
Received November 9, 2021, accepted January 2, 2022, date of publication January 6, 2022, date of current version January 13, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3140781

Deep Reinforcement Learning With Adversarial
Training for Automated Excavation
Using Depth Images
TAKAYUKI OSA 1,2,3 AND MASANORI AIZAWA4
1Department of Human Intelligence Systems, Kyushu Institute of Technology, Fukuoka 808-0135, Japan
2Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, Fukuoka 808-0135, Japan
3RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
4Komatsu Ltd., Kanagawa 254-0913, Japan

Corresponding author: Takayuki Osa (osa@brain.kyutech.ac.jp)

This work was jointly supported by the Kyushu Institute of Technology and Komatsu Company Ltd. The work of Takayuki Osa was
supported in part by JSPS KAKENHI under Grant JP19K20370.

ABSTRACT Excavation, which is one of the most frequently performed tasks during construction often
poses danger to human operators. To reduce potential risks and address the problem of workforce shortage,
automation of excavation is essential. Although previous studies have yielded promising results based on
the use of reinforcement learning (RL) for automated excavation, the properties of excavation task in the
context of RL have not been sufficiently investigated. In this study, we investigate Qt-Opt, which is a
variant of Q-learning algorithms for continuous action space, for learning the excavation task using depth
images. Inspired by virtual adversarial training in supervised learning, we propose a regularization method
that uses virtual adversarial samples to reduce overestimation of Q-values in a Q-learning algorithm. Our
results reveal that Qt-Opt is more sample-efficient than state-of-the-art actor-critic methods in our problem
setting, and we verify that the proposed method further improves the sample efficiency of Qt-Opt. Our results
demonstrate that multiple optimal actions often exist within the process of excavation and the choice of policy
representation is crucial for satisfactory performance.

INDEX TERMS Construction industry, automation, machine learning, reinforcement learning.

I. INTRODUCTION
Construction often involves tasks that pose danger to human
operators, and the construction industry is recently facing
a shortage of the workers. To address such issues, automa-
tion of excavation has been investigated for decades [1]–[7].
Recently, machine learning and robotics have demon-
strated promising results in various applications [8], [9].
Particularly, recent studies on deep reinforcement learning
(RL) [10] in various applications, including robotic manip-
ulation [11], [12] and autonomous driving [13]. In RL,
the optimal policy, which maximizes the expected return,
is obtained through autonomous trials and errors. Therefore,
RL removes the needs for manual design of policies or an
expert-demonstration dataset. Recently, Kurinov et al. inves-
tigated a framework for automating excavation based on deep
RL [14] and demonstrated that they had successfully obtained
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a policy for excavation. However, in their work, the policy
uses as input, a low-dimensional state vector, which is care-
fully designed and difficult to obtain in real-world systems.
To make the policy more generalizable, training a policy
that plans excavation motion based on visual information is
desired.

To address this problem, we study deep RL methods for
the planning of excavation motions, using depth images of
the landscape. Specifically, we investigate Qt-Opt, which is
a variant of Q-learning algorithms for a continuous action
space, to learn the excavation task in this study. We present
novel techniques to improve the sample-efficiency of Qt-Opt
and demonstrate the advantages of the proposed technique
in the excavation task. Inspired by virtual adversarial train-
ing (VAT) proposed in [15], we propose a regularization
method using virtual adversarial samples to avoid the overes-
timation of the Q-values. We refer to this method as conser-
vative adversarial training (CAT). Additionally, we propose
a strategy for selecting actions using two critics in Qt-Opt,
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FIGURE 1. Excavation automation has become essential to reduce risks
to humans and cope with workforce shortage.

which is less sensitive to the approximation error of the
learned critic. The proposed variant of Qt-Opt is applied to
autonomous excavation using the depth image of the land-
scape. The experimental results revealed that the proposed
method significantly reduced overestimation of Q-values and
improved sample efficiency of Qt-Opt. The proposed method
is compared with the following state-of-the-art actor-critic
methods: soft actor-critic (SAC) [16] and twin delayed deep
deterministic policy gradient (TD3) [17], for our excavation
task. Interestingly, our results revealed that these state-of-the-
art actor-critic methods did not provide satisfactory perfor-
mance and that Qt-Opt is more sample-efficient than SAC
and TD3 in our problem setting. We present the multimodal-
ity of the Q-function for the excavation task and discuss
why Qt-Opt outperforms SAC and TD3 for excavation tasks.
We believe that this study will provide valuable insights to
researchers developing deep RL algorithms and practitioners
developing automated excavators using deep RL methods.

The remainder of this paper proceeds as follows. Section II
describes the related work. Subsequently, in Section III,
we present the background of the proposed method. The
proposed method is described in Section IV, and the experi-
mental results are presented in Section V. The characteristics
of the proposed method are discussed in Section VI, and the
conclusions are provided in Section VII.

II. RELATED WORK
Automation of excavation has attracted significant attention
because of its expected social impact [1]–[7]. Early stud-
ies on autonomous excavation, such as [2], [5], and [6],
have focused on modeling soil behavior to design an effi-
cient scooping motion. These studies implicitly assumed
that the scooping motion is analytically designed by human
engineers. Moreover, it is challenging to design an optimal
strategy to achieve efficient excavation. A recent study by
Fukui et al. employed an approach based on imitation learn-
ing to automate excavation [7]. Imitation learning is an

approach that obtains the optimal strategy by learning from
human demonstrations [18], [19]. Fukui et al. proposed
classifying the excavation motions demonstrated by human
experts and adapting them to achieve efficient excavation [7].
However, their method requires a database of excavation
motions, and it is difficult to build such a database in practice.

In RL, a policy that maximizes the expected return is
obtained through trial and error [10]. This approach is espe-
cially attractive for tasks in which simulations are available,
because the optimal policy can be obtained from virtual
samples. Recent studies have applied deep RL to excava-
tion tasks [14], [20]. A simulator for a bucket-leveling task
was developed in a previous study [20], and the efficacy of
deep RL methods was investigated. In a previous study by
Kurinov et al. [14], a 3D simulation of the excavation task
was developed, and deep RL was applied to automate the
excavation task. Although they achieved promising results,
the obtained policy is based on a low-dimensional state
vector, which is difficult to obtain in real-world systems.
To extend the applicability of the trained policy, it is nec-
essary to investigate methods for learning a policy that uses
vision-based inputs and outputs actions for the excavation
task. Previous studies on autonomous excavation have often
focused on learning a controller that is robust against distur-
bances [21], [22].

Qt-Opt was originally developed for grasping tasks that
involve large-scale off-policy data collection [23]. Qt-Opt
should be a reasonable choice for tasks where the Q-function
is non-convex and highly complex and a simplified pol-
icy representation is not suitable. However, Qt-Opt was
not directly compared with SAC and TD3 in the original
study [23]. To the best of our knowledge, previous studies
have not directly compared Qt-Opt with SAC and TD3 on
the same task.

It is well known in the field of deep RL that there can be
multiple optimal policies that elicit the optimal value func-
tion [10]. In other words, multiple optimal actions exist for
a given state, although the optimal value function is unique.
However, existing RL methods typically learn a policy that
models the conditional distribution of actions as a unimodal
distribution [16], [17]. This simplified policy model may not
be sufficient for tasks in which there are several optimal
actions for a specified state. Our study demonstrates that the
excavation process is one such task and the performance of
RL methods is significantly affected by the flexibility of the
policy model.

Virtual samples that are generated by injecting noise into
samples in a given dataset are often called adversarial exam-
ples [15], [24], [25]. Previous research revealed that neural
networks are often vulnerable to small noise injected into
samples [24] and that regularization using adversarial sam-
ples can improve the generalization performance [15], [25].

In the deep RL literature, previous studies [26]–[28]
investigated the sensitivity of RL agent against adversarial
perturbations or adversarial agents. However, these studies
did not address how to improve the learning performance
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of RL agents. Consequently, it is not clear how to leverage
adversarial examples for training RL agents. Recent stud-
ies [29], [30] proposed methods for obtaining a robust policy
by jointly training an adversarial agent. In these studies [29]
and [30], the term ‘‘adversary’’ represents an adversarial
agent, and not adversarial examples. Although the methods in
these studies are applicable to control problems wherein we
can introduce an adversarial agent that disturbs the dynamics,
it is difficult to apply them to planning problems wherein it
is not clear how to define an adversarial agent.

III. BACKGROUND
First, we introduce the problem formulation of RL. Subse-
quently, we introduce Qt-Opt and TD3, which are the state-
of-the-art RL algorithms, because it is essential to understand
the similarities and differences between Qt-Opt and TD3
to interpret this study. Additionally, we briefly describe the
VAT proposed in [15].

A. REINFORCEMENT LEARNING
We consider an RL problem under a Markov decision pro-
cess (MDP) defined by a tuple (S,A,P, r, γ, d), where
S is the state space,A is the action space,P(st+1|st , at ) is the
transition probability density, r(s, a) is the reward function,
γ is the discount factor, and d(s0) is the probability density
of the initial state. A policy π (a|s) : S × A 7→ R is
defined as the conditional probability density over actions
given states. The cumulative discounted reward given byRt =∑T

k=t γ
k−tr(sk , ak ) is often referred to as a return. RL aims to

obtain a policy that maximizes the expected return, E[R0|π ].
The expected return after taking action a under state s and
then following policy π is denoted by Qπ (s, a), and it is
called the Q-function. In deep RL, the Q-function is often
approximated using a neural network. We refer to the neural
network that approximates the Q-function as the critic in
this study. In the following sections, we consider off-policy
RL methods, which train a policy using samples stored in a
replay buffer D = {(si, ai, s′i, ri)}

N
i=1.

B. QT-OPT: Q-LEARNING FOR CONTINUOUS CONTROL
In deep Q-learning (DQN) presented by Mnih et al. [31], the
optimal Q-function is directly approximated using a neural
network. Herein, Qw denotes the critic parameterized with
a vector w, and w is updated by minimizing the following
objective function:

w∗ = argminE(s,a,s′,r)∼D
[
(Qw(s, a)− yi)2

]
, (1)

where yi is the target value given by

yi = r + γ max
a′

Qw′ (s′, a′), (2)

and w′ is the parameter of the target network, which main-
tains the old parameter of the critic. DQN is developed
for tasks with discrete actions, wherein it is simple to
compute maxa′ Qw′ (s′, a′). However, when the action space
is continuous, it is not easy to compute maxa′ Qw′ (s′, a′).

To mitigate this issue, maxa′ Qw′ (s′, a′) is approximated
using the cross-entropy method (CEM) [32], [33] in Qt-Opt.
CEM is a black-box optimization method that can be applied
to arbitrary functions. In Qt-Opt, to avoid the overestimation
bias in Q-learning and stabilize the learning process, the tar-
get Q value is computed using two models of the Q-function
as

yi = r + γ min
i=1,2

Qwi (s
′, a′), (3)

where Qw1 and Qw2 represent two separate models for
approximating the Q-function, and a′ is given by

a′ = argmax
ã
Qw1 (s

′, ã), (4)

which is determined by CEM. For CEM, we need to prepare
an initial sampling distribution, for example, Gaussian distri-
bution. At each iteration, N actions are randomly generated
using the sampling distribution. Then, the sampling distribu-
tion is fitted to the best M actions, which have the highest
estimated Q-values. In the original Qt-Opt, two iterations are
performed with M = 5 and N = 64. Although CEM is used
to determine the action that maximizes the Q-function, other
black-box optimization methods can also be applied.

C. ACTOR-CRITIC METHODS
When policy π (a|s, z) is deterministic, π (a|s) is a Dirac-delta
function that satisfies∫

Q(s, a)π (a|s)da = Q(s,µθ (s)), (5)

where µθ (s) : S 7→ A. Silver et al. [34] proposed using the
following objective function to train a deterministic policy:

J (θ ) = Es∼β(s)
[
Qπ (s,µθ (s)

]
, (6)

where β(s) is the distribution of the states induced by a
behavior policy for collecting the state action pairs. A deter-
ministic policy can be updated using the deterministic policy
gradient (DPG) algorithm

∇θJ (θ ) = Es∼β(s)
[
∇aQπ (s, a)|a=µ(s)∇θµθ (s)

]
. (7)

The performance of the DPG algorithm has been demon-
strated in various studies [17], [35]. In TD3, two critic net-
works were introduced to mitigate the issue of the overes-
timation of the Q-function owing to the maximization bias
in Q-learning [10], [36]. The target value of the action-value
function is computed as

y = r + γ min
i=1,2

Qw′1

(
s′, a′)

)
(8)

where

a′ = µθ (s)+ ε, ε ∼ N (0, σ ), (9)

and noise ε is generated from the Gaussian distribution.
In SAC [16], a stochastic policy is modeled using a reparam-
eterization trick given by

a = µ(s)+ ε � σ (s), (10)
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where µ(s) and σ (s) are the mean and standard deviation
of the action for a given state s, respectively. We express
the element-wise product with � in (10). SAC uses the
entropy-regularized value function; therefore the target value
for the critics is given by:

y = r + γ min
i=1,2

Qw′1

(
s′, a′)

)
+ α logπ (a|s), (11)

where α is a constant that balances the task reward and the
entropy term.

The difference between Qt-Opt and TD3 is the policy
representation; Qt-Opt determines the action without any
explicit model of a policy by searching for the action that
maximizes the Q-value with CEM, whereas TD3 explicitly
models the policy with a neural network. As described later,
this difference is crucial in the excavation task.

D. VIRTUAL ADVERSARIAL TRAINING
In this study, we adapt VAT to avoid the overestimation of
the Q-values in Qt-Opt. To make this paper self-contained,
we introduce the VAT proposed in [15]. VAT was devel-
oped for supervised and semi-supervised learning, and the
study in [15] investigated the problems of training a condi-
tional probability density model pθ (y|x), parameterized with
a vector θ for given input-output pairs {xi, yi}

n
i=1. In VAT,

the perturbation is generated in the direction in which the
change in the distribution is the largest. When the divergence
between two distributions p and p′ can be quantified using a
non-negative function D[p, p′], the perturbation is generated
as follows:

dadv = argmax
d

D [p(y|x), p(y|x+ d))] (12)

subject to ‖d‖22 < ε, and ε is the step size of the perturbation.
Although there is no closed form for the adversarial pertur-
bation in (12), the perturbation, dadv, can be approximated
as

dadv ≈ ε
g
‖g‖2

(13)

g = ∇dD [p(y|x), p(y|x+ d)] |d=ξu, (14)

where u is a randomly generated unit vector and ξ is a
constant for computing a finite difference. Using the obtained
adversarial perturbation dadv, the model is trained by mini-
mizing the following objective function:

`(θ )+ Ladv(θ ), (15)

where `(θ ) is the negative log-likelihood and Ladv(θ ) is the
regularization term using the adversarial perturbation, dadv.
The aim of the VAT proposed in [15] is to smooth the

output distribution; therefore, the adversarial perturbation is
generated in the direction in which the change in the distribu-
tion is the largest. In this study, virtual adversarial samples
were employed to avoid overestimation of the Q-values in
Q-learning algorithms. Consequently, we propose a method
that generates the adversarial perturbations in the direction in
which the Q-value is likely to be overestimated.

IV. PROPOSED METHOD
In RL, the optimal action, a∗, is given by

a∗ = argmax
a
Q∗(s, a), (16)

whereQ∗(s, a) is the optimal Q-function [10]. In other words,
the optimal action is the extremum of the optimal Q-function.
Therefore, when we model a policy explicitly, the policy
should be trained so as to approximate the location of the
extremum of the Q-function.

The architecture of the critics for Qt-Opt and TD3 is identi-
cal in our implementation, and the difference between Qt-Opt
and TD3 is in the policy representation. In TD3, a determin-
istic function with a single output is used to approximate
the action that maximizes the Q-function. Therefore, if the
Q-function has multiple separate extrema, the policy may
not have sufficient flexibility to represent the extrema of the
Q-function. In contrast, in Qt-Opt, the action that maximizes
the Q-function is approximately determined using the CEM.
As shown in previous studies [32], [33], the CEM can deal
with an objective function with multiple extrema. Therefore,
the action that maximizes the Q-function can be approxi-
mated even if the Q-function has multiple extrema. Conse-
quently, the policy representation in Qt-Opt is more flexible
than that in TD3. For this reason, we employed Qt-Opt as the
base algorithm. The difference in the performance of Qt-Opt
and TD3 is discussed in Section V. To improve the sample
efficiency, we introduce two techniques: 1) the regularization
method for avoiding overestimation of Q-values, and 2) the
strategy for selecting the action using two critics in Qt-Opt.

A. CONSERVATIVE ADVERSARIAL TRAINING FOR
AVOIDING OVERESTIMATION OF Q-VALUES
Previous studies on RL pointed out that overestimation
of Q-values often occurs in the variants of Q-learning
algorithm [10], [36], [37]. Although the double-clipped
Q-learning incorporated in Qt-Opt is a method for mitigating
overestimation, we observed overestimation of Q-values in
the training process of Qt-Opt in our preliminary experiment.
When overestimation occurs, the Q-values estimated by the
critic rapidly surge and then decrease at the beginning of the
training process [10]. To alleviate the issue of overestimation
of Q-values, we leverage a regularization method using vir-
tual adversarial samples.

It is well-known that statistical models often suffer from
overfitting. To mitigate this issue, previous studies have pro-
posed regularization methods [38]–[40]. Given the input-
output pairs, previous studies have proposed the use of vir-
tual adversarial samples by injecting noise into the given
input samples and encouraging the model to generate out-
puts similar to the original outputs [15], [25], [41]. These
regularization methods can be used to smooth the output
of neural networks and improve their generalization perfor-
mance. Inspired by these previous studies, we employed reg-
ularization using virtual adversarial samples. Although exist-
ing methods using virtual adversarial samples are designed
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to enhance the smoothness of the output from the trained
model [15], [25], we propose a strategy to avoid overestima-
tion of Q-values.

While employing VAT, there are two important design
choices: 1) how to generate adversarial perturbations and
2) how to set target values when adversarial samples are used
as inputs to a model. In supervised learning, pairs of input
and target values are given as a training dataset. However, the
adversarial samples are not actually observed data; therefore,
the target value is not known when these samples are used as
inputs to the model.

In our proposed method, we compute the adversarial per-
turbation to the state variable that leads to the highest esti-
mated Q-value in the neighbor of the actual sample as

d iadv = argmax
d

Qwi (s+ d, a), (17)

subject to ‖d‖22 < ε for i = 1, 2. Based on the discussion
in [15], d iadv can be approximated by

d iadv ≈ ε
gi∥∥gi∥∥2 , (18)

where gi is the derivative of the Q-function with respect to the
state, and it is given by

gi = ∇dQwi (s+ d, a)|d=ξu. (19)

Here, u is a randomly generated unit vector, and ξ is a
constant, and ξ = 1 · 10−6 in our implementation. The
motivation for choosing the perturbation in (18) is to identify
the perturbation that is likely to induce the overestimation
of the Q-values. The adversarial examples based on this
perturbation are then used to encourage the critic to make a
conservative estimation.

For computing the virtual target value, we use the follow-
ing equation:

yreg = min
i=1,2

Qw′i
(s+ d iadv, a). (20)

The critics are then trained by minimizing the follow-
ing regularization term using the approximated perturbation
direction d iadv:

Lreg(wi) = E(s,a)∼D

[(
yreg − Qwi (s+ d

i
adv, a)

)2]
. (21)

Previous studies used the current estimate to generate a
virtual target label in semi-supervised learning [15]. In our
framework, it is essential to generate a virtual target value
that does not intensify overestimation of Q-values. In [17],
Fujimoto et al. showed that overestimation of Q-values can
be mitigated using target values that are computed based
on the minimum of two critics in Q-learning algorithms.
Inspired by this strategy in [17], we generate a virtual target
for adversarial examples using the minimum of the two target
critics. When the two critics generate different Q-values for
the same state, the higher estimated Q-value may be a result
of overestimation. We can mitigate overestimation by using

the lower estimated Q-value as the target value for adversarial
examples. In our implementation, we have two critics to
perform double-clipped Q-learning [17], and the adversarial
perturbation is computed for each critic. Although perturba-
tion was generated equally in all directions in the early work
on training with virtual samples in [41], recent studies on
VAT [15], [25] have revealed that anisotropic perturbation
should be used to further improve the performance. In our
method, we generate perturbation in the direction in which
the Q-function is disturbed most significantly, and the virtual
target value is computed to avoid overestimation of Qvalues.
We refer to the proposed regularization technique as conser-
vative adversarial training (CAT). The experimental results
confirm that our strategy significantly reduces overestimation
in Qt-Opt.

B. ACTION SELECTION BY MAXMIN OF DOUBLE CRITICS
In the original Qt-Opt, the action is determined by identifying
the extrema for one of the approximated Q-functions, similar
to that in (4). However, we propose using the action given by

a = argmax
ã

min
i=1,2

Qwi (s, ã), (22)

which is the extreme of theminimumof the two approximated
Q-functions. Action selection with (4) does not leverage dou-
ble critic architecture and is continues to be sensitive to the
function approximation error of the critic used for the action
selection. Our strategy for action selection in (22) should be
less sensitive to the function approximation error of either
of the critics. We refer to this action selection strategy as
the maxmin action selection strategy in the remainder of this
paper.

We employ maxmin action selection to compute the tar-
get value of the Q-function and determine the action while
collecting the data during the training process. Therefore, the
objective function for training the critics is given by:

LQ(wi) = E(s,a,s′,r)∼D
[(
y− Qwi (s, a)

)2] (23)

for i = 1, 2, where the target value for the critic is computed
as

y = r + γ max
ã

min
i=1,2

Qw′i
(s, ã). (24)

Although the maxmin action strategy can select the action
in a more stable manner than the strategy in the original
Qt-Opt, it may intensify overestimation of Q-values because
the following equation holds in general:

max
ã

min
i=1,2

Qw′i
(s′, ã) ≥ min

i=1,2
Qwi (s

′, argmax
ã
Qw1 (s

′, ã)).

(25)

In (25), the right-hand side is the second term in (3), which
is used to compute the target value in the original Qt-Opt,
whereas the left-hand side is the second term in (24), which
is used to compute the target value in the proposed maxmin
action strategy. This relationship shows that the target value
of the Q-value computed using the maxmin action selection
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strategy is always greater than or equal to the target value
computed using the strategy in the original Qt-Opt. There-
fore, the estimated Q-value will be greater when we use the
proposed maxmin action selection strategy compared with
the original Qt-Opt. However, as shown in the experiment,
overestimation of Q-values can be significantly reducedwhen
combined with the adversarial training proposed in the previ-
ous section.

C. USING THE SAMPLE WITH THE MAXIMUM
SCORE IN CEM
In the standard CEM, N samples are generated randomly
using the sampling distribution at each iteration, and the
sampling distribution is fitted to the best M samples. The
sampling distribution is typically a unimodal Gaussian dis-
tribution, and the output of the CEM is the mean of the best
M samples at the last iteration. However, when the objective
function has multiple extrema, taking the mean of the best
M samples is not always appropriate because the distribution
of the best M samples may not be Gaussian. In previous
studies, multimodal sampling distributions, such as Gaussian
mixtures, were used to identify multiple extrema of the objec-
tive function [33]. However, setting an appropriate number of
Gaussian components is often challenging. In our framework,
it is not necessary to identify all extrema, and we need to
identify only one of the extrema. Therefore, we simply used
the sample with the maximum value obtained in the CEM
as the output of the CEM. In this approach, if we generate
sufficiently dense samples around the extrema, we can obtain
an approximate solution regardless of the number of extrema.
The experimental results in Section V reveal that the use of
our implementation of CEM outperforms that of the standard
CEM in our framework.

D. ALGORITHM
Based on the abovementioned discussion above, we train the
critics by minimizing the following objective function:

L(wi) = LQ(wi)+ Lreg(wi) (26)

for i = 1, 2, where LQ(wi) and Lreg(wi) are obtained by (23)
and (21), respectively.

The proposed algorithm is summarized in Algorithm 1.
We used the ε-greedy strategy for exploration [10] and lin-
early decreased the value of ε during the training process.
The critics are updated once after every step if the replay
buffer contains a sufficient number of samples. In our imple-
mentation, the target critic is updated after every step using
the soft update, similar to that in [35]. The two terms in the
objective function for the critics areminimized separately and
alternatively, as described in Algorithm 1.

V. EXPERIMENTS
A. SETUP OF SIMULATION
In our experiments, we used a 3D excavation simulator devel-
oped by Komatsu Ltd. In the simulation, we can obtain a
depth image of the landscape, and the goal of the excavation

Algorithm 1 Qt-Opt With Conservative Adversarial
Training & Maxmin Action Selection Strategy
Input: Schedule of ε for the ε-greedy exploration
Initialize the experience replay buffer, D, and the parame-
ters for critics and target critics, wi, w′i for i = 1, 2.
for each episode do
for t = 0 to T do

generate random value x ∈ [0, 1]
if x < ε then
Select action randomly

else
Select action using the strategy in (22)

end if
Observe reward r and new state s′

Store tuple (s, a, s′, r) in D
Sample mini-batch from D
Generate adversarial state samples sadv
Update the critics by minimizing LQ(wi) in (23)
Update the target critics by w′i← (1− τ )w′i + τwi
Update the critics by minimizing Lreg in (21)

end for
end for

FIGURE 2. Example of the initial state of the excavation task. The state is
represented as a depth map of the landscape.

task is to remove soil from the targeted area while retaining
the soil near the excavator. In our implementation, the policy
was trained to plan the target trajectory for the excavator
bucket. The state is given by a depth image that captures the
landscape in front of the excavator. A 3D plot of the state
is presented in Figure 2. The dimensions of the state were
65× 84 in the implementation. The shape of the range of the
depth sensor is a sector of a circle, as shown in Figure 2, and
the area outside the sensor range is set to 0 so that the shape of
the state a rectangle. The state of the landscape was randomly
initialized at the beginning of each episode.

The action is given by the parameter of the target trajectory
of the bucket. The trajectory of the bucket is approximated
as an arc, and the action space is continuous and three-
dimensional. The trajectory of the bucket was constrained by
the soil hardness in our simulation. The arm of the excavator
is controlled by a controller that tracks the planned trajectory,
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FIGURE 3. Successful and failure cases of the excavation task. The
excavation should be performed considering the form of the
remaining soil.

and we assume that the controller for the arm is predefined.
Therefore, when an action is determined by a policy, a target
trajectory for the arm is generated, and the excavator arm
is controlled to achieve the planned target trajectory. The
motion of the excavator arm is dependent on soil parameters,
such as hardness, and these parameters were fixed in this
study.

In the simulation, the reward is the amount of soil exca-
vated by themachine. An episode is considered finishedwhen
the amount of soil is lesser than a threshold, which means
that the excavator bucket is more than half empty. We regard
the episode as successfully finished when 90% of the soil is
removed by the end of the episode, as shown in Figure 3(a).
For efficient soil excavation, the bucket must be nearly full.
However, if the excavation is not performed in an appropriate
order, the bucket does not fill fully because of the form of
the remaining soil. An example of a failure case is depicted
in Figure 3(b). In Figure 3(b), the form of the remaining
soil is misshaped, and it is necessary to refine the form by
a small amount of excavation. Such an action is inefficient
because the bucket will not get full, and the excavation time
will increase. Therefore, it is necessary to avoid states such
as the one shown in Figure 3(b) and excavate the soil in
an appropriate order to efficiently remove all soil from the
target area. An example of successful excavation is shown in
Figure 4. In the successful episode, the excavated area was
gradually extended and the form of the remaining soil was
nearly flat at the end of the episode.

B. BASELINE METHODS
We evaluated methods TD3 [17], SAC [16], and the original
Qt-Opt [23] as baseline methods. The implementation of TD3
and SAC was adapted from SpinningUp [42], and the struc-
ture of the neural networks was modified to deal with depth-
image inputs. In our implementation, the critic structure is the
same for Qt-Opt, TD3 and SAC. We used convolution layers
to process a depth image as an input. The structure of the critic
is shown in Figure 5.

The training process was performed five times with dif-
ferent random seeds for each method, and the averaged test
return was reported, where the test return was computed

FIGURE 4. Sequence of states in a successful case in the excavation task.
The excavated area was gradually extended, and the form of the
remaining soil was nearly flat at the end of the episode.

once every 5,000 time steps by executing 10 episodes with-
out exploration. We also evaluated a metric, task progress,
which indicates the amount of soil removed from the target
area when the episode is terminated. This metric indicates
how the trained policy can perform a task without failure.
An episode for which task progress is more than 90% is
regarded as successful. All experiments were runwith a single
GeForce GTX 3090 GPU and an Intel Core i9-10900K CPU
at 3.7GHz.

To compare different strategies for generating adversarial
examples and their virtual target values, we considered the
adversarial perturbation as

d iadv = argmax
d

DMSE
(
Qwi (s+ d, a),Qwi (s, a)

)
. (27)

Here, DMSE(x, y) represents the mean-squared error between
x and y. The motivation of this approach is to identify the
perturbation that is likely to induce the largest disturbance to
the Q-value. This approach is a straightforward adaptation of
the existing method for generating adversarial perturbations
proposed in [27]. We refer to this variant of our method
as smooth adversary in the following section. Furthermore,
we refer to the method for generating adversarial samples
in (17) as max-Q adversary.
Additionally, we consider an alternative method for setting

the virtual target values for adversarial samples as follows:

yreg = min
i=1,2

Qwi (s, a). (28)

In this approach, the approximated Q-function is encouraged
to be smooth and insensitive to adversarial perturbations.
This approach is a straightforward adaptation of the existing
method of VAT in [15]. We refer to this variant of our method
as smooth virtual target in the following section. Similarly,
the method for computing the virtual target value in (20) is
referred to as conservative virtual target. Although there are
several ways to impose the norm constraint on adversarial
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FIGURE 5. Architecture of the critic.

FIGURE 6. Returns during training with the proposed and baseline
methods. The proposed method outperformed baseline methods
such as TD3, SAC, and Qt-Opt.

perturbation [27], identifying the best norm constraint is
beyond the scope of this study. We employ the method in [15]
because it provides state-of-the-art performance in general
machine learning tasks.

C. LEARNING CURVE
We evaluated the learning curves of the proposed and baseline
methods. In this experiment, we evaluated the effect of the
proposed regularizationmethod given in Section IV-A and the
maxmin action selection strategy proposed in Section IV-B.
We refer to the variant of Qt-Opt with the maxmin action
strategy as Qt-Opt+maxmin_action. Similarly, we refer to
the variant of Qt-Opt combined with both the proposed reg-
ularization method and maxmin action selection strategy as
Qt-Opt+maxmin_action+cat.

The learning curves of the proposed and the baseline
methods for the excavation task are shown in Figure 6.

FIGURE 7. Task progress during training with the proposed and baseline
methods.

As seen from the figure, the proposed method, Qt-Opt+
maxmin_action+cat, outperformed the baseline methods,
including TD3, SAC, and Qt-Opt. The results reveal that the
proposed technique significantly improves the performance
of Qt-Opt. It is remarkable that Qt-Opt outperformed TD3
and SAC in the excavation task. Neither TD3 nor SAC
achieved a performance comparable to Qt-Opt; moreover,
they did not improve the performance appropriately during
the training. In contrast, Qt-Opt improved the performance
steadily during the learning process. The only difference
between Qt-Opt and TD3 is the policy representation, and
this result demonstrates the importance of the flexibility of
the policy model in the excavation task.

A comparison between the proposed and the baseline
methods is summarized in Table 1. Although the proposed
method is computationally expensive than the baseline meth-
ods, the final performance of the policy trained with the pro-
posed method clearly outperforms that of the policies trained
with the baseline methods. The success rate indicates the ratio
of successful episodes during the test of the trained policy.
When policies were trained by TD3 or SAC, the task progress
did not reach 90% at the end of the episode. In contrast,
policies trained with the proposed method steadily achieved a
task progress greater than 90%. The proposed method clearly
outperformed the baseline methods in terms of return, task
progress, and success rate.

The learning curves of the variants of Qt-Opt are shown
in Figure 8. The results indicate that both the maxmin action
selection strategy and regularization using adversarial sam-
ples improve the performance of Qt-Opt. From Figure 8,
it is evident that the variant of Qt-Opt with the two pro-
posed techniques achieved the best performance in this exper-
iment. Additionally, the proposed techniques demonstrated
their effectiveness even when they were employed separately.
The difference between Qt-Opt and Qt-Opt + cat indicates
the advantage of the regularization of the Q-function using
adversarial samples.

We compared different implementations of CEM to deter-
mine the action that maximizes the Q-value, and the results
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TABLE 1. Summary of the experimental results.

FIGURE 8. Learning curves of the variants of Qt-Opt. The proposed
method, Qt-Opt + maxmin action + cat, achieved the best performance.

FIGURE 9. Learning curves with different implementations of CEM. The
results indicate that using the sample with the highest score outperforms
using the mean of the best five samples in our setting.

are shown in Figure 9. In both the variants in Figure 9, the
maxmin action selection strategy and CAT were employed.
As discussed in Section V-D, theQfunction for the excavation
task is highly complex and has multiple extrema. In CEM,
taking the mean of the best samples is equivalent to fit ting the
Gaussian distribution to the best samples. However, this may
not be appropriate when the objective function has multiple

FIGURE 10. Learning curves with different strategies for generating
adversarial perturbation and virtual labels. The max Q adversary with the
conservative virtual target demonstrated the best performance.

FIGURE 11. Average Q-values estimated for initial states during the
training process. The standard Qt-Opt demonstrated overestimation in the
beginning of the training process. In contrast, the proposed regularization
technique significantly reduced overestimation of Q-values.

extrema and the distribution of the best samples is multi-
modal. The results in Figure 9 imply that our excavation task
is a task in which the objective function has multiple extrema.

A comparison of the different strategies for generating
adversarial perturbations and virtual target values is shown
in Figure 10. The maxmin action selection strategy was
employed for all variants in Figure 10. Among the variants
of adversarial training, the method with the max Q adversary
with the conservative virtual target demonstrated the best
performance. The results indicate that the regularization with
adversarial samples that avoids overestimation of Q-values is
more effective than the regularization, which encourages the
smoothness of the approximated Q-function.

To evaluate overestimation during the training of the
Q-function, we plotted the Q-values estimated for the initial
states using the trained critic during the training process,
as shown in Figure. 11. We report the average Q-values
estimated for the initial state by randomly resetting the sim-
ulation 20 times, where the Q-value was computed using the

VOLUME 10, 2022 4531



T. Osa, M. Aizawa: Deep Reinforcement Learning With Adversarial Training for Automated Excavation

FIGURE 12. Multimodality of the Q-function learned for the excavation task. The leftmost figure shows the state after the first
action, and the results of two candidates of the second action are visualized in the other figures. The learned Q-function
indicates that both actions have comparable Q-values, and we obtained similar results after following the trained policy. This
result indicates that there can be infinitely many actions that lead to optimal behaviors.

trained critic, determining the action using the action selec-
tion strategy of each method. As the maximum average return
is approximately 25, the true values of the average Q-values
for the initial states should be less than 25. The results in
Figure. 11 indicate that overestimation of Q-values occurs
in the original Qt-Opt. As expected, overestimation of the
Q-values was compounded by the maxmin action selection,
although the performance of the policy was improved by the
maxmin action selection, as shown in Figure 6. Additionally,
the results reveal that the overestimation in Qt-Opt + the
smooth adversary with smooth virtual target is worse than
that in the original Qt-Opt. This result indicates that the
adversarial regularization that enhances the smoothness of
the output of the critic works negatively for overestimation
of Q-values. However, regularization with CAT significantly
reduced overestimation, even when it was combined with the
maxmin action selection strategy. These results demonstrate
that the proposed regularization using virtual adversarial sam-
ples improves learning performance by avoiding overestima-
tion of Q-values.

D. MULTIMODALITY OF Q-FUNCTION
In Figure 12,we demonstrate the multimodality of the
Q-function for the excavation task using the policy obtained
by the proposed method. The leftmost figure in Figure 12
shows the state after the first action, and the other figures
show the results of taking two different actions in the sec-
ond step and following the trained policy. The upper and
lower figures in the middle of Figure 12 show the state
after taking two different actions in the second state. The
trained critic indicates that both actions have comparable

Q-values, and the rightmost figures demonstrate that the
soil from the target area can be successfully removed at
the end of the episode, regardless of the action taken in
the second step. These results demonstrate that there can
be separate and multiple optimal actions in the excavation
task and the optimal Q-function for the excavation task is
multimodal.

Additionally, the mutimodality of the Q-function can be
observed in various states. To visualize the multimodal-
ity of the Q-function, the states and heatmaps of the cor-
responding Q-functions are provided in Figure 13. The
action is three-dimensional and given by a = [a1, a2, a3];
therefore,maxa3 Qw(s, a) is shown in the heatmaps. From
Figure 13, it is evident that there are multiple extrema of the
Q-function, and the near-optimal actions are widely spread in
the action space.

The Q-function for the excavation task is multimodal;
therefore, a unimodal or deterministic policy is not suffi-
ciently expressive, and the policy may not be appropriately
trained. We think that this is the reason why TD3 and SAC
did not learn the optimal policy in the excavation task. How-
ever, the training of critics in Q-learning algorithms does
not suffer from multimodality of the Q-function as long
as the model of the Q-function is sufficiently expressive.
Qt-Opt determines the action that maximizes the Q-value
using a black-box optimization method and the approximated
Q-function; therefore, the distribution of the optimal action
is not explicitly modeled in Qt-Opt. Consequently, as long as
the black-box optimization method can determine one of the
optimal actions, Qt-Opt does not suffer from multimodality
of the Q-function.
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FIGURE 13. States during the excavation task and the heatmap of the corresponding Q-function. To visualize the heatmap of the Q-function, we show
maxa3 Qw(s, a), where a = [a1,a2,a3]. In the heatmaps, the vertical and horizontal axes represent a1 and a2, respectively.

VI. DISCUSSION
Our results demonstrated that the proposed variant of Qt-Opt
outperformed SAC and TD3 in the excavation task. The
limitation of Qt-Opt is its higher computational cost than that
of SAC and TD3. This is because Qt-Opt involves hundreds
of forward passes to determine the action that maximizes the
Q-function using CEM. When running the simulation with a
single GeForce GTX 3090 GPU and an Intel Core i9-10900K
CPU at 3.7 GHz, the training period for Qt-Opt was approx-
imately 20 h for 250,000 steps, whereas that for TD3 and
SACwas approximately 12 h for 250,000 steps. However, the
policy obtained by Qt-Opt clearly outperforms those obtained
by SAC and TD3, and we believe that the advantages of
Qt-Opt outweigh its limitations in the excavation task.

Previous studies have often discussed the properties of
deep RL methods based on the results of locomotion tasks in
OpenAI Gym or PyBullet. Although our findings regarding
multimodality of Q-function may not be clear in such tasks,
we believe that our results provide important insights for deep
RL in general, and not limited to automation of excavation.

Recent studies on robotics revealed that the objective
function for motion planning is often multimodal [43]–[45].
Additionally, recent studies on deep RL show that it is often
beneficial to obtain multiple solutions in deep RL, which
also indicates the multimodality of the Q-function [46], [47].
Although we are not aware of previous studies that directly
compare Qt-Opt with TD3 and SAC, there may be other tasks

where the Q-function is highly complex and Qt-Opt outper-
forms TD3 and SAC. Our findings demonstrate that policy
representation plays an important role in deep RL. We plan
to investigate flexible and explicit policy representations for
actor-critic methods in future work.

Our study revealed that regularization using virtual adver-
sarial samples can significantly improve Q-learning by avoid-
ing overestimation of Q-values. In this study, we did not
investigate regularization techniques for actor-critic methods
using adversarial samples because Qt-Opt is more suitable for
excavation tasks. In future work, we will investigate regular-
ization techniques for actor-critic methods.

We demonstrated the efficacy of the proposed method
using simulations. However, in reality, the soil behavior in
simulation is usually different from that at the actual site.
Therefore, to transfer the policy trained in simulation to a
real-world system, it is necessary to train a policy that is
robust against changes in soil parameters. To address this
issue, recent studies employ domain-randomization tech-
niques [48]–[50]. In future work, we will investigate the
domain randomization techniques to transfer the policy
trained in simulation to real-world systems.

VII. CONCLUSION
In this study, we investigated deep RL methods for learning a
policy that plans the trajectory of the excavator bucket using
depth images. Furthermore, we proposed novel techniques
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to improve the sample efficiency of Qt-Opt for excavation
tasks. We proposed CAT to avoid overestimation of Q-values
and verified that CAT significantly reduces overestimation
and improves learning performance. Additionally, a novel
strategy for selecting an action in Qt-Opt was proposed to
improve sample efficiency. In our experiments, the proposed
method outperformed the original Qt-Opt, TD3, and SAC,
which are state-of-the-art deep RL algorithms. Moreover, our
results revealed that multiple optimal actions often exist in
excavation tasks and the choice of policy representation is
crucial for satisfactory performance. In future work, we will
investigate the domain randomization techniques to transfer
the policy trained in simulation to real-world systems.
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