs are then concatenated, and a combined 1-dimensional
vector of 32 is obtained. After this, two more fully connected
layers are applied. The first layer has neurons 20, and the
second layer has ten neurons. The nonlinear ReLU function
further activates this.

The compilation is the last stage in the Rice-Fusion build-
ing process. Keras provides a method called compile ()
to compile the model. The three most vital arguments for
the compile method are loss, optimizer, and metrics. The
value of the loss function is set to cross-entropy. Optimizers
play a critical role in improving the accuracy of R-Fusion.
There are several optimizer options to choose from. The
comparison of seven optimizers, namely Stochastic gradi-
ent descent (SGD), RMSprop, Adagrad, Adadelta, Adam,
Adamax, Nadam, is performed. It can be summarised that
Adam outperforms all the optimizers considered for exper-
imental analysis; therefore, Adam is chosen as the best opti-
mizer to perform experimental work as it expedites the model
training and minimizes the computational costs. The learning
rate applied is 0.001 with a decay of 1 X 10-3. The perfor-
mance of Rice-Fusion is evaluated by using accuracy as a
metric. After successful compilation of Rice-Fusion, the next
step is to train it. Rice-Fusion is trained by using the fit() func-
tion and evaluates the performance on the training dataset.
The experimental work is carried out for 500 epochs, and the

batch size used is 32. Backpropagation is used to fine-tune all
of the weights. After this, one more fully connected layer is
added, equal to the number of rice disease classes themodel is
diagnosing. The last layer will have four neurons as the final
output classes ‘‘Healthy,’’ ‘‘Bacterial Blight,’’ ‘‘BrownSpot,’’
‘‘Sheath Blight’’. The activation function used to classify the
four rice disease classes is Softmax.

G. VARIANTS OF RICE-FUSION FRAMEWORK: MAX
RICE-FUSION AND AVERAGE RICE-FUSION
The two variants of the Rice-Fusion model are proposed in
this subsection, namely Average Rice-Fusion and Max Rice-
Fusion. The framework for Average Rice-Fusion architecture
is depicted in Figure 8. The average Rice-Fusion method,
in contrast to the Rice-Fusion model, trains individual classi-
fiers for individual modalities. The prediction from individual
modalities, i.e., predictions from MLP and CNN classifiers,
are obtained. Later these predictions are concatenated, and an
average of both predictions is calculated. Finally, the model
gives one classification category based on the fused features.

AverageRiceFusion (output)

=

[
Output (MLP)+ Output (CNN )

2

]
(9)

The average fusion model faces specific challenges, such
as high computational time, as it must train two different
classifiers independently.

The Max Rice-Fusion model outputs the classification
result as the output of the classifier, which has produced
a higher accurate prediction. The classifier which classi-
fies more accurately, the result generated from that classi-
fier is the final output. Figure 9 represents the overview of
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FIGURE 8. Average rice-fusion framework.

Max Rice-Fusion framework.

MaxRiceFusion (output)

= max [Output (MLP) ,Output (CNN )] (10)

All three models were implemented, and comparative
analysis represents that the Rice-Fusion model is the best
approach to classify rice diseases. The next section discusses
the result analysis.

V. RESULTS AND DISCUSSION
A novel framework based on the concept of multimodal data
fusion is proposed in this paper to diagnose rice crop diseases
and healthy rice crops. The two diverse modalities are con-
sidered for the proposed work, namely agro-meteorological
attributes and images of rice crops. The CNN architecture
with two dense layers is used to extract the features from
the images, whereas MLP is used to extract the features
from agro-meteorological data. As rice disease classification
involves images as well as numeric data, it consumes huge
memory. So Google Colab, an open-source GPU, is used
to perform all the experimentation of the proposed model.
Python 3.7 programming language is used for the implemen-
tation. Table 2 shows the hardware specification of GPU and
CPU used for training and testing of the model. The MLP
model starts converging at the 40th epoch, and the CNN
model stabilizes itself approximately at the 120th epoch. The
fused model stabilizes itself approximately at around the 40th
epoch. The performance of the individual models is less as
compared to fusion models.

The unimodal modalities help each other co-learn the fea-
tures and learn whether the features complement and sup-
port to classify diseases more accurately. Thus the system
obtained is more consistent, reliable, and accurate to diagnose
the rice disease. The independent models, namely CNN and
MLP, have achieved an accuracy of 82.03% and 91.25%,
respectively, when tested again on rice disease data. In the
proposed system, the features from both the unimodal models
are concatenated, and its accuracy is 95.31%, which is greater
than that of independent models. The other variants of Rice

TABLE 2. Hardware specification of proposed framework.

Fusion also achieved good accuracy when compared with
individual models.

A. PERFORMANCE EVALUATION METRICS
The datasets used are skewed in nature. The classifier
should not take advantage of its skewness. The following
set of metrics, such as Confusion Matrix, Precision, Recall,
F1 score,Specificity,Negative Predictive Value(NPR),False
Positive Rate(FPR), False Negative Rate(FNR), Matthews
Correlation Coefficient(MCC), and Accuracy, are used to
understand whether the designed classifier is taking advan-
tage of data skewness. This helps to understand the perfor-
mance of the classifier.

B. CONFUSION MATRIX
The confusion matrix for two unimodal architectures and
three variants of multimodal data fusion architectures are
calculated and is represented in Figure 10. This parameter
basically tells that howmany times the designed classifier got
confused. This is a matrix comprised of rows and columns.
The rows are an actual count of the rice diseases, and the
column has a predicted count of rice diseases. The predicted
count is predicted by the classifier. The classifier is said to
be best if it has only true positives and true negatives. The
diagonal values in the Confusion matrix should be non-zero.
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FIGURE 9. Max rice-fusion framework.

Ideally, other values should be zero, which means that the
classifier designed is strong. After comparing the confusion
matrix of multimodal fusion models and individual models,
it is prominent that the percentage of false positives and false
negatives are lowered with multimodal models. Thus it can be
said that the multimodal data fusion models outperform the
independentmodels. Out of the Brown spot images in the test-
ing set, 14 images have been misclassified as blight disease.
The reason formisclassificationwould be similar geometrical
characteristics amongst the rice disease classes. However, it is
observed that Rice Fusion architecture is obtaining excellent
performance in identifying other classes of rice disease, and
the accuracy for most of the rice disease is above 91%.
Therefore, it can be summarized that the proposed R-Fusion
framework is the best approach to identify rice diseases as
there are minimum inaccuracies in identifying rice diseases.
The main factor for excellent performance is the usage of
environmental attributes and image data, which reduces the
possibility of creating confusion for the model.

FIGURE 10. Confusion matrix for proposed multimodal rice-fusion
framework.

C. PRECISION. RECALL, F1 SCORE, ACCURACY
Once the confusion matrix is calculated, calculating Preci-
sion, Recall and F1 score values is easy. Precision is the
percentage of correct positive predictions made by the pro-
posed model. The recall is the percentage of classifying the
actual positive values classified by the classifier out of the
total positive values. It is convenient to combine Precision and
Recall, and the metric obtained after combining both metrics
is the F1 score.

D. SUPPLEMENTARY PERFORMANCE METRICS FOR RICE
DISEASE DIAGNOSIS
Specificity is the proportion of healthy incidences of crop
that tested negative when compared to the total number of
incidences without the disease. It identifies incidences that do
not have a disease. If the value of specificity is higher then
the model has the highest capacity to identify the incidences.
The test that has specificity value as 1 will identify all of
the incidences that do not have the disease. The Negative
Predictive Value (NPV) is the probability that the rice disease
is not present when the actual result is negative. The False
Positive Rate (FPR) is the proportion of negative cases in
the data that were incorrectly identified as positive cases.
If the false positives rate is 0.0 then the model performs
best. 1 – Specificity is another way to calculate it. The
False Negative Rate (FNR) is the probability that a diseased
incidence is missed by the classifier. Matthew’s Correlation
Coefficient (MCC) is a parameter to measure model perfor-
mance. It calculates the disparity between actual and expected
values. True negatives, true positives, false negatives, and
false positives are all factored into the coefficient. Only if
the forecast delivers good rates for all four of these areas
does this trustworthy metric produce high scores. MCC is a
number that runs from -1 to 1, with 1 representing the best
agreement between actuals and projections and zero repre-
senting no agreement at all. Table 3 represents the quantitative
comparison of unimodal and multimodal fusion techniques
based on various performance metrics Table 4 shows that
Rice-Fusion when compared to other unimodal and multi-
modal architectures, outputs higher F1 scores.
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TABLE 3. Quantitative comparison of unimodal and fusion models.

FIGURE 11. Accuracy comparison of different unimodal and multimodal
data fusion models.

The overall accuracy scores for unimodal and multimodal
models are represented in Figure 11. It states that all the
variants of fusion models outperform individual models as
the classification is done on the basis of both modalities.
Thus, the fused model is stronger, consistent, reliable, and
fault-tolerant to perform the rice disease classification task.
The features from both modalities are combined before clas-
sification, which makes Rice Fusion architecture most accu-
rate for rice disease classification.

E. LOSS ANALYSIS OF RICE-FUSION MODEL
The minimum the value of loss function less is the number of
errors in the model. The model aims to have a minimum loss
of function. The model computes for 500 epochs, and it can
be observed that the model starts converging from the 218th
epoch over training data. The total loss is approximately 0.1.
The learning rate of 0.01 is set to minimize the loss in the
proposed approach. Figure 12 shows the classification loss
of the proposed model.

FIGURE 12. Classification loss of rice-fusion model.

F. COMPARISON OF RICE-FUSION FRAMEWORK
WITH THE OTHER RELATED MULTIMODAL
DATA FUSION FRAMEWORKS
Table 3 compares the Rice-Fusion framework with other
existing multimodal data fusion models for crop disease clas-
sification in the literature. The existing studies use datasets
captured by them or the datasets available in the public
domain for validating their models. The dataset is collected
in real-time, and the model is validated against this dataset.
As rice is considered a staple food all over the world,
it needs to be conserved. Very little research has been done
on diagnosing multiple types of rice diseases using the mul-
timodal data fusion approach. Keeping this in mind, the
proposed model focuses on developing a model based on
multimodal fusion that will complement independent modal-
ities to increase classification accuracy.

The overall accuracy achieved by [32] is 97.5% which
is slightly higher than that of the proposed model, as the
authors have focussed on classifying diseases related to
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TABLE 4. Comparison of rice-fusion framework with the other related multimodal data fusion frameworks.

multiple crops. The authors have used the dataset that com-
prises 50,000 images as the number of images is higher accu-
racy increases. The proposed model focuses only on different
rice diseases. Hence slight disparities are tolerable. Thus, the
proposed model is the best fit for rice disease diagnosis as it
is based on a fusion approach.

G. LIMITATIONS OF THE PROPOSED WORK
Despite the fact that the paper proposes a unique Rice-Fusion
model, a multimodal data fusion technique for rice crop dis-
ease diagnosis, and achieves good results for the dataset, it has
significant limitations. The following are some of the study’s
limitations, along with a possible remedy to these issues:

• When image modality is considered, the limitation of
rice disease misclassification can occur as there is a
similarity between the geometrical features of the rice
diseases. Hence to overcome this barrier, more image
datasets corresponding to the environmental dataset with
similar geometrical properties should be necessary to
train the network. It is also recommended to use a deep
learning approach that can efficiently classify rice dis-
eases even with tiny feature dissimilarities.

• The issue of an imbalanced dataset has not been ade-
quately addressed. It is very hard to obtain a balanced
dataset for diverse types of rice diseases because of
climatic and geographical difficulties. Furthermore, the
incidence frequency of agricultural diseases in real-time
applications may differ. The proposed model is able to
diagnose the multiple rice disease categories; however,
the estimation of disease severity is not given attention
as this is also a major step in an integrated rice disease
management system.

• Rice Fusion model could identify crop diseases in
various real-time conditions despite certain insurmount-
able uncertainties such as illumination and noisy back-
ground. The overfitting problem is predicted to occur
during the training stage due to a lack of appropriate
photos with varied agro-meteorological circumstances.

The techniques such as Generative Adversarial Net-
works (GANs) might be used to address the problem.

• As two different models are executed parallelly for two
different modalities, the performance of the Rice Fusion
model depends on the performance of the two models
running in earlier passes. The expected performance
can be achieved by training the model intensively using
appropriate datasets.

VI. CONCLUSION AND FUTURE DIRECTIONS
The proposed Rice-Fusion framework is an AI-based mul-
timodal data fusion model in the agricultural domain used
to diagnose different rice diseases automatically. The three
classes of infections such as Brown spot, Rice blast, Bacterial
blight, and one type for the healthy category is considered for
the study. The data collected is unique as it has 3600 sam-
ples of both modalities, images, and environmental attributes.
These two modalities are fused using fusion models such as
Early and Late Fusion approaches. This work will contribute
towards the agriculture field as an emerging technology that
will assist farmers in the decision-making process related
to rice crop diseases. The decision provided by the model
is a combination of two modalities that enhance the perfor-
mance and robustness of the system. The Rice-Fusion data
fusion architecture outperforms the unimodal data models by
co-learning, complementing, or opposing the unimodal data
models. The system is more reliable and fault-tolerant. The
system is built upon deep learning neural network approach
and therefore requires a large number of data samples for
appropriate training of the model. The comparative anal-
ysis made in the paper shows that the Rice-Fusion data
fusion approach achieves an accuracy of 95.31% and thus
outperforms other unimodal approaches such as CNN and
MLP architectures. The future work would focus on col-
lecting balanced datasets for diverse types of rice diseases
because of climatic and geographical difficulties. The pro-
posed study’s results are very encouraging in diagnosing
healthy and infected leaves with various rice diseases in real
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time conditions. However, further, research can focus on seg-
menting the infected portions of the leaf images. In addition
to this, the severity level of the diseases can be quantified
and providing fertilizer recommendations based on the type,
and the severity of the disease can be interesting future work.
Even though the systemworks on real-time data, it is partially
automated. So this can be one of the future contributions to
the work. As a result, more research should be conducted to
implement an automatic and robust system that the farmers
can utilize to detect rice diseases. This system could include
applications based on agricultural sensors, which could help
to modernize the agricultural industry. Such an integrated
management system will help the farmers retain the crop’s
natural quality, making it more organic.
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