IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 3, 2021, accepted December 28, 2021, date of publication January 6, 2022, date of current version February 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3141014

Technological Foundations of Ontological
Ecosystems on the 3rd Generation Blockchains

MIREK SOPEK !, DOMINIK TOMASZUK 2, SIYMON GLAB3, FILIP TUROBOS?,
IVO ZIELINSKI'#, DOMINIK KUZINSKI', RYSZARD OLEJNIK',

PIOTR LUNIEWSKI'!, AND PRZEMYStAW GRADZKI'
IResearch and Development Department, MakoLab SA, 91-062 £6d7, Poland
2Institute of Computer Science, University of Bialystok, 15-328 Biatystok, Poland
3Institute of Mathematics, £.6d7 University of Technology, 93-005 L6dZ, Poland

4Ivo Zieliriski DLT Consulting, 90-368 £.6dZ, Poland

Corresponding author: Mirek Sopek (sopek @makolab.com)

This work was supported in part by the Ontochain (European Unions Horizon 2020 Research and Innovation Program) under Grant
957338, and in part by the GraphChain—a framework for on-chain data management for Ontochain under Grant 1477973.

ABSTRACT In this article we present the technological foundations on which an ecosystem of semantic
data objects can be implemented on the latest Blockchain based systems. As the most important citizens
among the semantic data objects are ontologies, the ecosystem is referred to as Ontospace. The foundations
can be characterized by their architectural, cryptographic and transactional aspects. The architectural aspect
borrows from the latest Layer-2 protocols of the 3rd generation blockchains and from the rules of Linked
Data systems creation. The cryptographic aspect represents an original work that attempts to resolve the
issue of efficient hashing of the graph data structures. The transactional aspect is concerned with the graph
replication consistency, conditions for the direct access to graph data from the blockchain smart-contracts
and with linkage between sidechains bearing semantic objects and the main network. The large parts of the
work were implemented in the context of the Ontochain project — a part of the Next Generation Internet EU

Initiative.

INDEX TERMS Blockchain, ontologies, semantic web, knowledge representation, RDF hashing algorithms,

distributed databases.

I. INTRODUCTION

Blockchain technology [1], [2] has revolutionized the
ways in which distributed databases are designed and
implemented. Fully decentralized with cryptographically
guaranteed immutability, consistence and persistence of
data, Blockchain offers a general conceptual framework for
the ultimately secured storage of data. However, as the
technology was first implemented to facilitate a new kind
of financial transactions and was later developed to enable
general programming through the use of programs called
smart-contracts which implemented generalized transactions,
it was never meant to store large amounts of data or the
data of the structure imposed by underlying data model, like
relational databases, key-value or graph databases. If storing
data on the Blockchain itself is an inevitable demand of a
given project, the developers can do so by serializing the
data elements and embed them into blocks of the chain.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianmaria Silvello

VOLUME 10, 2022

However, such an approach is inefficient. It does not facilitate
efficient querying of data. For many popular Blockchains
associated with traded cryptocurrencies it is also costly. The
typical solution is to store data in some old-style centralized
databases while keeping the data elements digests (hashes)
on the Blockchain. To improve the storage model, instead of
centralized database, distributed P2P data sharing networks
have been invented, offering better data persistence.

This fundamental deficiency of standard Blockchains is
particularly troublesome when the data to be stored is used
to build knowledge representation systems, like Knowledge
Graphs [3] or Ontologies [4]. What these systems desire the
most is trust, the notion of shared truth and efficiency of
knowledge discovery, extraction and consumption. When it
comes to trust, the awareness of the need for mechanisms that
makes it a fundamental feature of knowledge representation
is present from the inception of the particular branch of
the domain, namely — the Semantic Web [5]. The original
Semantic Web Layer cake depicted the trust layer on top of
the stack. However, there is still no unified and holistic trust

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 12487

https://orcid.org/0000-0003-0378-5125
https://orcid.org/0000-0003-1806-067X
https://orcid.org/0000-0003-4970-4554

IEEE Access

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

management model universally adopted even by the Semantic
Web community [6].

On the other hand, trust in data consistency and immutabil-
ity is the most important feature of Blockchains. Even in
the trustless environment of the permissionless Blockchains,
there are no reasons not to trust the data. The entire ecosystem
of cryptocurrencies and decentralized financial products has
been built on the notion of Blockchain trust.

The opportunity of using the Blockchain trust model
to bring higher security and confidence in data motivated
creators of solutions like: BigchainDB [7], ProvenDB [8],
FlureeDB [9], Exonum [10] or ChainSQL [11]. The authors
of this paper have created a working model of a system
that directly addresses the challenge and brings Blockchain
mechanisms to the RDF graph database [12]. This model
is called GraphChain [13], and its first application was
for enhancing trust of the digital identity system for legal
entities [14].

Recently, the European Commission Next Generation
Internet! initiative has launched a project called Ontochain.?
The project aims at creation of ‘“Blockchain-based knowl-
edge management solutions that address the challenge of
secure and transparent knowledge management as well as
service interoperability on the Internet”.> The authors of
this paper have proposed a construction of a framework
for on-chain data management for Ontochain based on the
concept of aforementioned GraphChain solution.

The framework, depicted in the Figure 1, has been
designed as an ecosystem of blockchains compliant with
Blockchain Layer-2 protocol in which multiple sidechains
coexist to provide services to different application domains.
The Blockchains of the ecosystem can be closely coupled
with graph databases, so that Blockchain state of the world
includes the graph database state of the world. If the graph
database is an RDF store, than the RDF named graphs
correspond to the blocks of the Blockchain and effectively
form a chain of distinguishable structures synchronized with
the chain of blocks. The building blocks of the ecosystem
called Ontospace (representing the entirety of Blockchains

and semantic data pools) are:
o OntoSidechain — a single Blockchain of the Layer-2

protocol sidechain type,

« Ontonode — a single node of OntoSidechain,

e Ontopod — a part of Ontonode responsible for
handling the semantic data chains of named RDF
graphs — implemented with the use of the RDF graph
databases (triplestores)

o Ontoshell — software modules for external communica-
tion for Ontonode (API & Linked Data via HTTP),

o OntoHub - a special OntoSidechain designed to store

the most important top ontologies for the domain.
Designing and implementing such a system required

meeting many challenges resulting from the architectural,
1 https://www.ngi.eu/

2https://ontochain.ngi.eu/
3 https://ontochain.ngi.eu/About

12488

cryptographic, and transactional aspects of the system. The
architectural aspect concerned the implementation details
of the Layer-2 protocol which was assumed to be the best
foundation for the ecosystem construction and the design
of components that allow for interaction with the system
by standard web-based methods. We address this aspect
in Section II. The cryptographic aspect concerned specific
algorithms for calculating hash functions for graph structures
and is addressed in Section III. Section IV elaborates on the
mechanisms for transactionally correct synchronized updates
of the Blockchain and graph database states. Section V is
devoted to a discussion of the related work. The paper is
concluded with a summary of the results obtained and with
the plans for the further development.

a: CONTRIBUTIONS
The key contributions of our article can be summarized as
follows:

1) Development of the architecture of the Blockchain
based ecosystem for Ontologies and semantic data
objects that preserves both Linked Data and Blockchain
standards.

2) Exploration of the Layer-2 Blockchain protocols for the
creation of trusted Knowledge Representation systems
using multi-chain architectures.

3) Development of an innovative method for integrity
proofs (hashing) for the named RDF graphs which
includes the concept of vicious circle free RDF graphs.

4) A proposal for amodification of Blockchain (Ethereum)
client which improves access to a database synchro-
nised with Blockchain.

Il. ARCHITECTURAL ASPECTS

A. GraphChain - THE FOUNDATION OF THE ONTOSPACE
ECOSYSTEM

The definition and the first implementation of GraphChain,
which forms the foundation on which Ontospace has been
built was first proposed in 2018 [13].

GraphChain is a Blockchain solution where the fundamen-
tal data model is a collection of linked named RDF Graphs.
GraphChain implements mechanisms typical to Blockchains
such as data hashing, linking of named graphs into chains,
replication of named graphs and achieving consensus on their
content. The GraphChain network maintains a collection of
RDF graphs in the databases of the network nodes forming
the distributed system of chained RDF named graphs [15].

The fundamental advantage of such approach for the users
is that they can work with the chained named graphs using
standard tools developed in the domain of semantic web
technology like SPARQL for quering [16], Linked Data
mechanisms for accessing the nodes of the graphs [17],
reasoners for ontologies [18] and many others — while
benefiting from Blockchain mechanisms in their capacity to
guarantee trust to the data.

The first implementation of GraphChains used the Ist
generation Blockchain framework of Hyperledger Indy [13].

VOLUME 10, 2022

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

IEEE Access

OntoSidechain 1
GraphChain
(Other Onto projects)

OntoSidechain 3
GraphChain

Ontospace

OntoSidechain5 ------------

Hub

oD

GraphChain
(OntoHub)

\
By
‘
‘

OntoSidechain 4
(SSI)

FIGURE 1. The Ontospace ecosystem.

While it was beneficial for the first application (the
digital identity system for legal entities implemented for
LELINFO portal* [14]), it was not rich enough for more
sophisticated applications that required the capacity of a
smart-contract based transaction. The work reported here
implemented GraphChain using Ethereum based Layer-2
protocols, belonging to the family of the 3rd generation
Blockchains.

B. 3rd GENERATION BLOCKCHAINS AND THE LAYER-2
PROTOCOL

When designing the architecture for Ontospace, we were
motivated by the design principles of Layer-2 blockchain
protocols and by principles of distributed databases. The
Layer-2 blockchain protocols are overlying networks built on
top of standard (Layer-1) blockchains, characterized by inde-
pendent processing of transaction. From the standard, main
blockchain perspective, these transactions are authenticated
off-chain transactions, and the use of the main blockchain is
reduced to the resolution of disputes. This allows for much
faster transaction processing and the reduction of transaction
cost. From the architectural perspective, they can be created
in orthogonal way — as chains that operate independently and
in parallel to the main blockchain network. The growth and

“https://lei.info/

VOLUME 10, 2022

popularity of various kinds of Layer-2 protocols (e.g. State
Channels [19], Rollups [20], Plasma [21], ZK-STARKSs [22],
Commit Chains [23] and sidechains [24]) enabled creation of
innovative financial services based on blockchains, known as
DeFi (Decentralized Finance) [25].

However, while the main motivation behind the most of
existing Layer-2 protocol designs is related to scalability
issues related to the cryptoassets applications, what motivated
authors of this paper was the need to design a system that
combines blockchain design with the distributed knowledge
representation system design based on the RDF semantic
data objects. The design of such system assumes a specific
modification of blockchain client to allow for a non-standard
access to the RDF graph data. While such modification
would not be recommended on the main network (Layer-1),
it is possible on a Layer-2 sidechain, assuming that it
allows the parent chain smart-contract to verify operations
of the sidechains. Reasoning this way, we concluded that
the application of some basic principles of Layer-2 sidechain
protocols to the design of blockchain based knowledge
representation systems, allows for the creation of the concept
of an ecosystem, whose main purpose is to enable creation of
trusted representation for solutions like Knowledge Graphs,
Ontologies and semantic data sets — based on the RDF
representation.

12489

l EEEACC@SS M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

Blockchain node

Sync

GraphChain
Node
Ontonode

REST requests

middleware

Triplestore
Ontopod

Web service

Ontoshell

Websockets
etc...

FIGURE 2. The design of Ontonode - a single node of the OntoSidechain.

The top level architecture of the Ontospace ecosystem has
already been introduced in the previous section of the paper
(see Figure 1), and was described in details in the previous
paper [12]. However, for the completeness of explanation, let
us review the ecosystem architecture. The ecosystem contains
multiple sidechains, called OntoSidechains. Each sidechain
of the ecosystem is a full-fledged blockchain network
composed of Ontonodes, illustrated in the Figure 2. Ontonode
is an integrated software component composed of Blockchain
node, RDF Graph Database (Ontopod), synchronization
middleware, and a set of modules responsible for external
communication with the node (Ontoshell) which implements
methods allowing for accessing the data in the RDF Graph
Database.

Figure 3 presents another depiction of the ecosystem based
on elements typical to Layer-2 protocol solutions. There is
one particularly distinguished chain in the Ontospace — Onto-
hub. From the design perspective, it is identical to the other
OntoSidechains, but its application is different. Designed as
the primary distributed resource for the knowledge of the
ecosystem, it serves as the repository of its most important
(e.g. top-level) ontologies.

In accordance to the rules of Layer-2 protocols, the
sidechains of Ontospace, the OntoSidechains are teth-
ered (pegged) to the trusted parent network using mechanisms
of Merkle Trees built with hashes of Ethereum transactions
which include the RDF named graphs hashes. As this part of
our work falls into transactional aspect of the system, it is
described in Section IV. The section III is concerned with the
cryptographic method for the RDF graph hashing.

C. ARCHITECTURE OF THE ACCESS TO THE RDF GRAPHS
The design of the OntoSidechain assumes that each node
of the network (Ontonode) contains RDF graph database

12490

with identical content, i.e. the same chained sequence of
named graphs. However, when building the web interface
which allows for the interaction with the data according
to the Linked Data principles, it is important to provide a
unique end-point for the HTTP based access methods. This
requirement was behind the access architecture presented in
the Figure 4.

The access architecture assumes the presence of three
layers:

1) The layer of distributed RDF graph databases repli-
cated at every Ontonode of OntoSidechain.

2) The load balancer which distributes requests over the
nodes of OntoSidechain

3) The web interface which implements SPARQL end-
point, REST API and provides user interface.

In the PoC phase of the aforementioned OntoChain project,
the RDF databases were implemented using Blazegraph [18],
for the load balancer Nginx web server [26] was selected
and the web interface was implemented using Java Tomcat
webserver [27].

One of the most important functionalities of the
OntoSidechains is the ability to store ontologies. In a typical
scenario the ontologies are processed in the OntoHub chain.
For example, when a user plans to store ontology, the
process illustrated in Figure 6 is initiated. It begins with
the upload of the graph that represents an ontology. Firstly,
the graph in a serialization of choice (Ontohub supports
most of the RDF serializations) is posted to the Ontohub
web interface, and it is then redirected by the load balancer
to a selected Ontonode. Next, the service inserts the graph
into the graph database (Ontopod) using standard SPARQL
request or dedicated connector. When the insert succeeds,
synchronization middleware detects that change and sends
a new transaction to the blockchain node containing hash

VOLUME 10, 2022

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

IEEE Access

Parent chain

RDF / RDF-STAR Graphchains

v

P—P—P—D

Classic Ethereum chain

P—

LPG Graphchains

FIGURE 3. Ontospace as a collection of Layer-2 sidechains.

Ontohub website

Tomcat
HTML files| web
server

Java
backend

Ethereum Mainnet

GUI
REST requests
SPARQL queries

Load balancer (nginx)

Y

OntoHub
Graphchain

Ontonode Ontonode

Ontonode Ontonode

FIGURE 4. Access architecture to the OntoSidechain distributed RDF graph storage.

calculated from a new graph. After a successful transaction,
the web service is informed about that fact and can return
“success’’ response.

D. METAGRAPH
Because of the data immutability requirements, graphs stored
in the system cannot be changed or deleted. Thus, when

VOLUME 10, 2022

designing the graph database data management and the
Ontoshell functionalities, a unique approach was required.
Every time a graph is uploaded, Ontonode service has to
check if the graph already exists, and if so, change the graph’s
name and store it without modifying previous versions.
To keep track of the graph changes, the structure called
Metagraph was proposed. The Metagraph is a special named

12491

IEEE Access

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

real_graph_uri

did_v1 —agrch:metalastUpdateDate—>» dateTime_v1
grch:previousGraph

did_v2 —grch:metalastUpdateDate— dateTime_v2
grch:previousGraph

did_v3 —grch:metalastUpdateDate— dateTime_v3

grch:latestGraph

real_graph_uri

FIGURE 5. The metagraph.

RDF graph that has a name of an original graph uploaded by
the user (further named real_graph_uri). Its content is a
tree of graph version names with update dates for easy access
to graph history, and with a pointer to the latest graph in
sequence. The structure of Metagraph is depicted in Figure 5.

E. MODIFIED BLOCKCHAIN CLIENT

The key feature of the Ontonode is the tight coupling
between the blockchain client and Ontopod — the graph
database engine. In the case of Ethereum client, the coupling
enables the graph data to be available almost as on-chain
data, despite the fact that Ontopod object is external to
the blockchain client. Typically in such a situation, third-
party services, known as Oracles, connect smart-contracts
with the external data [28]. In the design presented here,
smart-contracts can interact with graph-data directly, without
mediation of an Oracle. This was achieved by the creation of
new EVM instructions (opcodes). In the PoC implementation
with Hyperledger Besu, it was straightforward to create such
new opcodes. At a minimum, a single read operation is
needed — a function accepting the named graph ID to be
fetched and returning the fetched graph. During the operation,
a connection with the graph database is used to fetch the
data. After the data is fetched, its integrity and authenticity
is also verified. In the simplest case, it is not even necessary
to modify the Solidity compiler to include the new opcodes.
It is possible to embed the new operation in a singleton

12492

smart-contract that can act as a proxy, accessed using its
address by all other smart-contracts requiring the graph
database access. In a more sophisticated implementation,
a modified Solidity compiler can translate an added language
construct to the EVM opcode. We will discuss transactional
aspects of such modification in the part IV of this paper.

Ill. CRYPTOGRAPHIC ASPECTS

An efficient mechanism for the RDF graphs integrity proofs,
realized by cryptographic hashing is an essential part of the
process of building a chained sequence of subgraphs (RDF
named graphs [29]) that follows the creation of Blockchain
blocks in OntoSideChains.

A. PRELIMINARIES

The graph data models are essentially different from the block
data models used by most of Blockchain implementations
and what is crucial in their handling is cryptographically
safe and repeatable computation of the RDF hashes (digests).
However, this seemingly simple task, is far from trivial [30]
due to the following circumstances:

o The presence of the “blank nodes™, i.e. the identifiers
which are implementation dependent, so they may
change while transferring the same graph between
different RDF databases, or even between different
access acts to the same database.

o No predefined order of RDF graph building blocks — the
triples. They form an unordered set, causing the same
graph serializations differences between different acts of
access.

o When an RDF graph is serialized by different software
routines, it can be encoded differently. As hashing is
sensitive to encoding, it is subject to encoding-related
problems.

There is also a more fundamental problem. The obvious
goal of RDF graph hashing is to ensure that any two
graphs that have the same hash are isomorphic. On the
other hand, as the graph isomorphism is an NP-complete
problem within the class of all possible RDF graphs, it seems
infeasible to design a universal hashing algorithm that would
be computationally efficient.

For that reason, when designing the Ontospace ecosystem,
we have defined a subclass of RDF graphs for which
we can construct a reliable, fast RDF hashing algorithm.
We call this subclass “a vicious circle free class”. The
possibility of RDF graph to contain vicious circles is linked
to the mechanism of blank nodes, i.e. the triples where
subject or object are not expressed as global IRIs but as
local addresses. Blank nodes represent unknown information
which can represent something in the real world. Searching
RDF graph for information can be compared to searching
the encyclopedia, where unknown terms are explained by
other terms, some of them unknown as well. Those unknown
terms are analogous to the blank nodes. While searching them
further in encyclopedia, we can find another unknown terms,
etc. It would be a logical error of an encyclopedia, if there

VOLUME 10, 2022

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

IEEE Access

is a circle in such a term explanation sequence. Imagine that
the encyclopedia entry “vicious circle” refers to “circulus
vitiosus’’, and ‘‘circulus vitiosus’ refers back to ‘‘vicious
circle”. In this case, the process of finding the entry meaning
would be its explanation (or it is rather a joke for those who
know its meaning), but in most cases, such looping is a logical
error known as a vicious circle. This reasoning demands a
more formal analysis.

B. VICIOUS CIRCLE FREE GRAPHS
The IRIs used in RDF graphs are global identifiers that refer
to any online resource, e.g. the IRI https://dbpedia.org/page/
Lemon refers to a lemon fruit in DBpedia [31]. Literals
are sets of lexical values. Blank nodes are locally-scoped
identifiers for resources that are not otherwise named.
Blank nodes cannot be referenced from outside of an
RDF document. They can be bijectively relabelled without
affecting the interpretation of the document. Accodring
to [29], we define I as a set of all IRIs, B as a set of all blank
nodes, and L as a set of all literals.

We also assume that r = (s, p, 0) is an RDF triple, where
s is a subject, p is a predicate, and o is an object. The typical
roles of elements s, p and o of RDF triple ¢ are as follows:

o subject s is either an IRI or a blank node that refers to
the primary resource described by ¢;

« predicate p is an IRI that identifies the relation between
the subject and the object;

« object o is either a literal, an IRI or a blank node that fill
the value of the relation.

According to [29], we define an RDF graph as a finite set
of RDF triples, G C IUB) x I x IUBUL).

RDF graphs are isomorphic if they are the same up
to bijective blank-node relabeling. Then, isomorphic RDF
graphs have the same content. An RDF graph is a set of
triples, so the triples in RDF dataset can be written in any
order; moreover, blank nodes can be labelled arbitrarily. It is
important to have an efficient algorithm finding whether two
RDF graphs are isomorphic. A formal definition of RDF
graphs isomorphism is the following.

Definition 1 (Isomorphism of RDF graphs): Let G and G/
be two RDF graphs. Let B and B’ be sets of all blank nodes
used in G and G’, respectively. We say that G and G’ are
isomorphic if there exists a bijection ¢ : B — B’ such that
for every RDF triple (s, p, 0)

(s,p,0)€G < (f(5),p.f(0) €C
where f(b) = ¢(b) if b € B and f(x) = x if x is IRI or literal.

C. EMBEDDING GRAPHS AND THE COMPLEXITY

Let G = (V, A) be a finite directed graph. That is G consists
of vertices v € V and arcs, that is ordered pairs (v, w) €
A. Two directed graphs G and H are isomorphic if there is a
bijection ¥ : G — H such that

(v,w)isanarcin G
if and only if (¢ (v), Y¥(w)) is an arc in H.

VOLUME 10, 2022

We say that vi,...,v is a directed circle in G if
v1,v2), ..., (Vk—1, vk) and (v, v1) are arcs in G. A special
kind of circle is a loop, that is a vertex v € G such that (v, v)
is an arc. A directed acyclic graph is a directed graph with no
directed circles.

Let G = (V,A) be a directed finite graph. Let
{vi,v2,...,v,} be an enumeration of all vertices of G and
fix n blank nodes b1, b, ..., b, and one IRI u. For any arc
(vi, vj) € A, we define an RDF triple (b;, u, bj). Let us define
an RDF graph G as a set of all those triples.

The RDF graph G looks very artificial. It consists entirely
of blank nodes and such a document contains no information,
but the structure of it includes G. It is defined against the
RDF spirit. The definition of RDF graph is so general that
it, unfortunately, includes such pathological examples. It is
possible to show how to refine class of RDF graphs to
omit such peculiar RDF documents, and still to have a large
enough RDF graph class that covers most of interesting
databases. Now, we will focus on showing that some kind of
refining is really necessary to build a fast hashing algorithm.
The following fact will allow us to prove that hashing
algorithm problem is NP-complete in the class of all RDF
graphs.

Theorem 1: Let G and H be two finite directed graphs.
Then G and H are isomorphic if and only if G and H are
isomorphic.

Proof: Let v : G — H be a graph isomorphism.
Then, G and H have the same number of vertices, say n.
Letvy,...,v, and wy, ..., w, be enumeration of G and H,
respectively, such that w; = ¥ (v;) for i < n. Further, let
bi,...,b, and b}, ..., b, be blank nodes used to define G

*¥n

and H, respectively. Note that

(bi, u, bj) € G < (v, vj)isanarcin G <=
(wi,wj) isanarcin H <= (b, u, b)) € H
which shows that G and H are isomorphic RDF graphs.
Now, suppose that G and H are isomorphic. It means that
there is a bijection ¢ between B = {by,...,b,} and B =
{b}, ..., b,} such that for every RDF triple (b;, u, b))

(bi,u, b)) € G < (p(by), u, p(bj)) € H.

We define ¥ : G — H by the formula: ¥ (v;) = wy if p(b;) =
b),. Note that v is a bijection. Then

(vi,v)isanarcin G <= (b;,u,b)) € G
(p(bi), u, (b)) € H < (Y (v;), ¥(v))) is an arc in H.

Therefore G and H are isomorphic. []

It is well-known that a graph isomorphism problem is
NP-complete for directed graphs. Theorem 1 along with
the fact that there exist trivial polynomial-time conversions
between graph G and corresponding RDF graph G implies
that an RDF graph isomorphism problem is NP-complete
as well. The embedding G +— G of directed graphs to the
class of RDF graphs that we have defined has a nice property
prescribed in Theorem 1. Let us generalize this property to the

12493

IEEE Access

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

following definition. We say that the embedding G — e(G)
of finite directed graphs into RDF graphs is proper whenever

G and H are isomorphic finite directed graphs <= ¢(G)
and e(H) are isomorphic RDF graphs.

Let C be a subclass of all RDF graphs. The fact that
isomorphism problem for C is not NP-complete implies that
there is no proper embedding of finite directed graphs into C.

D. VICIOUS CIRCLE FREE RDF GRAPH

Let’s define a type of RDF bases in which no blank nodes
reference sequence forms circles nor looping. We will call
them vicious circle free RDF bases (or graphs).

Let G be an RDF graph. Let B = {b1, ..., b,} be the set
of all blank nodes in G. By B(G) we denote a directed graph
whose set of vertices V3(G) consists of all blank nodes of G
and the set of arcs is given by

AB(G) := {(bi, bj) : (b, u, bj) € G for some IRI u}.

We will call B(G) := (Vg(G), AB(G)) a blank node subgraph
of G.

Definition 2 (Vicious Circle Free RDF Graph): We say
that an RDF graph G is vicious circle free if its blank node
subgraph B(G) is acyclic.

E. DETECTING RDFs WITH ACYCLIC 1B(G)-GRAPHS

There are many known algorithms for cycle detection for
directed graphs. Many of those are, in fact, adjusted version of
methods used for topological sorting (see [32, Section 22.4]
for details) of the graph. Here, we are going to present one
of such methods, based on Kahn’s algorithm, which works in
O(V + E) time complexity [32, Exercise 22.4-5.] (see [33]
for original paper).

Algorithm 1 presents a pseudocode, which happens to be a
completely valid Python code that performs the detection for
cycles in B(G) graph. For this method to be used properly, a
BG_Graph has to be read previously while simultaneously
keeping count on the structure of blank nodes.

F. INTERWOVEN HASH
Having a subclass of RDF graphs which do not have vicious
circles defined, we can safely proceed with a proposal of
hashing algorithm suitable for such class of RDF graphs.
We were inspired by the approach to the calculations of
RDF Graph hash (digest), first presented in [13]. The authors
of that approach defined the hash of the graph as a result of a
specific summation of the hashes of all triples of the graph:

N
D(S) = @l h(serialisation(t;))

We named this approach as “DotHash” algorithm. Its
summation operation is associative and commutative and
allows for the implementation of incremental algorithm in
which the computation of the hash of the graph created
by addition of new triples can be done by combining the
hash of original graph and the sum of hashes of the added

12494

1 Function cycleDetection (BG_graph):
2 queue <— new (Queue())
3 visited <— new (List())
4 for node in BG_graph do
5 node.temporary_degree <«
node.blank_in_degree
/+ We keep count of unused edges
for each node in a separate
variable. */
6 if node.temporary_degree equals 0 then
7 ‘ add node to queue
8 end
9 end
/+ The main loop now commences.
We ’'peel’ graph, taking one node
at the time. Taking out a node
with in-degree 0 temporarily
removes the edges coming out of
it, which decreases the in-degree
of other nodes. We can only ’'peel’
vertices with in-degree equal to
0. */
10 while queue not empty do
11 node <— queue.pop()
12 for each neighbour in node.blank_neighbours
do
13 Assign to L the number of edges from node
to neighbour
14 neighbour .temporary_degree <
neighbour .temporary_degree - L
15 if neighbour.temporary_degree equals 0
then
16 add neighbour to queue /* Mark
neighbour as suitable for
"peeling’ . */
17 end
18 end
19 add node to visited /* Mark node as
visited. =/
20 end
/x If some vertices remain
"unpeeled’ then we know that graph
contains a cycle. */
21 if 1en (visited) #1en (BG_graph) then
22 return True /+ Blank nodes graph
contains cycle. x/
23 else
24 return False /+ Blank nodes graph is
acyclic. x/
25 end

Algorithm 1: Detection for Cycles in B(G) Graph

triples. An optimal (i.e. exhibiting a good compromise
between performance and security) approach is based on
the “AdHash” algorithm [34] and defines the specific

VOLUME 10, 2022

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

IEEE Access

summation operation as a modulo operation with a suitably
large value of the divisor. Incrementality of the calculations is
of high importance for our application as it allows for a very
efficient implementation in situations permitting new triples
to be added to existing graphs. In addition to that, the method
allows for highly efficient optimization. However, the method
requires a very specific and non-generic approach when the
graph contains blank nodes. In the original approach, its
authors proposed a method where the blank nodes are labelled
using statements like:

[_bNode hasLabel L]

Such labels are then used to rename the blank nodes during
hash verification calculations. Of course, then, the calculation
of hash will result in the same value. While this approach is
practical, we did not find it generic enough and proposed the
modified DotHash approach.

We named our approach “Interwoven DotHash”. The
fundamental feature of the “‘Interwoven DotHash™ method
is its ability to compute the graph hash without prior
canonicalization of the entire graph nor a use of additional
triples with ad-hoc labels. We will also use ““iHash’’ acronym
for the method.

The method we propose ignores the actual format of the
blank nodes for the computation of hashes for the vicious
circle free graphs while securing the essential effect of
the blank nodes: their ability to what can be described as
“weaving”’ multiple triples together.

We assume that the hash of a named graph is computed as
the combining operation that is associative, commutative and
supports incremental hashing of the graph.

As it was for DotHash, the combining operation can be
implemented as a modulo (with a sufficiently large divisor)
of the hashes of the triples. The hash of the triple is computed
using the serialized triple form. Because the blank nodes are
anonymous, the actual form and names do not matter. What is
essential is the structure of the weaving of the triples together
in the vicious circle free graphs.

Using such an approach, we propose the following
algorithm for the calculation of the hash:

(1) If the triple does not contain a blank node, we compute
its hash by applying SHA-256 algorithm [35] for its
N-Triples serialized format [36].

(2) If the triple contains a blank node as its Subject,
we compute its hash as the sum of SHA-256 results
for the N-Triples serialized Predicate and Object and
SHA-256 results for non-blank nodes of all those triples
where the blank node appears in the Object nodes.

(3) If the triple contains a blank node as its Object,
we compute its hash as the sum of SHA-256 results
for the N-Triples serialized Subject and Predicate and
SHA-256 results for non-blank nodes of all those triples
where the blank node appears in the Subject nodes.

(4) If the triple contains blank nodes in both Subject &
Object nodes, use the above rules twice, once for
Subject, then for Objects.

VOLUME 10, 2022

1 Function hash (¢):

2 if t.subject is blank node then
3 serialisation(z.subject) «— "Magic_S"
/+ Constant for blank node in
subject. */
4 else
5 ‘ serialisation(z.subject) <— NTriples(z.subject)
6 end
7 if t.object is blank node then
8 serialisation(z.object) <— "Magic_0O"
/* Constant for blank node in
object. =/
9 else

10 serialisation(z.object) <— NTriples(¢.object)

/* If object is a literal we do
additional normalization. x/

11 end

12 serialisation(z.predicate) <— NTriples(s.predicate)

13 concatenation <—
Concatenate(serialisation(z.subject),
serialisation(¢.predicate), serialisation(¢.object))

14 return SHA-256(concatenation)

Algorithm 2: Basic Triple Hash Function

1 Function interwovenHash (G):

2 for z in G do
3 basicTripleHash < hash(¢)
/* Function from alg. 2 */
4 add to totalHash
/* Here we add hashes of
adjacent triples to prevent
ambiguity of blank nodes. =/
5 if z.subject is blank node then
6 for all triples with ¢.subject in object
position compute hash(r)
7 add to totalHash
8 end
9 if z.0bject is blank node then
10 for all triples with z.object in subject
position compute hash(r)
11 add to totalHash
12 end
13 end
14 return rotalHash

Algorithm 3: Interwoven Hash Function

The iHash pseudo-code is presented in Algorithm 2 and
Algorithm 3.

For practical application, we have implemented Interwo-
ven Hash in Java, C#, Python, Javascript and Solidity.

IV. TRANSACTIONAL ASPECTS
The design choices we have made in the process of creation
of Ontospace have impact on the transactional features of

12495

IEEE Access

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

the combined system of Blockchain and the RDF graph
database. In this section, we address the most important
processes of the combined system in its transactional
behavior:

a. Replication of the RDF named graphs and assurance of
consistency

b. Direct access to the RDF graph data using modified
Ethereum client

c. Tethering of the Layer-2 OntoSidechains into the parent
blockchains.

A. TRANSACTIONAL ASPECTS OF THE RDF GRAPHS
REPLICATION

To ensure consistency of the synchronised replication of
the RDF named graphs and the Blockchain replication and
consensus mechanisms, an elaborated protocol has been
proposed. The protocol assumes an interaction between the
replication of graphs and the Blockchain internal replication
mechanism through the use of specific smart-contracts. Such
an approach helps in the preservation of the proper sequence
of “world state” after transactions involving both graph
databases and the blockchain.

To explain how the protocol works, it is best to follow the
steps of the process from the user upload of a new graph to
the insertion of the graph into the database local to each node
of the system.

Figure 6 illustrates the process:

(1) User inserts a new graph through Rest API exposed by
the Ontoshell component of Ontonode.
(2) Ontoshell services are activated:

(2a) The Ontoshell service calculates iHash for the
new graph.

(2b) The graph is inserted into Ontopod (the graph
database).

(3) The “New graph” method of the Ethereum smart-
contract is executed, and the data about the new graph
is stored in the blockchain, which is then propa-
gated across the network through regular Blockchain
mechanisms.

(4) The other nodes get info from their local Blockchain
node about the new graph being available.

(5) The new graph info is retrieved from the smart-
contract.

(6) The graph data is requested from the source Ontopod
database.

(7) After validating graph data with iHash from the smart-
contract, the graph is inserted into the local Ontopod
instance.

1) GRAPH VERSION NAMES

An important factor of successful working of the process is
the named graph identification scheme based on Internation-
alized Resource Identifier (IRI). The named graph version IRI
is constructed in accordance with Digital Identifiers (DID)

12496

Syntax specification.” The adopted graph version IRI scheme
is:

did:ihash: {IHASH}: {VERSION_TIME}

where:
o THASH —iHash calculated for this graph written as hex-
string (no caps)
e VERSION_TIME — update date as Unix time with
milliseconds
We also used a regular expression to test the adopted IRI
validity:

~did:ihash: [0-9a-£f]{64}:[1-9]1[0-9]1%S

An example of the graph version IRI in the metagraph from
Figure 5 in N-triples format:

<did:ihash:548f41812b6c09%6bbf7fe5cfcbs
f9-a227cdf8fccabd4eadl7deeec05658b134f3e:
1515-522403487>

The identifiers of graph versions have a specific structure that
aids named graphs identification and management.

2) NEW GRAPH ADDITION

The graph database (Ontopod) endpoints are not directly
exposed to external users. Instead, there is a special layer
called Ontoshell, specifically designed to accept requests.
The primary Ontoshell interface implements the SPARQL
1.1 Graph Store HTTP Protocol [37].

After a POST or PUT request, the RDF graph is not
immediately stored in the graph database. Before that, iHash
of that graph is computed and a new IRI for the current
graph version is generated. Then, the graph is inserted into
the graph database, the metagraph is created (or modified)
and the smart-contract method is executed for adding the new
graph info to the blockchain.

3) GRAPH DATA PROPAGATION

Blockchain data is propagated through the network in the
standard way for the given Blockchain technology of choice
(in the case described here — Ethereum). On every Ontonode
there is a special task scheduled for polling blockchain ledger
for new transactions with graph data. When a transaction
with new graph arrives, Ontonode starts a graph database
synchronization operation.

4) GRAPH DATABASE (Ontopod) UPDATE

Ontonode reads metagraph IRl (real_graph_uri),
timestamp and iHash of the new graph content, assembles
the graph version IRI from this info and sends a request to
the source graph for actual graph data.

Then, a synchronizing code checks if the graph data iHash
matches the one from the smart-contract, and if the metagraph
content is the same as the local version (if present). If all
checks are successful, the new graph is inserted into local

5 https://w3c.github.io/did-core/#did-syntax

VOLUME 10, 2022

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

IEEE Access

(4) get new transaction
(5) get graph record

Eth 1 <

(3) Execute SC method
New graph

Eth 2

New graph:
(iHash, graphURI,
timestamp, source URL,
author)

(4) get new transaction
(5) get graph record

Eth 3 <

FIGURE 6. Ontochain synchronization overview.

Ontopod, the metagraph is updated and the node status is
synchronized.

5) ADDING NEW OntoSidechain NODE

When adding a new node to the chain, or when restarting it
after a longer pause, the synchronization mechanism is pretty
much the same as for the working node. The graph records are
downloaded in batches asynchronously. There is a separate
smart-contract on the blockchain for storing indices of the
last graph record synchronized for each node and also for the
URLSs of the nodes.

6) SMART-CONTRACTS

There are two smart contracts deployed on the OntoSidechain
blockchain that are responsible for the graph syn-
chronization mechanism: GraphEventStorage and
NodeSynchronizationRegistry.

The GraphEventStorage contract is responsible
for storing information about the graphs added to the
OntoSidechain. After adding a new graph to the database,
the Ontonode must call the addGraph function to notify all
other Ontonodes about the new graph. The data contained in
the GraphEvent structure will then allow other Ontonodes
to fetch the new graphs from their original source.

The role of NodeSynchronizationRegistry
contract is to persist the information about nodes and
about Ontonode graph synchronization progress, i.e.

VOLUME 10, 2022

(7) insert graph l

(7) insert graph I

Node 1
Ontoshell
Triplestore 1
Node 2
Ontoshell
(2a) calculate iHash
(2b) put graph in store (1) Insert graph
HTTP PUT /
HTTP POST
]
Triplestore 2 Publisher
Node 3

Ontoshell

Triplestore 3

how many graph events have been processed from the
GraphEvent Storage contract. Its most important field is
nodeSynchronizationProgress which is a counter
of the synchronized graphs.

If nodeSynchronizationProgress is equal to
GraphEventStorage.graphEventCount fora given
nodeId, it signifies that the Ontonode’s graph database
is up to date. If nodeSynchronizationProgress is
less than GraphEventStorage.graphEventCount
for a given nodeId, it signifies that the Ontonode’s graph
database needs to fetch new graphs from the source. If
nodeSynchronizationProgress is zero for a given
nodeId, it signifies that the Ontonode has not yet begun or
has just started synchronizing the first batch.

The key feature of the synchronizer is the use
of the smart-contract for monitoring its synchroniza-
tion progress. After it finishes synchronizing a batch,
it persists the index (N) of the last synchronized
graph in the NodeSynchronizationRegistry, ie.
the index in the GraphEventStorage.graphEvents array.
When the synchronization job runs again, it reads
the value from the index (N 4+ 1). If (N + 1) <=
GraphEventStorage.graphEventCount, it starts
the new batch.

The NodeSynchronizationRegistry smart-cont-
ract is also used to reinforce the replication mechanism.
In the basic algorithm described in Subsection IV-A4,
the synchronizer sends a request for the graph data

12497

IEEE Access

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

to the node that initially entered that graph into the
system. If that node was unavailable for some reason,
the synchronization process would be stopped. To pre-
vent that from happening, the synchronizer uses the
data from NodeSynchronizationRegistry to check
which nodes have already got the particular graph (through
nodeSynchronizationProgress field) and tries to
send the request to them to fetch the data.

B. TRANSACTIONAL ASPECTS OF THE MODIFIED
ETHEREUM CLIENT

To guarantee the direct access from smart-contracts to
the RDF graphs, we have proposed a modification of the
Blockchain client (we described it in the Subsection II-E of
the Section II. However, such modification have important
transactional ramifications as Ethereum is a ‘‘transaction-
based state machine” where all transactions in the blockchain
processed sequentially result in the same machine state, i.e.
“the version of the world of Ethereum”. All nodes of the
network have to arrive at the same ‘““world”’ state — otherwise,
network participants would see different states (ex. account
balances, elements of knowledge graphs) depending on
which node they ask. To fulfill this requirement, all trans-
action processing from existing blocks needs to be deter-
ministic. For this reason, in the standard implementation,
the following operations, common to every programming
language, cannot be performed by a smart contract:

« generating random numbers,

« directly calling an external APIs,

« external database operations.

The result of these operations can be unexpected and
vary depending on the runtime and execution environment.
API calls could succeed on some nodes, while failing on
others — the returned values could also be different.

If a modified Ethereum client was to add an ability for
smart contracts to access data outside of the internal state,
then such a mechanism would need to satisfy the following
requirements:

a: DATA IMMUTABILITY

Once accessed, the external data cannot be changed.
As Ethereum transactions must be deterministic, the data
access operations need to obey the same restriction. If the
underlying external data would keep changing, then the same
transactions would yield different states depending on when
they were executed: for example, a new node synchronizing
with the network processing old transactions would arrive at
a different machine state than the nodes that processed the
transactions as they were arriving. Henceforth, the underlying
external database has to be append-only with no ability to
delete old records. Moreover, it must be impossible to attempt
to access data that does not exist, e.g., pass an ID of a non-
existent record. If a past transaction failed to retrieve such
a record and at some future point it came to existence, then
divergent EVM states would occur — a state fork, as old
transactions would start yielding different outcomes.

12498

Transactions processing
in Ontopod A

Transactions
in block

T1/T2 T3 T4 T5

World
State B
R1/R2 R3|R4|R5
Database
records
World
State A
Transactions processing
in Ontopod B
Transactions
in block
T1|T2|T3|T4
World
State C

R1R2 R3|R4|R5|

Database
records

FIGURE 7. State synchronisation scenario.

b: EVENTUAL FINALITY

As Ethereum transactions processed by all the nodes in the
network must yield the same machine state, it is obligatory
that the external data provides time-critical guarantees of
finality. Once the external calls are executed, there has to be
a 100% certainty that they will yield the same results across
the whole network.

In order to achieve that, a condition similar to this needs to
be fulfilled: If a read from an external data source is executed
and data older than X blocks is accessed, then the operation
will be successful and return the same value for all nodes in
the network.

The higher the X, the more time the external database
network would have to synchronize new records. After X
blocks have passed, a database read must return a record, i.e.,
all external database states older than X blocks must be final.

Guaranteeing this condition can sometimes be impossible
in a complex distributed system, thus, it is crucial that
proper mechanisms that prevent it from happening during
the transaction processing phase are in place. Sometimes a
database access operation fails unexpectedly due to network
errors, hardware problems etc. If that is the case, the
transaction cannot be accepted until it succeeds — if it does not
do so, eventually it must be discarded. State synchronisation
scenario is presented in Figure 7.

VOLUME 10, 2022

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

IEEE Access

¢: SECURITY GUARANTEES

As Ethereum networks and transaction processing are meant
to be trust-less, the same requirement extends to the data
provided by the external data source. Data providers can be
incentivized to provide false data in order to extract value
from the network, e.g., tokens locked in a smart contract.
The data provision in a smart contract should be followed by
checks guaranteeing that the data has not been tampered with.
Ideally, it would be a verifiable cryptographic signature of the
data creator.

d: DATA AVAILABILITY

In order for the newly connected Ethereum node to synchro-
nize with the existing network, it will need to have access
to a fully synchronized external data source to process all
the transactions properly. As both external database and an
Ethereum node could be starting in a desynchronized state,
an additional external database will need to be provided for
the needs of initial synchronization.

The efforts to meet these requirements have brought very
good results. Using the PoC implementation of the system,
we experimentally verified that the combined Blockchain
and graph database system fulfills the requirements, while
the access to the graph data was by the order of magnitude
faster than with using Ethereum Oracles and an unmodified
client [38]. All the aspects described in this section are
valid independent of the consensus protocol used for a
given sidechain. The architecture of our solution welcomes
different consensus protocols depending on the target of the
sidechain creation.

C. MECHANISMS FOR OntoSidechains TETHERING INTO
THE PARENT CHAINS
Following Layer-2 protocols, Ontospace ecosystem demands
sidechains to be tethered (or, in common parlance — pegged)
to the mainnet (or to the parent net which then can be
tethered to the mainnet). As the main goals of the Ontospace
ecosystem are not just crypto-asset applications as it is
the case with majority of Layer-2 blockchains, but they
are related to the trusted knowledge representation, the
mechanism we designed for the tethering is different from the
standard Layer-2 mechanisms like rollups or state channels.
What motivated our approach was the need for additional
security of the data on Ontosidechains, gained from the
linkage (tethering) to the mainnet. We have used Merkle
Trees [39] for that purpose. Depending on the Ontosidechain
activity (number of new blocks generated per unit of time),
Every 2N transactions of the OntoSidechain, a Merkle Tree
is generated. In the leaves of the tree the mechanism stores
both Blockchain transaction hash and the corresponding
RDF named graph hash (iHash — Interwoven Hash described
in the preceeding sections). Alternatively, only Blockchain
transaction hash is stored, if the RDF named graph hash is
already stored in the transaction. This is illustrated in Figure 8
and in Figure 9.

The roots of the Merkle Trees generated for the sidechain
are stored in the transactions of the parent chain. Using

VOLUME 10, 2022

Merkle root
Hash0123

7N\

Hash01 Hash23

| BN

HashO Hash1 Hash2 Hash3

FIGURE 8. The Merkle Tree used for OntoSideChain tethering.

standard Merkle proof, every transaction can be audited and
verified against the root of the Merkle Tree. Such an audit can
be initiated on both the sidechain and on the mainnet, by a
code specifically designed for the audits.

V. RELATED WORK
A. LAYER-2 APPROACHES
There are multiple types of Layer-2 implementations
[40]-[45]. The first approach is Loopring [40] that runs as
a public set of smart contracts responsible for trade and
settlement, with an off-chain group of agents aggregating
and communicating orders. Another proposal is AZTEC [41],
which defines a set of zero-knowledge proofs that determine
a confidential transaction protocol, designed for use within
Blockchain protocols that support Turing-complete general-
purpose computation. Another one proposal is Zecale [43]
which is a general-purpose proof aggregator that uses a
recursive composition of small arguments. Yet another
approach is Hermes [42], which is a platform for trading
sensor data, using distributed ledgers as intermediaries to add
safeguards against malicious behavior. Other approaches are
Raiden [44] and Lightning [45]. Both proposals operate on
top of a blockchain and enable fast peer-to-peer transactions.
They are based on state channels and the creation of commu-
nication channels between nodes out of the blockchain. Those
networks are in charge of managing transactions between
connected nodes, which reduces the main chain’s workload.
On the other hand, Ethereum platform offers a few pro-
posals for scaling [19]-[21]. These approaches are associated
with a server or cluster of servers, each of which may be
referred to as a node, operator, block producer, or similar
term. State channels [19] utilize multisig contracts to enable
participants to transact quickly and freely off-chain, then
settle finality with the mainnet. Rollups [20] is another
proposal that perform transaction execution outside Layer-1,
and then the data is posted to Layer-1 where consensus
is reached. There are two approaches based on rollups:
ZK-rollups® and Optimistic rollups.” The first one generates

6https ://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
7https ://docs.ethhub.io/ethereum-roadmap/layer-2-

scaling/optimistic_rollups/

12499

IEEE Access

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

Sidechain

Tx:n+1 Txxn+2 | |Tx:n+3 Tx:n+6 | | Txxn+7

VY
N/ \/
NS

Txxn+4 || Txxn+5

Merkle Tree
I

Tx:n+8

[VARRVARRVARRY.
N/ \/
N

Txxn+9 | [Txxn+10| |Txxn+11| |Tx:n+12| |Txxn+13| |Tx:n+ 14| |[Tx:n+ 15

Store
sidechain
hash

Store
sidechain
hash

Mainchain

FIGURE 9. Pegged sidechain.

a cryptographic proof, known as a succinct non-interactive
argument of knowledge. This is known as validity proof and is
posted on the Layer-1. The second one offers improvements
in scalability because, after a transaction, they propose the
new state to the mainnet. The next approach is Plasma [21]
that aims at extending the concept of sidechains, as a way
to reduce the number of transactions to be processed by the
Layer-1 Blockchain.

B. BLANK NODES AND GRAPH DIGESTS
Blank nodes are well-studied. There are papers covering their
theory [46], semantics [47] and complexity [29],

Carroll [48] presents a method to canonicalise RDF graphs
with blank nodes in such a manner that they could be
digitally signed. The proposed method is based on writing
it to N-Triples serialization, mapping all blank nodes to a
global blank node, sorting the RDF triples lexically, and then
relabelling the blank nodes. Another method to compute the
digest of an RDF graph is proposed by Sayers and Karp [49],
where there is an assumption that all blank node labels are
fixed. Yet another method is proposed by Giereth [50]. In this
paper, the author proposes to artificially add new triples to
distinguish individual blank nodes in the encryption process.
The next method is presented by Lantzaki et al. [51] and it
is based on computing a signature for blank nodes based on
the constant terms in their direct neighborhood. Yet another
two algorithms are proposed by Hogan [52]. The first one
computes an iso-canonical form and generates the same
result for a pair of input RDF graphs if and only if they
are isomorphic. The second one computes an equi-canonical

12500

form and generates the same result for pairs of simple-
equivalent graphs.

C. MERKLE TREE-BASED GRAPH INTEGRITY

Crosby and Wallach [53] present History-Based Merkle Tree
that is a tree-based history data structure for tamper-evident
logging based on Merkle tree [39]. Position-aware Merkle
tree is another method proposed by Mao et al. [54]. In this
approach, each node in a Merkle tree can keep track of its
relative position to its parent node. Yet another proposal is a
Merklix tree [55]. It is a binary tree that has Merkle and radix
tree features. Sutton and Samavi [56] proposed two methods:
semantic-based approach and a structure-based approach.
The first method leverages timestamps as an indexing key
to construct a sorted Merkle tree variation. The second
method utilizes the redundant structure of large RDF datasets
to compress the dataset statements prior to generating a
variation of a Merkle tree.

VI. CONCLUSION AND FUTURE WORK

Our work demonstrated a realistic possibility for the creation
of Knowledge Representation system on Blockchain. This
possibility stems from carefully designed synergy between
RDF graph databases, Linked Data access methods and
Blockchain functionalities that guarantee immutability,
non-repudiation and decentralization of the Knowledge
Representation realized by standard RDF graph databases.
The work assumed meeting important challenges related to
cryptographic methods adequate for the semantic objects
expressed as RDF graphs, transactional requirements

VOLUME 10, 2022

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

IEEE Access

resulting from a modified standard Blockchain client
or architectural challenges resolved using 3rd generation
Blockchain Layer-2 protocols.

As the theoretical work reported here was accompanied by
a Proof-of-Concept kind of software development, we were
able to positively verify the developed technological founda-
tions.

The work is now in progress on a production grade system
using the technologies described here, and on a possible
application of our approach to the next generation of graph
databases, i.e. the Property Graphs [57] which promise
higher performance and new extended capabilities, but which
require development of concepts like subgraphs, the property
graphs hashing (integrity proofs) or the partial replication of

such graphs.
REFERENCES
[1] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba,
“Blockchain technology innovations,” in Proc. IEEE Technol. Eng.
Manage. Conf. (TEMSCON), Jun. 2017, pp. 137-141.
[2] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Bus. Inf.
Syst. Eng., vol. 59, no. 3, pp. 183-187, Mar. 2017.
[31 A. Hogan, E. Blomgqvist, M. Cochez, C.d’Amato, G.de Melo,
C. Gutiérrez, S. Kirrane, J.E.L.Gayo, R.Navigli, S.Neumaier,

[4]
[51
[6]
[71

[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A.N.Ngomo, A.Polleres, S.M. Rashid, A.Rula, L.Schmelzeisen,
J. F. Sequeda, S. Staab, and A. Zimmermann, “Knowledge graphs,” ACM
Comput. Surveys, vol. 54, no. 4, p. 71/1-71/37, 2021.

S. Staab and R. Studer, Handbook on Ontologies. Berlin, Germany:
Springer, 2010.

T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Sci.
Amer., vol. 284, no. 5, pp. 3443, May 2001.

S. R. Holagh and K. Mohebbi, “A glimpse of semantic web trust,” Soc.
Netw. Appl. Sci., vol. 1, no. 12, pp. 1-10, Dec. 2019.

T. McConaghy, R. Marques, A. Miiller, D. De Jonghe, T. McConaghy,
G. McMullen, R. Henderson, S.Bellemare, and A. Granzotto,
“BigchainDB: A scalable blockchain database,” whitepaper, 2016.
ProvenDB. (2021). ProvenDB—Your Trusted Data Integrity Solution.
[Online]. Available: https://www.provendb.com/

B. Platz, A. Filipowski, and K. Doubleday, “FlureeDB: A practical
decentralized database,” whitepaper, 2017.

Y. Yanovich, I. Ivashchenko, A. Ostrovsky, A.Shevchenko, and
A. Sidorov, “Exonum: Byzantine fault tolerant protocol for blockchains,”
pp. 1-36, 2018.

M. Muzammal, Q. Qu, B. Nasrulin, and A. Skovsgaard, “A blockchain
database application platform,” 2018, arXiv:1808.05199.

D. Tomaszuk, D. Kuziniski, M. Sopek, and B. Swiecicki, “A distributed
graph data storage in ethereum ecosystem,” in Economics of Grids, Clouds,
Systems, and Services. Cham, Switzerland: Springer, 2021, pp. 223-231.
M. Sopek, P. Gradzki, W. Kosowski, D.Kuziski, R.Tréjczak, and
R. Trypuz, “GraphChain: A distributed database with explicit semantics
and chained RDF graphs,” in Proc. Companion Proc. Web Conf. Geneva,
Switzerland: Int. World Wide Web Conf. Steering Committee, 2018,
pp. 1171-1178.

M. Sopek, P. Gradzki, D. Kuzirski, R. Tréjczak, and R. Trypuz, “Legal
entity identifier blockchained by a hyperledger Indy implementation of
graphchain,” in Metadata and Semantic Research. Cham, Switzerland:
Springer, 2019, pp. 26-36.

J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler, “Named graphs,
provenance and trust,” in Proc. 14th Int. Conf. World Wide Web, New York,
NY, USA, 2005, pp. 613-622.

J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity
of SPARQL,” ACM Trans. Database Syst., vol. 34, no. 3, pp. 1-45,
Aug. 2009.

C. Bizer, T. Heath, and T. Berners-Lee, “Linked data—The story so far,”
Int. J. Semantic Web Inf. Syst., vol. 5, no. 3, pp. 1-22, 2009.

S. Sakr, M. Wylot, R. Mutharaju, D. Le Phuoc, and I. Fundulaki, Linked
Data: Storing, Querying, and Reasoning. Cham, Switzerland: Springer,
2018.

VOLUME 10, 2022

(19]

(20]
[21]

(22]

(23]

[24]

(30]

(31]

(32]
(33]

(34]

[35]

(36]

(37]

(38]

(391

[40]

(41]

[42]

(43]
[44]
(45]

[46]

(47]

S. Dziembowski, S. Faust, and K. Hostdkova, “General state channel
networks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2018,
pp. 949-966.

V. Buterin. (2021). An Incomplete Guide to Rollups. [Online]. Available:
https://vitalik.ca/general/2021/01/05/rollup.html

J. Poon and V. Buterin, ‘“Plasma: Scalable autonomous smart contracts,”
whitepaper, 2017.

E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, ‘“Scalable,
transparent, and post-quantum secure computational integrity,” IACR
Cryptol. ePrint Arch., Tech. Rep., 2018, p. 46.

R. Khalil, A. Zamyatin, G. Felley, P. Moreno-Sanchez, and A. Gervais,
“Commit-chains: Secure, scalable off-chain payments,” Cryptol. ePrint
Arch., Tech. Rep. 2018/642, 2018.

P. Robinson, R. Ramesh, and S. Johnson, ‘“Atomic crosschain transactions
for ethereum private sidechains,” Blockchain, Res. Appl., Sep. 2021,
Art. no. 100030.

D. A. Zetzsche, D. W. Arner, and R. P. Buckley, “Decentralized finance,”
J. Financial Regulation, vol. 6, no. 2, pp. 172-203, Sep. 2020.

R. Soni, Nginx. Berkeley, CA, USA: Apress, 2016.

A. Vukotic and J. Goodwill, Apache Tomcat 7. Berkeley, CA, USA: Apress,
2011.

P. De Filippi, C. Wray, and G. Sileno, “Smart contracts,” Internet Policy
Rev., vol. 10, no. 2, 2021.

D. Tomaszuk and D. Hyland-Wood, “RDF 1.1: Knowledge representation
and data integration language for the web,” Symmetry, vol. 12, no. 1, p. 84,
Jan. 2020.

E. Hofig and I. Schieferdecker, ‘“Hashing of RDF graphs and a solution to
the blank node problem,” in Proc. URSW, vol. 1259. Aachen, Germany:
CEUR-WS.org, 2014, pp. 55-66.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“DBpedia: A nucleus for a web of open data,” in The Semantic Web. Berlin,
Germany: Springer, 2007, pp. 722-735.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. Cambridge, MA, USA: MIT Press, 2009.

A. B. Kahn, “Topological sorting of large networks,” Commun. ACM,
vol. 5, no. 11, pp. 558-562, 1962.

M. Bellare and D. Micciancio, “A new paradigm for collision-free hashing:
Incrementality at reduced cost,” in Advances in Cryptology, W. Fumy, Ed.
Berlin, Germany: Springer, 1997, pp. 163-192.

(2015). Fips Pub 180-4 Secure Hash Standard. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

G. Carothers and A. Seaborne. (Feb. 2014). RDF 1.1 N-Triples. W3C, Rec-
ommendation. [Online]. Available: https://www.w3.0org/TR/2014/REC-n-
triples-20140225/

C. Ogbuji. (Mar. 2013). SPARQL 1.1 Graph Store HTTP Proto-
col. W3C, Recommendation. [Online]. Available: https://www.w3.org/
TR/2013/REC-sparql1 1-http-rdf-update-20130321/

M. Sopek, D. Tomaszuk, S. Glgb, F. Turobos, I. Zieliriski, D. Kuziriski,
R. Olejnik, P. Luniewski, and P. Gradzki. (2021). Ontochain Foundations.
[Online]. Available: https://github.com/MakoLab/ontochain-foundations/
R. C. Merkle, “Protocols for public key cryptosystems,” in Proc. IEEE
Symp. Secur. Privacy, Apr. 1980, p. 122.

D. Wang, J. Zhou, A. Wang, and M. Finestone. Loopring:
A Decentralized Token Exchange Protocol. [Online]. Available:
https://github.com/Loopring/whitepaper/blob/master/en_whitepaper.pdf
Z. J. Williamson. (2018). The Aztec Protocol. [Online]. Available:
https://github.com/AztecProtocol/AZTEC

P. Tzianos, G. Pipelidis, and N. Tsiamitros, ‘“Hermes: An open and
transparent marketplace for IoT sensor data over distributed ledgers,” in
Proc. IEEE Int. Conf. Blockchain Cryptocurrency (ICBC), Seoul, South
Korea, May 2019, pp. 167-170.

A. Rondelet, “Zecale: Reconciling privacy and scalability on ethereum,”
2020, arXiv:2008.05958.

R. Homepage. (2021). The Raiden Network.
https://raiden.network/

J. Poon and T. Dryja, “The bitcoin lightning network,” Scalable O-Chain
Instant Payments, 2015.

A. Mallea, M. Arenas, A. Hogan, and A. Polleres, “On blank nodes,” in
The Semantic Web (Lecture Notes in Computer Science), vol. 7031. Bonn,
Germany: Springer, 2011, pp. 421-437.

A.Hogan, M. Arenas, A. Mallea, and A. Polleres, “Everything you always
wanted to know about blank nodes,” J. Web Semantics, vols. 27-28,
pp. 42-69, Aug. 2014.

[Online]. Available:

12501

IEEE Access

M. Sopek et al.: Technological Foundations of Ontological Ecosystems on 3rd Generation Blockchains

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

J. J. Carroll, “Signing RDF graphs,” in The Semantic Web (Lecture
Notes in Computer Science), vol. 2870, D. Fensel, K. P. Sycara,
and J. Mylopoulos, Eds. Sanibel Island, FL, USA: Springer, 2003,
pp. 369-384.

C. Sayers and A. H. Karp, “Computing the digest of an RDF graph,”
Mobile Media Syst. Lab., HP Lab., Palo Alto, CA, USA, Tech. Rep. HPL-
2003-235, 2004, vol. 1.

M. Giereth, “On partial encryption of RDF-graphs,” in The Semantic Web
(Lecture Notes in Computer Science), vol. 3729. Galway, Ireland: Springer,
2005, pp. 308-322.

C. Lantzaki, P. Papadakos, A. Analyti, and Y. Tzitzikas, “‘Radius-aware
approximate blank node matching using signatures,” Knowl. Inf. Syst.,
vol. 50, no. 2, pp. 505-542, Feb. 2017.

A. Hogan, “Canonical forms for isomorphic and equivalent RDF graphs:
Algorithms for leaning and labelling blank nodes,” ACM Trans. Web,
vol. 11, no. 4, pp. 1-62, Jul. 2017, doi: 10.1145/3068333.

S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-
evident logging,” in Proc. 18th USENIX Secur. Symp., Montreal, QC,
Canada, F. Monrose, Ed., 2009, pp. 317-334.

J.Mao, Y. Zhang, P. Li, T. Li, Q. Wu, and J. Liu:, ““A position-aware Merkle
tree for dynamic cloud data integrity verification,” Soft Comput., vol. 21,
no. 8, pp. 2151-2164, 2017.

Deadalnix’s den. (2021). Introducing Merklix Tree as an Unordered
Merkle Tree on Steroid. [Online]. Available: https://www.deadalnix.me/
2016/09/24/introducing-merklix-tree-as-an-unordered-merkle-tree-on-
steroid/

A. Sutton and R. Samavi, “Integrity proofs for RDF graphs,” Open
J. Semantic Web, vol. 6, no. 1, pp. 1-18, 2019.

R. Angles, H. Thakkar, and D. Tomaszuk, “RDF and property graphs
interoperability: Status and issues,” in Proc. 13th Alberto Mendelzon Int.
Workshop Found. Data Manage., vol. 2369. Asuncién, Paraguay: CEUR-
WS.org, 2019, pp. 1-11.

MIREK SOPEK received the M.Sc. degree in
physics and the Ph.D. degree in computational
chemistry from the Lodz University of Technology
(TUL). He is currently an Entrepreneurial Scientist
leading the Research and Development Team of
MakoLab SA, a company he founded, in 1989,
and helped expanding to international group of
companies. He is the CEO of MakoLab USA Inc.
He recently founded Quantum Blockchains, Inc.,
a startup devoted to protection of blockchains from
the future risks.

DOMINIK TOMASZUK received the M.Sc.
degree in computer science from the Bialystok
University of Technology, Poland, in 2008, and the
Ph.D. degree in computer science from the Warsaw
University of Technology, Poland, in 2014. He is
currently a Researcher at the Institute of Computer
Science, University of Bialystok, Poland. His
current research interests include semantic web,
RDF, property graphs, NoSQL databases, and
cheminformatics.

SZYMON GLAB received the M.Sc. degree in
mathematics from the Lodz University of Tech-
nology (TUL), Poland, in 2002, and the Ph.D.
degree in mathematics from the Polish Academy
of Sciences, in 2007. He is currently a Researcher
at the Institute of Mathematics, TUL. His current
research interest includes pure mathematics.

12502

FILIP TUROBOS received the M.Sc. degree in
mathematics and the B.Sc. degree in computer
science from the Lodz University of Technology
(TUL), in 2017 and 2020, respectively. He is cur-
rently a Researcher at the Institute of Mathematics,
TUL. His current research interests include some
variants of the traveling salesperson problem and
certain generalizations of metric spaces.

IVO ZIELINSKI received the B.Sc. degree in
economics and business and the engineering
degree in software engineering. He is currently
a Blockchain Developer working as a Freelancer.
He has participated in numerous research and
development projects in the Fintech sector and his
main specialization is Ethereum smart contracts.

DOMINIK KUZINSKI received the M.A. degree
in economics. He has been an Employee of
MakoLab SA, since 2006. Since 2012, he has
been working at the Research and Development
Department. He currently participates in projects
related to blockchain technologies and graph
databases.

RYSZARD OLEJNIK was a Researcher at the
Lodz University of Technology (TUL), Poland.
He is currently an Employee of the Research
and Development Department, MakoLab SA.
He deals with property graphs, NoSQL databases,
blockchain, and programming. He participates in
the works of the startup Quantum Blockchain Inc.

PIOTR LUNIEWSKI received the M.Sc. degree in
applied mathematics from the Lodz University of
Technology, in 1984. He is currently an Employee
at the Research and Development Department,
MakoLab SA. He participates in the works of the
startup Quantum Blockchain. His research inter-
ests include property graphs, NoSQL databases,
blockchain, and programming.

PRZEMYSLAW GRADZKI is currently a Back-
end Senior Developer and a System Administrator
at MakoLab SA. He has hands-on experience in
administering Linux systems, LAMP stack (and its
variants), Tomcat/Jetty, PostgreSQL, and Docker.
His research interests include the use of open-
source products, especially related to Linux.

VOLUME 10, 2022

http://dx.doi.org/10.1145/3068333

