
Received December 18, 2021, accepted January 3, 2022, date of publication January 6, 2022, date of current version January 13, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3140679

Effects of Particle Swarm Optimization and
Genetic Algorithm Control Parameters on
Overcurrent Relay Selectivity and Speed
SETHEMBISO NONJABULO LANGAZANE AND
AKSHAY KUMAR SAHA , (Senior Member, IEEE)
Discipline of Electrical, Electronics, and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa

Corresponding author: Akshay Kumar Saha (saha@ukzn.ac.za)

ABSTRACT Distribution systems continue to grow and becomingmore complex with increasing operational
challenges such as protection miscoordination. Initially, conventional methods were favoured to solve
overcurrent relay coordination problems; however, the implementation of these methods is time-consuming.
Therefore, recent studies have adopted the utilisation of particle swarm optimization and genetic algorithms
to solve overcurrent relay coordination problems and maximise system selectivity and operational speed.
Particle swarm optimization and genetic algorithms are evolutionary algorithms that at times suffer from
premature convergence due to poor selection of control parameters. Consequently, this paper presents a
comprehensive sensitivity analysis to evaluate the effect of the discrete control parameters on particle
swarm optimizer and genetic algorithms performance, alternatively on the behaviour of overcurrent relays.
Optimization algorithms aim to minimise overcurrent relay time multiplier settings and accomplish optimal
protection coordination. The findings indicate that particle swarm optimization is more sensitive to inertia
weight and swarm size while the number of iterations has minimal effect. The results also depict that
30% crossover, 2% mutation, and smaller population size yield faster convergence rate and optimise
fitness function, which improves genetic algorithms performance. Sensitivity analysis results are verified
by comparing the performance of particle swarm optimization with the genetic algorithms which show the
former parameter setting outperforms the latter. The relay operational speed is reduced by 15% for particle
swarm optimization and system selectivity is maximised. The optimal protection coordination achieved
using particle swarm optimization showed superiority of the algorithm, its ability to circumvent premature
convergence, consistency, and efficiency.

INDEX TERMS Control parameter, genetic algorithms, overcurrent relay, particle swarm optimization,
power system protection, protection coordination, selectivity, speed.
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I. INTRODUCTION
Due to rising emphasis on substation automation, SCADA,
and monitoring control [1], operational speed and protection
coordination form the most important aspect and are prime
factors in any protection system [2], [3]. As the demand
for electricity continues to rise, distribution systems are tak-
ing a strain and becoming more complex with increasing
loads, voltages, and currents [4]. As a result, protection
miscoordination may occur due to poor overcurrent relay
settings [5], [6]. Moreover, operational challenges such as
a greater percentage of power network equipment damage
and customer service disruptions caused by breakdowns and
faults in the distribution feeders as overhead power sys-
tems are subjected to either partial or permanent faults [6].
Although systems are designed to be as fault-free as possi-
ble, it is impractical to eliminate the fault occurrence com-
pletely [7]. However, system abnormalities must be catered
to during the engineering design stage, commissioning, and
maintenance to circumvent enormous damage and guarantee
the protection of expensive equipment [8], [9]. Protection
coordination is of paramount importance since the failure
of protective devices to operate under faulty conditions can
damage some essential parts due to fire that may result from
massive-short circuits; consequently, the system loses syn-
chronism of the machinery and equipment [10], [11]. This
necessitates the need to optimize overcurrent relay operating
time and maximize selectivity [12].

For many years, power systems engineers and researchers
relied on conventional optimization techniques to perform
relay coordination. The disadvantage of the methods is that
solutions are based on iterative trial and error, and the
process is laborious as well as time-consuming [6], [10].
Hence, authors in [13] and [14] researchers advocated the
need for utilising evolutionary algorithms to mitigate set-
backs presented by conventional optimization methods. Also,
in [15] and [16], the importance of employing evolution-
ary algorithms was emphasised. Another study in [17]
also highlighted the need to utilised metaheuristic algo-
rithms to overcome drawbacks presented by conventional
techniques. Genetic algorithms (GA) and Particle Swarm
Optimizer (PSO) have transpired as efficient and effective
algorithms for handling coordination problems. Neverthe-
less, setting evolutionary algorithms control parameters to
attain optimum overcurrent relay settings is a long-standing
issue [18]. In the literature, a comparative study evaluating
PSO algorithm performancewith GA algorithm demonstrates
the latter fails to perform efficiently [19]; it suffers from a
condition referred to as premature convergence that causes
it to lose diversity which results in population degenerating
to the local solution. In order to enhance convergence rate
and overcome premature convergence of GAs, the idea of
varying mutation and crossover probability has been adopted
in [17], [20]. The importance of selecting mutation prob-
ability and crossover probability such that GA algorithm
performance is more efficient has been documented in GA
research work [15]–[19], [21]. Rojas et al. [20] conducted

a simple GA sensitivity analysis where one control param-
eter is varied at a time to study and observe the system
performance, and it was found that mutation probability,
crossover-type, and population size have minimal influence
on GA algorithm performance, while crossover probability
has a significant effect [20]. In [21], Charbonneau urged that
mutation probability must increase as population diversity
decreases and lessen as population diversity increases [21].
Arenas et al. [22] and [23] conducted a sensitivity analysis
of GA through the utilisation of a combinational crossover
and mutation probabilities, it was found that the combina-
tional approach is effective and leads to an optimum global
solution [22], [23]. However, the best optimal solution is
obtained when incorporating a high crossover rate with a
low mutation probability. A review providing a dynamic
approach for choosing crossover and mutation probabilities
is presented in [15], another study [16] conducted a review
on the application of genetic operators highlighting the pros
and cons of GA control parameters, whereas in [17], a review
on genetic operators was presented stipulating past, present,
and future techniques of evaluating GA algorithm.

In contrast, a study comparing PSO algorithm performance
with other metaheuristic techniques depicts that PSO algo-
rithm manages to obtain global minima with fewer itera-
tions [24]. However, the former presented limitations such
as getting trapped in local minima, thus failing to obtain
a global solution. Consequently, papers in [24] and [25]
conducted research work to improve PSO algorithm perfor-
mance. An earlier study [25] introduced the weight term
in the velocity update equation to sharpen particles’ search
ability by balancing local search and global search. Inertia
weight and swarm size are heavily linked with premature
convergence. Kennedy and Eberhart [26] classified velocity
equation into three components to regulate the impact of
particles’ previous velocity to current speed. In [27], the
behaviour of PSO particles was studied, it was suggested that
both cognitive and social parameters in the velocity equation
must not surpass 4 [27]. A further study in [28] presented
a theoretical analysis when the acceleration constants sur-
passed 4, the particles displayed high levels of oscillations.
These approaches serve as a guide and aids in improving
swarm search capability and circumventing premature con-
vergence [27], [28]. Another study in [29] analysed PSO
performance by means of design experiments, this approach
decreases the number of simulations runs; however, it does
not permit the study of each control parameter, hence not
much was established [13], [29]. As a result, this paper aims
to provide a simple sensitivity analysis approach for both GA
and PSO algorithms, comprehensive review, and comparison
of algorithms in terms of convergence and fitness function
values. Table 1 below presents the summary of the literature
survey highlighting the gaps in the existing research and the
contributions of the proposed paper. The sensitivity analy-
sis is conducted by means of varying one control parame-
ter at a time while keeping others constant. This approach
allows users to distinguish parameters responsible for poor
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TABLE 1. Summary of literature survey.

protection selectivity and relays’ speed of operation. The
contributions of the paper are as follows:
a) The determination of poor performing control parame-

ters based on the convergence speed and fitness function
values which determines the robustness, efficiency, and
superiority of the algorithm.

b) Analysis of overcurrent relay response based on opera-
tional speed and system selectivity to evaluate whether
protection coordination is accomplished.

c) An algorithm that enhances original PSO performance
by making the control parameters adaptive, adopting
evolutionary state-based inertia weight, and utilising the
repulsion-based position update technique is proposed.

An overview of protection philosophy is presented in
Section II. A brief overview of the PSO algorithm and its con-
trol parameters is provided in section III. Section IV provides
a basic review of the GA algorithm and parameters associated
with the algorithm. Optimization problem setup and protec-
tion system under study is presented in section V. Results
and discussions are provided in section VI. Lastly, conclusive
remarks, as well as future recommendations, is presented in
section VII.

II. OVERVIEW OF PROTECTION PHILOSOPHY
Reliability of electrical protection in distribution systems is
of paramount interest to maintain continuous power supply
to end-users [30]. Schweitzer et al. [31] evaluated power
line redundancy and reliability, and analysis of protection
scheme selectivity, sensitivity, speed is not covered in [31].
In one version [32], analysis tools are utilized to evaluate all
protection scheme characteristics, new methods to improve
protection quality are also presented [32]. Protection scheme

functional characteristics must meet the strict requirement
of modern distribution systems, which lack redundancy and
operate near security limits [6]. Hence, it is important to
conduct parametric analysis in such a manner that protection
system quality is maximized. Studies have proven that pro-
tection system characteristic parameters are not independent
as two of them are more likely to decrease when the other
one increases [13], [31]. Another study in [33] stated that it
is impossible to attain selectivity simultaneously in a system
configuration with multiple equivalent sources due to the
similarity of currents seen by overcurrent relays. This stands
to be proven in this research paper.

In cases of system disturbances caused by unexpected
load changes, faults, and malfunction of equipment, pro-
tective devices are required to react fast, be selective and
reliable [3], [34]. If abnormal conditions occur in a net-
work segment, a protective system is needed to clear the
fault instantly without affecting the healthy section and
promptly segregate the faulty segment. Protective system
includes devices such as relays, circuit breakers, and other
circuit interrupters to discriminate faulty equipment. Circuit
breakers operate to discern abnormal sections of the sys-
tem when prompted to function by the relay, which senses,
localizes a defect, and issue a command to the breaker for
removal of defective section [6], [35]. Protective relays con-
tinuously monitor electrical quantities and do not inhibit
fault occurrence on the system. There are various bene-
fits and purposes that protection system must fulfil, which
include [6], [34], [36]:

• Minimisation of fault duration on distribution systems.
• Disconnection of defective transformers, lines, and other
apparatus.
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• Reduce service outages to the minimal segment of the
system.

• Improving system performance, stability, reliability, and
service continuity.

• Protection of customers’ apparatus.

A. OVERCURRENT PROTECTION
Excessive current levels in distribution systems are due to
system abnormalities. These high current levels can be uti-
lized to characterize the presence of defects and aid to trig-
ger protective device operation accordingly, which differ
in design specifications and system complexity [34], [36].
Amongst other devices, themost common overcurrent protec-
tion devices are moulded case circuit breakers, thermomag-
netic switches, overcurrent relays, and fuses [6], [36]. The
moulded case circuit breakers and thermomagnetic switches
consist of elementary operating mechanisms and are predom-
inantly utilized to protect low-voltage equipment [3], [36];
similarly, fuses are also used to protect low voltages lines
and distribution transformers [14], [36]. Power systems are
normally protected by overcurrent relays against excessive
currents [36], as overcurrent protection is more economical
and thus favoured on a distribution level compared to differ-
ential and distance protection systems [37].

At times, the main protection devices malfunction in a
distribution system due to failure in the breaker tripping
mechanism, insufficient tripping voltage, or defective pro-
tective relay; hence, backup protection is required to prevent
severe damage to the system [6], [35]. Time overcurrent
relays form a backbone of any protection strategy as they
can be installed as primary or backup protection and consist
of algorithms to monitor system voltages and current signals
from voltage transformer and current transformer, respec-
tively [38]. The received magnitude of current is used as an
indicator of abnormalities and trips if the incoming current
signal exceeds the pickup current. Usually, overcurrent relay
determines operating time by means of standard inverse char-
acteristic curve emanating from inverse definite minimum
time (IDMT) class. According to IEC 60255–151:2009 [39],
inverse time overcurrent protection elements utilize the stan-
dard inverse characteristic equation as follows:

Top =
0.14

PSM0.02
− 1
× TMS (1)

where Top the time of operation, TMS is the time multiplier
setting, and PSM is the plug setting multiplier. Top values
provide necessary protection coordination and depend on
maximum fault current, IDMT curve type, and the down-
stream relays’ operating time [39]. For distribution systems,
TMS normally ranges between 0.01 < TMS < 1.0, pickup
current taken as 1.2 to 2 times the full load current, in step
of 0.05 [19], [39]. The PSM is the ratio of maximum fault
current in the relay coil to pick up current [32]. To achieve
proper protection coordination, recent studies have explored
different optimization approaches such as evolutionary algo-
rithms to ensure correct sequential operation of downstream

and upstream relays [6], [13]. Appropriate sequential func-
tioning of primary and backup relays is guided by coordina-
tion time interval (CTI) which is a predefined allowable time
between primary and backup relays and is dependent on cir-
cuit breaker speed, relay type, and other parameters [32]. For
microprocessor-based relay, CTI is set between 0.1 seconds
to 0.2 seconds, while electromagnetic relays utilize the range
between 0.3 seconds to 0.4 seconds [19], [32].

To safeguard protective system reliability, the backup pro-
tection scheme must not operate under normal circumstances
unless primary protection malfunctions. Once the CTI is
exceeded, the backup relay must operate within coordination
constraints as formulated in the following equation [6], [19]:

Tbackup − Tmain ≥ CTI (2)

where Tbackup the backup protection operating time,
Tmain the time of operation for main protection. In this
paper, the standard IDMT relay is utilized, and CTI of 0.4 is
considered.

III. PARTICLE SWARM OPTIMIZER AND ITS CONTROL
PARAMETERS
In PSO, each particle fly through the hyperdimensional
design space at a random velocity initially, and its current
position in the i-th dimension is denoted by s(k)i where k the
iteration number, and i the individual particle. Each particle
memorises its best position and its own experience denoted
by pbest(k)i , and the overall algorithms’ experience is denoted
by gbest(k). At each iteration, the particle velocity v(k)i is
altered with current velocity and position from the per-
sonal best solution and the global best solution. Conse-
quently, the v(k)i and s(k)i changes according to the following
equations [40]:

v(k+1)i = v(k)i + c1rand
(k)
1

(
pbest(k)i − s

(k)
i

)
+c2rand

(k)
2

(
gbest (k) − s(k)i

)
; i = 1 to N (3)

s(k+1)i = s(k)i + v
(k+1)
i ; i = 1 to N (4)

where N is the swarm size, and rand (k)1 and rand (k)2 are two
randomly generated numbers every k iteration with a range
between 0 and 1. Acceleration coefficients c1 and c2, also
referred to as the cognitive and social parameters, respec-
tively, are positive constants [41]. In [26], the particle velocity
update equation is classified into three terms, namely, the
first term represents particles’ momentum which includes
the impacts of the previous velocity on current velocity, the
second fragment is associated with the cognitive component
which signifies the pull of particles’ velocity towards its
own personal best (pbest) while the third part represents
the global best (gbest) or social interaction between parti-
cles [26]. After the calculation of particles’ new position
and velocity, pbest(k)i and gbest (k) are updated with the
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following equations:

pbest(k)i =

{
s(k)i , if f

(
s(k)i

)
< f (pbest(k)i )

pbest(k)i , if f (s(k)i ) ≥ f (pbest(k)i )
(5)

gbest (k) =

{
s(k)i , if f

(
s(k)i

)
< f gbest (k))

gbest (k), if f (s(k)i ) ≥ f (gbest (k))
(6)

where f is the fitness function of the algorithm. Typically, the
particles’ velocity value is fixed to the range [−vmax , vmax]
to mitigate the likelihood particles flying out of the search
space [40]. Setting higher value for vmax results in particles
fly past optimum solution, whereas smaller value leads to par-
ticles not exploring sufficiently search space thence particle
gets trapped in local optima solution [40], [41].

A. INERTIA WEIGHT
Due to limitations presented by vmax , Shi and Eberhart [25]
proposed the addition of weight term on the velocity update
equation to sharpen particles’ searching ability by stabilising
local search and global search [25]. The inertia weight (w)
is the scaling factor correlated with the iteration velocity
during the last time step and aids to improve PSO algorithm
convergence rate. According to the modification proposed
in [25], inertia weight is incorporated into equation (3) as
follows:

v(k+1)i = wv(k)i + c1rand
(k)
1

(
pbest(k)i − s

(k)
i

)
+ c2rand

(k)
2

(
gbest(k) − s(k)i

)
(7)

A higher inertia weight value promotes exploration,
whereas a lower value facilitates exploitation which increases
the local search capability of the PSO algorithm. An earlier
study conducted in [25] showed substantial improvement in
the PSO performance when inertia weight is set between
0.9 to 1.2. Recently, studies have adopted the use of lin-
early decreasing inertia weight which was first implemented
in [42], the w value was kept between 0.9 to 0.4 of which
resulted in improved performance. The following weighting
function is used in linearly decreasing inertia weight [42].

w = wmax −
wmax − wmin
itermax

× iter (8)

where wmax the maximum inertia weight, wmin the minimum
inertia weight, iter is the current iteration, and itermax the
maximum number of iterations. In [40] authors, undertook
a comprehensive study and applied inertia weight ranging
between 0.8 – 1.2, it was found that larger inertia value facil-
itates global search, whereas smaller inertia value promotes
local search [40].

B. ACCELERATION CONSTANTS C1 AND C2
The two constants, c1 and c2 are associated with the velocity
of flying particles to the most optimist position and its own
best location, these constants control the search dimension
and time taken to obtain optimal solution by each particle.
Shi and Eberhart [40] set both acceleration coefficients

to 2 and seen improvement in the algorithm performance
whereas when altered particles fly to infeasible solu-
tions [25], [40]. For bigger acceleration coefficient values,
particles fly past optimal solution region and for smaller val-
ues, particles fail to reach target regions due to being trapped
in the unfeasible region before travelling toward optimal
solution [40]. Therefore, acceleration coefficients have been
set to 2 since the beginning of PSO technique [25], [40].

C. NUMBER OF ITERATIONS
A study conducted in [43] proved experimental that larger
maximum number of iterations itermax increases computa-
tional time and it was seen that the selected value has a direct
effect on the probability of PSO algorithm locating global
solution [43]. Moreover, poor choice of selecting the number
of iterations may lead to premature convergence. Too little
number of iterations decreases the likelihood of the algorithm
attaining global optimum solution whereas bigger maximum
number of iterations improves convergence rate at the cost of
computational time [43], [44].

D. SWARM SIZE
Normally, swarm size,N , is selected based on dimensionality
and optimization problem complexity. It plays an essential
role in PSO algorithm performance and have an impact on
population diversity as it regulates the number of particles
in the hyperdimensional space [40], [41]. Reference [45]
stated that swarm size chosen between 5 and 10 particles is
a good estimation; however, the utilisation of swarm ranging
between 10 to 50 particles is common in solving optimization
problems [45]. When the larger population size is selected,
particles tend to discover more search space and PSO algo-
rithm performs effectively and efficiently but at the expense
of computational time [40], [45].

E. PSO CONSTRAINT HANDLING MECHANISM
To avoid premature convergence and computational time
presented by reinitialization of particles’ initial position
approach implemented in [46], ref. [47] proposed the appli-
cation of a penalty on infeasible solutions which resulted in
PSO avoiding premature convergence. Richardson et al. [48]
introduced two terms in the penalty function i.e., the amount
at which constraint was violated and the amount of constraint
violations. According to this modification, PSO cost function
is calculated as [48]:

Fi (x)

=


fi (x) , if feasible solution

fi (x)+ β1

(∑d

i=1
h
)

+β2

(∑d

i=1
y
)
, If infeasible solution

(9)

where Fi (x) is the penalty function, fi (x) is the original cost
function, β1 and β2 are penalty factors,

∑d
i=1 y is the sum

of the amount d violated constraints, and
∑d

i=1 h is the sum
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of d violated constraints. The penalty factors β1 and β2 are
both set at 103. This strategy penalises infeasible solutions by
keeping track of constraint violations [48].

IV. OVERVIEW OF GENETIC ALGORITHMS
Genetic algorithms search solution space of a function by
using survival of the fittest strategy, as opposed to PSO
algorithm that is inspired by social behaviour of animals
and births [13], [28]. The GA solutions initialise randomly
to generate a new population by means of genetic param-
eters [13], [15]. Roulette wheel selection method allocates
selection probability to each chromosome based on its fit-
ness function value [49]. The randomly generated numbers
are compared to the cumulative probability to determine the
selection of a new population [28], [49]. This technique has
a drawback of converging prematurely to local optimal due
to the dominance of individuals that constantly succeeds in
the competition and are chosen as a parent. The probability
Pi(t + 1) for each chromosome i is defined in (10), where
fi(t) is the fitness of chromosome i, and n denotes population
size [48], [49].

Pi(t + 1) =
fi(t)

1
n

∑n
j=1 fj(t)

(10)

Due to limitations presented by the roulette wheel method
on genetic algorithms, extensions such as ranking method,
scaling technique, and tournament selection were introduced
to allow minimisation and negativity [49], [50]. In the
ranking-based selection approach, the probability for each
chromosome Pi is assigned based on the succession of indi-
vidual solution i when all solutions are mapped by the fitness
function to allow minimization. Chromosomes with higher
fitness values have a great probability of appearing in the
next generation. A number generated randomly between zero
and one constitutes the reproduction of a new population
nkeep of feasible solutions. The probability of individual Pi
is determined as follows [49], [50]:

pi =
nkeep−i+ 1∑nkeep

i=1 i
(11)

A. CROSSOVER OR RECOMBINATION
Subsequently, the fitness comparable selection approach has
been employed to produce fitness-biased reproduction of the
preceding generation, the crossover and mutation probabili-
ties come into play [49], [50]. Crossover takes two individuals
from the reproduced population pairs and applies recom-
bination. Simple or single-point recombination generates a
number randomly r from a constant distribution and creates
two new individuals (x ′i and y

′
i) according to the following

equations [46]:

x ′i =

{
xi, if i < r
yi, otherwise

(12)

y′i =

{
yi, if i < r
xi, otherwise

(13)

Crossover introduces new locality for supplementary exe-
cution within the hyperplanes, which are not signified by
either parent arrangement [46], [50]. Therefore, the likeli-
hood of obtaining greater performing offspring is consid-
erably increased. High crossover probability results in the
introduction of new structures into the population rapidly,
whereas extremely high crossover causes discarding of struc-
tures quickly before selection generates enhancements [44].
If crossover probability is too small, the search stagnates due
to the low exploration rate [44].

B. MUTATION
Mutation introduces heterogeneity into the population by
expanding the search area that the GA algorithm evaluates
and preventing GA algorithm from converging too fast before
exploring the entire search space [49], [50]. Increasing muta-
tion probability results in algorithm searching outside the
current region of variable space which may impair the pop-
ulation by distorting existing good solutions. As a result,
lower mutation rate is recommended [51]. Uniform mutation
randomly selects one variable j and equates it into a uniform
random number U(ai, bi) where ai and bi are lower and upper
bound, respectively [51].

x ′i =

{
U (ai,bi), if i < j
xi, otherwise

(14)

C. POPULATION SIZE
The group of chromosomes known as population affects the
performance of GA algorithms. It was stated in [50] that a
smaller population size leads to poor performance of the algo-
rithm due to insufficient sample size for hyperplane explo-
ration. Larger population discourages premature convergence
by allowing more particles to cover the search space; how-
ever, at the cost of computational efforts [50], [51]. According
to [52], anywhere between 10∼50 is a good selection, but in
other work, anywhere between 25∼250 yields effective and
efficient solutions to optimization problems [53].

D. GA CONSTRAINT HANDLING APPROACH
Parsopoulos et al. [54] proposed the utilization of a penalty
factor to account for the sum of violated constraints and this
technique is referred to as a non-stationary multistage assign-
ment penalty function mechanism [54]. In [55], a strategy
for managing constraint violation was not employed; as a
result, overcurrent relays’ operating time was minimised, but
the relays were not selective [55]. Reference [56] presents
an improved constraint handling approach that incorporates
a term that examines the number of constraints violated and
increases a fitness value by a factor to penalise infeasible
solution [56]. The same strategy is adopted in this work,
stationary penalty function, p, penalises unfeasible solution.
Too big penalty function value results in the algorithm not
recovering after being penalised, hence the value must be
within average value [57]. All constraints are converted into
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inequality as illustrated:

p− ∈ ≤ 0 (15)

p1 = W1

∑
(−1tmb) (16)

p2 = W2

∑
(TMS − 1) (17)

p3 = W3

∑
(0.05− TMS) (18)

where ∈ is the small tolerance value,W1 controls the weight-
ing of miscoordination penalty, W2 controls the weighing of
the upper bound penalty, andW3 controls the weighting of the
lower bound penalty [57]. The equations (19) and (20) show
the objective function with the penalty factor incorporated.
The nth penalty function pn, is added to the nth constraint
function hn only if constraint violation occurs [52].

J = J +max (0,pn) (19)

pn =

{∑3

n=1
−hn, if hn< 0

0, otherwise
(20)

V. OPTIMIZATION PROBLEM SETUP
In this problem, the objective is to minimise the time multi-
plier setting values to accomplish optimum protection coor-
dination in the distribution system. To investigate the effect
of PSO and GA control parameters on overcurrent relay
selectivity and speed, a distribution network layout developed
in [58] is modified and utilised in this study for sensitivity
analysis, as displayed in Fig. 1.

FIGURE 1. 132 kV protection system under study [58].

In brief, the system comprises a three-phase AC supply
with an RMS voltage of 132 kV at 60 Hz, which is fur-
ther stepped down accordingly and subsequently distributed
to customer loads. All overcurrent relays are configured to
utilise IEC 60255–151:2009 standard inverse characteris-
tics [39]. The optimization problem is modelled as a linear
problem and the stationary penalty factor is used to penalise
infeasible solutions. In the course of the optimization process,
time multiplier parameters were treated as continuous, subse-
quently, as discrete, towards the end of which resulted in poor
coordination. To address this miscoordination, authors in [59]
proposed that algorithms’ trial solutions must be rounded off
to the upper value prior to fitness value evaluation, a similar
approach is adopted in this work [59].

For PSO, three control parameters were considered for
sensitivity analysis, that is, swarm size, number of iterations,
and inertial weight. In contrast, GA considered population
size, crossover probability, andmutation rate to evaluate algo-
rithm sensitivity. The sensitivity analysis of the performance
of algorithms is executed using overcurrent relay operating
time. The best optimal solution is stored at the end of the indi-
vidual run and compared after 10 executions to differentiate
between the best andworst solutions attained. Algorithms and
sensitivity analysis are implemented on computing software
Matlab/Simulink.

VI. RESULTS AND DISCUSSIONS
In order to gain insight into overcurrent relay behaviour while
easing sensitivity analysis efforts, the evaluation technique
for comparing algorithms is as follows:

a) The algorithm that succeeded in obtaining the best fit-
ness value is preferred, whereas any algorithm that yields
poor performance due to premature convergence is not
further considered.

b) The algorithm that determines the best global solution
with the fewest iterations is preferred over the other.

c) Secondary to the speed of convergence is the effi-
ciency and robustness of the algorithm – this is charac-
terised by the lower number of iterations and diversity
maintenance.

With respect to overcurrent protection characteristics,
algorithms’ control parameters that maintain selectivity and
optimize the speed of operation are preferred. Whereas
any control parameter that yields two infeasible solutions,
the one with a better fitness function value is favoured.
Matlab/Simulink is utilised for modelling, computation, and
demonstration of analyses. Convergence curves are computed
to demonstrate PSO and GA control parameters performance
under various conditions.

A. PSO SENSITIVITY ANALYSIS
In this sensitivity analysis study, PSO algorithm control
parameters are considered through constraining particles to
feasible areas. Irrespective of optimization problem nature,
some of the control parameters’ values and choices have
a major influence on PSO algorithm efficiency, and other
control parameters have minimal or no effect [50], [59].
As discussed in the aforementioned section, the basic PSO
parameters are swarm size, velocity components, number of
iterations, acceleration coefficients, velocity clamping, and
inertia weight. To examine PSO performance, only swarm
size, number of iterations, and inertia weight are considered
in this work.

1) SWARM SIZE
Swarm size sensitivity analysis conducted employs a range
between 10 and 500 particles, acceleration coefficient is set
at 2, maximum velocity and inertia weight is set at 50 and 0.9,
respectively. The optimization problem is formulated with
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an iteration of 1000 and it is imperative to note that all
other control parameters are kept constant throughout the
simulation. The effects of swarm size (N) on PSO algorithm
performance are depicted in Fig. 2. It is noticeable that the
incremental change of swarm size causes PSO to perform
more effectively and efficiently; Nevertheless, more com-
putational time is required to achieve the global optimum
solution. Another observation of interest in Fig. 2 is that
population size at 250 and 500 displays similar sensitiv-
ity, whereas performance slightly diverges for smaller sizes,
i.e., 10 and 100. Due to a highly constrained optimization
problem, where particles change based on their experience
and the history of the whole swarm, the obtained results
were expected. Additionally, larger variation between the
enhancement for changing individual position and global best
position either resulted in convergence at local optimum in
lieu of global optimum or unnecessary wandering by indi-
viduals. An increase in swarm size rises the probability of
particles settling to global minima and surpassing a defi-
nite threshold of which results to equivalent performance.
Although the smaller swarm succeeded in obtaining global
minima, the positioning of particles with different sizes
varies.

A research paper [40] focusing on this section with swarm
size range between 20 and 160 particles reported that swarm
sizes have minimum influence on PSO algorithm perfor-
mance [36]. However, it was observable that the performance
of smaller sizes slightly differs from larger swarm sizes.
A further study in [45], detailed sensitivity analysis with
swarm size set between 25 and 500 particles, the study out-
come proposed that the selection of swarm size must be made
based on the number of variables [45].

The effect of swarm size on the overcurrent relay selec-
tivity is investigated and verified. The convergence curve
demonstrated that population size at 250 and 500 converges to
the fitness of values of 3.39 seconds and 2.97 seconds, respec-
tively. Consequently, time multiplier parameters at 500 parti-
cles are slightly smaller than swarm size set at 250, which
means the sum of the relay operating time (i.e., speed of
operation) is optimized and the system is more selective
with maximum sensitivity. When abnormalities occur, it is
detected by both primary and backup protection. The primary
protection operates first as it consists of a shorter operating
time compared to backup protection. For smaller swarm sizes
set at 10 and 100 particles, the function converges to fitness
values of 5.06 seconds and 4.45 seconds, separately. The
behaviour demonstrates that overcurrent relays are taking too
long to operate at 10 particles which violates one of the
protection principles to isolate faults speedily. This implies
that protection coordination is not accomplished, some of
the overcurrent relays exceed coordination time interval
(i.e., CTI ≥ 0.4). With swarm size set at 100, satisfac-
tory optimum protection coordination is achieved in the
distribution system. Also, selectivity is achieved, with only
faulty equipment isolated promptly from the system within
stipulated CTI.

FIGURE 2. The effect of swarm size on PSO performance.

2) NUMBER OF ITERATIONS
Reference [43] suggested the utilisation of iterations rang-
ing between 10 – 50 for moderately complex problems and
200 – 400 for most complex problems [43]. In this sensitivity
analysis, the number of iterations is set at 100, 500, and
1000 iterations, acceleration coefficient is set at 2, maximum
velocity and inertia weight is set at 50 and 0.9, respectively.
Fig. 3 depicts the primary relays’ operating time. It is clear
that the operating time attained by means of varying itera-
tions is similar in all relays. Thus, increasing the number of
iterations has an inconsiderable impact on the performance
of PSO and leads to unnecessary increase in computational
demand at times. Furthermore, the protection system remains
selectivity throughout the iterations variation and the speed
of operation is minimised. Overcurrent relay response dis-
play that increasing number of iterations fails to improve the
efficiency of PSO since the algorithm only controls search
duration and not particle traverse in search space. This study
outcome indicates that the number of iterations is dependent
on problem nature and the extent of complexity as a smaller
value lessens the likelihood of attaining the global solution,
while larger values rise computational efforts.

FIGURE 3. Primary relays operating time with different iteration number.
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3) INERTIA WEIGHT
Xin et al. [43] proved experimentally that inertia weight rang-
ing from 0.4 – 0.9 yields excellent results with improved effi-
ciency and performance of PSO [43]. The linearly decreasing
approach allows particles to explore broader search space
in beginning and neighbouring areas in subsequent stages
with reduced speed. It offers a substantial probability of
reaching an optimum solution quickly [59]. Authors in [40]
undertook a comprehensive study and applied inertia weight
ranging between 0.8 – 1.2, and it was found that a larger iner-
tia value facilitates global search, whereas a smaller inertia
value improves local search [40]. The ultimate goal of inertia
weight is the reduction of velocities or iteration and sharpen-
ing the exploration and exploitation ability of particles. Based
on the aforementioned research work, three different ranges
of inertia weight (i.e., W1 = 0.0 – 1.0, W2 = 0.8 – 1.2,
and W3 = 0.9 – 0.4) are implemented. Swarm size is set at
100 particles, and 1000 iterations are utilised. To circumvent
the effect initial population, 10 simulation runs are taken,
acceleration coefficient parameters are set at 2, minimum and
maximum velocity are 0 and 50, respectively. Fig. 4 depicts
PSO sensitivity to various inertia weight values. At W1 =
0.0 – 1.0, PSO converges prematurely due to the decreased
search abilities and particles getting trapped in local minima.

FIGURE 4. Convergence curves for various inertia weight values.

With respect to overcurrent protection, no significant
improvement in relay coordination is achieved. Likewise, the
overall operating time increased, which means circuit breaker
response time is longer. This is undesirable as shortcom-
ings that persevere longer in the system can damage some
essential parts due to fire that may result from massive-
short circuits; consequently, the system loses synchronism of
the machinery and equipment. Larger inertia weight values,
W2 = 0.8–1.2, failed to achieve proper protection coordina-
tion between relays and performed inefficiently.

Thus, it violates protection principles which are selectivity
and speed of operation. As claimed by [60], and [61], a lin-
early decreasing inertia weight (W3 = 0.9 – 0.4) achieves
better convergence by balancing global and local searches.
All overcurrent relays preserve selectivity and protection

coordination is accomplished in the distribution system.
As seen in Fig. 4, W3 the swarm converges more accurately
and efficiently with fewer iterations than W1 and W2. The
decreasing inertia weight process allows all particles to shift
from exploratory mode to exploitative mode, which produces
an excellent optimization solution.

B. GA SENSITIVITY ANALYSIS
Setting genetic algorithms control parameters to obtain opti-
mal solutions is a long-standing problem. Normally, control
parameters are selected by the user with no guideline of
what values might yield a better solution. Hence, a sensitivity
analysis approach and verification with an experimental sys-
tem is performed to establish suitable values of parameters
and study the conceivable consequence of genetic operators
and their impact on the performance of overcurrent relays.
This study is inclusive of a parametric analysis of genetic
parameters such as crossover probability, population size, and
mutation probability. The goal is to evaluate the behaviour
and determine optimal parameters for GA, which optimizes
the time multiplier settings of overcurrent relays.

1) CROSSOVER AND MUTATION PROBABILITIES
Rojas et al. [20] claimed that a number of crossover points
(one, two, or uniform) have minimal effect on the perfor-
mance of GA, while crossover probability, mutation rate, and
population size have a significant influence [20]. Authors
in [22] employed a combination of crossover and mutation
probability [20% mutation, 80% crossover] and [10% muta-
tion, 90% crossover], and it was found that the combination of
mutation and crossover probability yields the best outcomes;
however, mutation rate must be set at narrow range to avoid
premature convergence, and too high mutation facilitates
random search [22]. A further study in [53] displayed the
superiority of crossover values ranging from 0.3 – 0.9, it was
proven experimentally that bigger crossover probability (0.9)
causes important individuals with better fitness values to get
lost in the search space. This sensitivity study employs a
single-point crossover range from 0.3 – 0.9, mutation rate
range between 0.01 – 0.3, population size set at 100, and the
number of generations set at 1000.

From Table 2, it is clear that the fitness value increases
in proportion with the crossover and mutation probability,
as expected. During crossover rate incremental simulations,
the mutation probability was kept constant at the value of 2%.
The dynamic performance of the considered crossover rates
is depicted in Fig. 5 and the considered crossover ranges are
presented in Table 2. At C = 0.3, the algorithm converges
to the fitness function value of 2.30 seconds and when the
crossover rate is set at C = 0.6, the algorithm converges to
3.95 seconds. At C= 0.9, larger convergence rate is obtained
with an increased fitness function value of 5.37 seconds.
Increasing the crossover rate resulted in an increase in the
fitness function and convergence rate, which means overcur-
rent relays took too long to operate and the coordination time
interval is exceeded on some relays.
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TABLE 2. Comparison of time multiplier settings.

FIGURE 5. Effects of crossover on GA performance.

In the second case, sensitivity analysis is conducted
with four different mutation probability range from
0.02 – 0.3 and a constant single-point crossover probability
of 30%. As depicted in Fig. 6, the parameters substantially
affect the fitness function similarly to crossover probability.
The incremental changes in mutation rate increase the fitness
function and help to circumvent local optima through the
prevention of chromosomes from being too identical to one
another. For mutation probability set at 30%, the algorithm
converges to the fitness function value of 2.80 seconds,
whereas when the mutation probability is set at 20%, the
algorithm converges to the fitness function of 2.25 seconds.
AtM= 0.02, faster convergence rate is obtainedwith a fitness
value of 1.66 seconds. The fitness function drops rapidly from
the initial value of 18.19 seconds to 4 seconds, where it starts
to settle. It settles between 2.50 seconds and 1.30 seconds
for about 250 iterations. The algorithm preserves population
diversity and converges progressively until it reaches a fitness

FIGURE 6. Mutation sensitivity analysis.

value that is within 8% of the final value (1.53 seconds) in
430 iterations. Final fitness function value of 1.66 seconds is
reached in 910 iterations. From these findings, it is clear that
larger mutation results in a slow convergence rate and higher
fitness value.Whereas smaller mutation probability improves
GA algorithm performance. This fulfils the purpose of muta-
tion in genetic algorithms, which is to preserve and introduce
diversity. Overall, overcurrent relays speed of operation is
more optimized at 2% mutation rate, which means the relays
are more selective and speedily when required to operate.

2) POPULATION SIZE
Population size is another contention that influences the
categorization performance of the GA algorithms. In 2007,
Lobo et al. [52] undertook a performance study consider-
ing known control parameters with respect to evolutionary
algorithms [52]. It was found that larger population size
increments parallelism which helps in finding solutions for
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complex optimization problems; however, it requires more
valuations per generation, leading to an unacceptably slow
convergence rate. Bakirli et al. [53] employed a range
from 25 to 250 and claimed that the more population size
increases, the fitness values also increase, similarly more
computational effort is required [53]. A sensitivity analysis
is conducted with population size ranging between 10 – 500,
number of generations is set at 1000, mutation rate of 0.01,
and single-point crossover. As anticipated, the results depict
that by increasing population size, GA performs robustly and
efficiently at the expense of computation time, which agrees
with Bakirli et al. [53]. In Fig. 7, it is noticeable that larger
population size (N = 500) succeeded in converging to the
global minima with the fewest iteration number and hence
managed to perform more efficiently than smaller population
size (N = 10). Also, incremental changes in population size
influences both exploitation and explorationwhich influences
GA outcome greatly. The fitness function at N = 500 is
smaller compared to the population size set at N = 10 and
N = 100, meaning the algorithm convergence rate is faster,
as seen in Fig.7. The algorithm maintains diversity and con-
verges steadily until it reaches a fitness value that is within
10% of the final value. Another observation of interest is
the slow convergence rate at N = 10 with maximum fitness
function, which signifies the occurrence of premature conver-
gence. With respect to protection coordination, overcurrent
relays managed to operate promptly when population size
is set at 500 and at N = 10 relays took too long to operate
with coordination time interval longer than the stipulated
value. This results in protection miscoordination and loss of
selectivity as well as system reliability. When the population
size is set at 100, efficient performance is achieved with a
properly optimized speed of operation and coordination time
interval is within the desired range.

From the experimental results of GA sensitivity analysis,
it can be seen that the genetic operators, that is, population
size, crossover, and mutation have a direct effect on the
performance of genetic algorithms. An increase in population
size, mutation probability, and crossover rate resulted in a
slow convergence rate and higher fitness function. Whereas
smaller probabilities of mutation and crossover improved
GA performance with faster convergence rate and optimized
fitness function. Similarly, a reduced population size yields
higher fitness function and prompt rate of convergence to
facilitate exploration and exploitation.

C. COMPARISON OF CONVERGENCE PERFORMANCE
Sensitivity analysis results are substantiated by comparing the
GA algorithm performance with the PSO algorithm. As seen
above, larger swarm size and iterations numbers increase
computational time; hence, a swarm of 100 particles and
iterations of 1000 are used to optimize relay operating times.
GA is configured with the population size of 100 and the
maximum number of generations is set at 1000. Optimiza-
tion method robustness is determined by algorithms’ abil-
ity to avoid premature convergence, as depicted in Fig. 8.

FIGURE 7. Behaviour of considered population sizes.

FIGURE 8. Comparison of GA and PSO convergence.

Optimization performance can only be appreciated after a cer-
tain number of iterations. In this researchwork, the simulation
is made of 1000 iterations which are enough to appreciate
any improvement of the algorithm. It is noticeable that GA
and PSO converge to the fitness value of 3.554 seconds
and 3.175 seconds, respectively. These fitness values clearly
show that PSO algorithm convergence speed is slightly faster
than GA, that is, in Fig. 8, the red curve (represents PSO)
is quicker to reach its optimal solution than the blue curve
(represents GA). Furthermore, it is good to observe that GA
curves are smoother because the curve has fewer changes
during convergence.

It can be deduced from the results that GA can exploit
search space much more efficiently at the beginning of the
search. The fitness value drops rapidly from the initial value
of 20.20 seconds to 6 seconds, where it starts to settle,
as shown in Fig. 8. It settles between 5.20 and 3.80 seconds
for about 68 iterations. The algorithm preserves diversity and
progressively converges until it reaches a fitness value within
5% of the final value (3.38 seconds) in 285 iterations. Final
fitness value of 3.554 seconds was reached in 975 iterations.
The PSO algorithm begins at a fitness value of 18 seconds
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TABLE 3. TMS and time of operations for both algorithms.

and reaches a fitness value of 4 seconds in 79 iterations.
It reaches the fitness value within 5% of the final fitness
value after 250 iterations and slowly converges until it reaches
the final fitness value of 3.175 seconds in 971 iterations.
This shows the robustness and efficiency of the proposed
optimization technique. The empirical study [11] claimed that
with regards to performance, that is, attaining global best
solution, PSO algorithm yields the best result with even 100
particle which agrees with this study. Another comparative
study [29] conducted with respect to GA found that PSO
produces better optimum solutions than GA, which agrees
with this work [29].

Table 3 shows TMS parameters for optimization tech-
niques. Interestingly the data obtained is between 0.01 ∼1.0,
of which are the stipulated TMS values. Due to the factors
discussed above, PSO provides TMS parameters for overcur-
rent relays that are slightly smaller than GA parameters.

Although PSO managed to perform efficiently and effec-
tively, further modifications can be performed to improve
PSO performance such that the operational speed and
TMS values are further reduced. Sensitivity analysis results
revealed that PSO is sensitive and dependent on its initial
settings; particularly, inertia weight has the most influence
on its performance. Different ranges of inertia weight were
utilised and considered for sensitivity analysis, where it was
seen that some parameters were unsuccessful in traversing
particles leading to premature convergence. A significant
number of researchers advocated the necessity of using larger
inertia weight in the beginning, thereafter slowly decreasing
to minimal value [25], [40]. Nonetheless, the time-based iner-
tia weight variation may not lead to global optimal solution;
hence, a self-adapting weight may be effective [40]. PSO
is a population-based and stochastic inspired optimization
method that at times suffers from premature convergence,

which results in algorithm ineffectiveness [62]. Therefore,
it is of paramount importance to introduce modifications to
the algorithm such that the convergence speed is improved
and circumvent premature convergence. An adaptive strategy
that modifies cognitive and social parameters, as well as iner-
tia weight through observing current position and modifying
control parameters, is employed in this work. A modified
adaptive particle swarm optimization (MAPSO) previously
proposed in [63] and [64] is modified and altered to best
suit the overcurrent coordination problem. The technique
was also proposed and implemented in [65] and [66]. The
algorithm introduces an evolutionary state as a novel scheme
to adapt control parameters such that relay operating time is
reduced and the limitations presented by the original PSO are
addressed through keeping track of particles’ current position
with respect to its global best solution and personal best
solution [66]. The three contributions presented by MAPSO
are described as follows:

a) MAPSO is a constraint handling mechanism that
enhances original PSO performance by making the con-
trol parameters adaptive and ensuring particles move
towards feasible regions only.

b) An evolutionary state-based inertia weight is proposed to
balance exploration and exploitation search by enforcing
the algorithm to retain feasible solutions only.

c) A repulsion-based position update technique, as well as
velocity reinitialization with respect to clamping limit,
is adopted to enhance global exploration and increase
robustness.

D. MODIFIED ADAPTIVE PARTICLE SWARM
OPTIMIZATION (MAPSO)
Themodified adaptive particle swarm optimization (MAPSO)
aims to attain distinctive inertia weight and acceleration
coefficient values. MAPSO is a self-adaptive technique that
uses feedback parameters produced by the fitness function
of the individual particle. In [65], a chaotic-based non-linear
inertia weight was proposed to provide balance between
exploration and exploitation by reducing or increasing the
search step [65]. However, the algorithm presented issues
such as poor convergence, instability, and lack of feasible
solutions. Another study in [66] proposed the use of evolu-
tionary state-based inertia weight to balance exploration and
exploitation. An evolutionary estate (ES) is the mechanism
used to self-automate the algorithm based on the environment
as follows [65]:

ESki =
f
(
pbestki

)
− f (gbestk )

f (xki )
(21)

where ESki is the evolutionary estate, i the individual particle,
k the iteration number, f

(
pbestki

)
the personal best solution

fitness function, f (gbestk ) is the global best fitness solu-
tion across the whole swarm, and f (xki ) the fitness value of
each particle current feasible solution [66]. Higher ESki value
indicates the most recent feasible solution of an individual
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particle is near its personal best solution
(
pbestki

)
and the

global best solution (gbestk ) at the far end, this occurs when
f
(
xki
)
= f

(
pbestki

)
[65], [66]. Smaller value of ESki means

either the most recent feasible solution of the individual
particle is at the far end for both personal best and global best
solutions or the personal best solution is near the global best.
When f

(
pbestki

)
= f (gbestk ), evolutional estateESki become

zero [67]. This strategy yields optimum global solution and
improves convergence thus, it is adopted in this research work
to self-adapt inertia weight and evaluate the fitness function
of each particle.

1) MAPSO - INERTIA WEIGHT
Yang et al. [68] propose a PSO algorithm with dynamic
adaptation (DAPSO) that consists of two feedback parame-
ters namely, aggregation factor which compares all particle
performance with the best performing particle in the current
iteration, and speed factor which evaluate the particles’ per-
sonal best solution were utilised to adapt inertia weight wki .
Accordingly, inertia weight wki was adapted using the follow-
ing (22); where hki is the speed factor, s the aggregation factor,
ws the initial inertia weight, a and β are system parameters
with a range of [0,1]. This approach suffers from explosive
divergence resulting in particles leaving the feasible region
and never return, thus the algorithm is unstable and ineffi-
cient [68].

wki = ws − a
(
1− hki

)
+ βs (22)

Another study [69] proposed a self-regulating inertia
weight that controls each particle by increasing inertia weight
value for the best performing particle while decreasing for
all other particles. This scheme transpires from an idea that
the best performing particle contains higher fitness value in
its direction, hence, accelerates fast, whereas other all parti-
cles should proceed with a linearly decreasing inertia weight
strategy. The self-regulating formula is given in (23), where
wki the inertia weight for i-th particle in the k-th iteration,
η is a constant to control acceleration rate, wmax and wmin
are maximum and minimum inertia weight. Harrison [70]
in 2018 demonstrated that a self-regulating inertia weight
approach can only lead to convergence behaviour when a
certain threshold is known and is problem dependent, thus
suggesting the use of particles’ fitness values in adapting
inertia weight [70].

wki =

{
wk−1i + η1w, for the best particle
wk−1i −1w, for all other particles

(23)

1w =
wmax − wmin

k
(24)

wki = wmin + (wmax − wmin)

(∑N
i=1 S

k
i

N

)
(25)

Equation (25) depicts adapting strategy based on particle
success. This approach was proposed in [71] to evaluate parti-
cles’ behaviour such that the particle that improves its fitness

at k iteration succeeds, whereas failure in enhancing fitness
results in local minima solution [71]. N refers to swarm
size and Ski a constant that is set to 1 if particle succeeds
and 0 if unsuccessful. An increase in success percentage
increases the inertia weight and decrease with decreasing
success percentage. Other researchers [72] used non-linear
function of decreasing inertia weight similar to the scheme
developed in [73],, which does not require a known iteration
number. It is a new technique for updating inertia weight
such that particles that obtain better solutions are considered
for more exploitation capability. The scheme demonstrated
a substantial improvement in the performance with regards
to convergence speed and efficiency compared to dynamic
adaptive particle swarm optimization DAPSO [73]. Although
the above-mentioned variants improve the performance of the
original PSO, the models become more complex due to the
introduction of new parameters. Also, some adaptive vari-
ants are designed to solve unconstrained problems and suffer
from premature convergence. Therefore, this paper proposes
a constraint handling mechanism that improves original PSO
performance by making the algorithm control parameters
adaptive while ensuring the model is simple. In the proposed
method, the evolutionary state ESki behaviours like inertia
weight wki hence, the performance of inertia weight is con-
sidered equivalent to evolutionary state [66].

2) MAPSO – ACCELERATION COEFFICIENTS
The movement of particle per iteration is controlled by
acceleration coefficients, that is, both cognitive ck1 and social
ck2 parameters. Typically, ck1 and ck2 are set at a constant
value of 2.0 for the original PSO algorithm [74]; however,
experimental results depicted that the employment of alter-
native configuration may yield better performance. It was
proven that assigning different acceleration coefficient values
results in improved performance and faster convergence [75].
Carlisle and Dozier [76] claimed that choosing larger cog-
nitive parameter ck1 than a social parameter ck2 may lead
to superior performance but with constraint ck1 + ck2 ≤ 4.
It was suggested in [75] that both cognitive and
social parameters can be set as linearly decreasing val-
ues, but no improvement in performance was reported.
Ratnaweera et al. [77] implemented PSO with time-varying
acceleration coefficients (PSO-TVAC) such that ck2 increases
linearly over time while ck1 decreases. The strategy aims to
improve convergence by attracting more particles towards
the global best solution. In [66], acceleration coefficients are
influenced by evolutionary state instead of being time-based
as follows [66]:

ck1 =



(
(cmax − cmin)× (itermax − k)

itermax

)
+cmin if 0 ≤ ESki ≤ 0.5

cmax −
(
(cmax − cmin)× (itermax − k)

itermax

)
if 0.5 ≤ ESki ≤ 1.0

(26)
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ck2 =



cmax −
(
(cmax − cmin)× (itermax − k)

itermax

)
if 0 ≤ ESki ≤ 0.5(

(cmax − cmin)× (itermax − k)
itermax

)
+cmin if 0.5 ≤ ESki ≤ 1.0

(27)

0 ≤ ESki ≤ 0.5 is regarded as a low evolutionary state in
which the particle explores more global search at the begin-
ning and towards the end, local search is encouraged [66].
Larger evolutionary state 0.5 ≤ ESki ≤ 1.0 promotes
exploitation in the beginning by permitting particles to con-
verge towards the swarms’ best solution and progressively,
more global exploration is encouraged towards the end [66].
The two constants cmin and cmax are set at 0 and 2.0, respec-
tively. The same approach is adopted in this work to allow
self-adapting acceleration coefficients to feasible regions.

3) VELOCITY UPDATE AND REINITIALIZATION
Pasupuleti and Battiti [78] introduced gregarious particle
swarm optimization (G-PSO) which does not take into con-
sideration particles’ previous velocity for determining new
velocity [78]. The G-PSO population moves toward the
global best position and once a particle gets trapped close
to the global best solution, that particle reinitialises with a
random velocity [78]. Consequently, the algorithm continues
exploring the local search while the original PSO proceeds
by circumventing them. In [79], an adaptive parameter setting
of particle swarm optimization based on velocity information
(APSO-VI) was proposed, the algorithm uses current veloc-
ities of the particle to adapt inertia weight with the goal of
getting velocity near to the ideal velocity [79]. The idea of
a decreasing velocity in the APSO-VI algorithm was intro-
duced earlier in [80] to adapt inertia weight in a conversant
particle swarm such that exploitation and exploration are
regulated [80]. Authors in [66] proposed the reinitialization
of velocity with respect to velocity clamping limit as given in
the following equation.

vk+1d =


rand × vdmax , if vk+1d = 0

and rand ≤ 0.5

rand ×
(
−vdmax

)
, if vk+1d = 0

and rand > 0.5

(28)

The expression reinitialises a single component since other
parameters in the velocity vector might contain a good struc-
ture which would allow the particle to move towards the
global best solution with vk+1d referring to a certain dimen-
sion d of the velocity vector, vdmax the velocity clamping
limit of dimension d , and rand randomly generated from a
uniform distribution ranging [0,1] [66]. For velocity update,
the authors in [66] also proposed a repulsion-based particle
velocity update that improves global exploration capabilities
and increases robustness by introducing repulsion between
particles. It utilises an evolutionary state to adopt the equation
based on the proximity of the most recent feasible solution

and the modified velocity-update equation is as follows [66]:

vk+1i = ESki v
k
i + c1rand

k
1

(
pbestki − s

k
i

)
+c2randk2

(
gbestk − ski

)
− ESki

(
gbestk − pbestki

)
(29)

Particle repulsion occurs based on two aspects, that is,
the difference between the global best solution gbestk and
personal best solution pbestki , and the evolutionary state ES

k
i

value [66]. Higher evolutionary stateESki leads to low particle
repulsion while lower evolutionary state ESki results in higher
repulsion experienced by particle [66]. The use of repulsion-
based velocity-update was adopted in this work withMAPSO
algorithm pseudocode presented below.

1. Start.
2. Initialise the population.
3. Randomly generate s0i value.
4. Set v0i = 0 and s0i = pbest0i .
5. Determine the value of gbest0.
6. Let number of iterations k = 1.
For each particle i

Determine evolutionary state ESki .
Update the acceleration coefficients ck1 and c

k
2.

Update particles’ velocity vk+1i .
Determine the fitness function f (xki )

If f (xki ) < f
(
pbestki

)
then

pbestki = xki
elseif f (xki ) < f

(
gbestk

)
then

gbestk = xki
End If

If vk+1d = 0
Reinitialise the particle velocity

End If
End For

7. k = k + 1
8. Repeat step (6)
9. k = itermax
10. Stop.

4) MAPSO – SENSITIVITY ANALYSIS
Shi and Eberhart [25] set both acceleration coefficients
to 2 and seen improvement in the algorithm performance
whereas when altered the particle fly to infeasible solutions.
As depicted in Fig. 9, the acceleration coefficient combi-
nation (c1 = 2 and c2 = 2) managed to perform better
and efficiently, which agrees with [25]. It can be seen that
c1 = 2 and c2 = 2 combination converges fast whereas
c1 = 2.5 and c2 = 1.0 convergence rate was slow, which
resulted in more iterations required to explore search space.
For c1 = 2.5 and c2 = 1.0 combination, the particle fails
to reach target regions due to being trapped infeasible region
before travelling towards the optimal solution. The velocity
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FIGURE 9. The effect of acceleration coefficients with respect to
convergence.

FIGURE 10. Velocity-clamping limit convergence curves.

clamping-limit sensitivity analysis demonstrated that as par-
ticles explore more search space, the ability of the particle
to fly past optimum solution increases, as depicted in Fig. 10.
The figure shows that as the velocity clamping limit increases,
the likelihood of obtaining a more feasible solution rises,
resulting in quick convergence and more efficient algorithm
performance.

5) COMPARISON BETWEEN MAPSO AND OTHER VARIANTS
In an attempt to overcome premature convergence in the
PSO algorithm, Reference [81] ‘‘introduced a novel hybrid
algorithm (PSO-DE) which integrates PSO with differen-
tial evolution (DE) to solve constraints by adopting a set
of feasibility rules [81].’’ The PSO-DE algorithm provides
better performance compared to modified differential evolu-
tion (MDE) [82] and differential evolution (DE) [83] hence,
PSO-DE algorithm is utilised in this work for compari-
son purposes. ‘‘The PSO algorithm with linearly decreasing
inertia weight (PSO-LDIW) was proposed in [25], [40] to
linearly decrease the weight over time.’’ It was observed
that PSO-LDIW algorithm convergence rate is slow toward
global solution due to reduced inertia weight, which results

TABLE 4. Range of considered variants.

FIGURE 11. Convergence curves of MAPSO and other variants.

in difficulty leaving the local optimum [40]. Another variant
that integrates PSO with random inertia weight (PSO-RIW)
was implemented in [84] and chaotic inertia weight (PSO-
CIW) was proposed in [85]. Different PSO variants range are
presented in Table 4. Fig. 11 depicts convergence curves for
MAPSO and other variants.

MAPSO managed to outperform the original PSO,
PSO-LDIW, PSO-RIW, and PSO-DE, as seen in Fig. 11.
Furthermore, ‘‘MAPSO algorithm managed to attain the
global optimum solution in the fewest iterations com-
pared to other variants; this indicates the algorithms’ ability
to converge’’ fast while avoiding premature convergence.
Although MAPSO and PSO-CIW algorithm allowed par-
ticles to explore broader space with greater momentum,
MAPSO performs better due to navigating the search space
by means of evolutionary state whereas PSO-CIW navigates
with respect to chaotic mapping which leads to stagnation.
Variants such as PSO-LDIW, PSO-RIW, and PSO-DE failed
to converge into the best global solution and were getting
trapped in local optima. Other studies [81] found PSO-DE
algorithm effective in solving the overcurrent relay coordina-
tion problem which disagrees with this work, as can be seen
in Table 5, the algorithm yielded longer operational speed,
and some relays were not selective which violates protection
scheme principles.

Similarly, in [86] PSO-LDIW was compared with
PSO-CIW which indicates a great difference between the
algorithms, the study claimed that PSO-LDIW performs effi-
ciently and robustly, is more stable with better global search
capability than PSO-CIW which is contrasting with the
results presented in this work. From Table 5 it can be seen that
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TABLE 5. The sum of relay operating time and TMS values for each
variant.

MAPSO generates better values of TMS and relay operating
time which further proves the algorithms’ superiority as com-
pared to the previously proposed optimization algorithms.
The operating time is further reduced from 6.169 seconds
to 4.331 seconds which signifies the effectiveness of the
newly proposed algorithm. All overcurrent relays preserve
selectivity and protection coordination is achieved in the
distribution system. This means abnormalities are removed
as soon as possible without affecting the healthy section.

VII. CONCLUSION
The objective of this paper was to study the effects of
particle swarm optimization and genetic algorithms control
parameters on overcurrent relay sensitivity and speed. Due
to the drawbacks of conventional methods, particle swarm
optimizer and genetic algorithms are commonly used to
solve the overcurrent relay optimization problems in dis-
tribution systems. However, setting evolutionary algorithms
control parameters to obtain optimal relay settings is a long-
standing problem. The sensitivity study conducted in this
paper found that evolutionary algorithm control parameters
certainly influence the performance of overcurrent relays.
The altering of one parameter at a time while keeping others
constant was very useful in finding parameters responsible for
poor protection selectivity and speed of operation. The exper-
imental results show a reduction in computational efforts
and improvement in PSO convergence. The comparison of
PSO with GA depicts that particle swarm optimizer con-
verges faster than the genetic algorithms. The PSO algorithm
reduces the overall TMS to the value of 3.18 and time of
operation to 6.169 seconds, whereas GA yields an overall
TMS value of 3.55 and the operational time of 7.239 seconds.
This shows the PSO algorithm managed to optimize over-
current relay settings and accomplished optimal protection
coordination in distribution systems. The proposed MAPSO
algorithm further improved operational speed and system
selectivity. The sum of the primary relays’ operating time
was further minimised from 6.169 seconds (original PSO)
to 4.331 seconds (MAPSO). The comparative study verified

the efficiency and effectiveness of MAPSO in solving
overcurrent coordination problems, it showed that MAPSO
outperforms all other variants. MAPSO yields the best
optimal overcurrent relay settings with operating time of
4.331 seconds. Thus, it can be concluded that successful
evaluation of control parameters and optimization of overcur-
rent relay settings was achieved. Future research work will
focus on the impact of cognitive and social parameters as
well as velocity clamping limit on original PSO algorithm
performance. Moreover, sensitivity analysis can be done by
means of altering two or more control parameters as opposed
to the proposed strategy of one at a time approach.
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