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ABSTRACT A suitable energy management scheme and integrating renewable energy resources (RERs)
can significantly increase energy efficiency and the stability of future grids operation. This work mod-
eled a household energy management comprising a microgrid (MG) system and demand response
programs (DRPs). Residential loads with price-based tariffs are introduced to reduce peak load demands
and energy costs. For incorporating the uncertainties in RERs, their stochastic nature is modeled with a
probabilistic method. This paper proposes a joint optimization approach for the optimal planning and oper-
ation of grid-connected residential, rural MG integrated into renewable energy and electric vehicles (EVs)
in view of DRPs. The investigation focuses on energy saving of residential homes under different DRPs
and RERs integration. The EVs are integrated into MG by including photovoltaic (PV), wind turbine (WT),
fuel cell (FC), and diesel engines (DEs). A multi-objective optimization problem has been formulated to
minimize the operating cost, pollutant treatment cost, and carbon emissions cost defined as C1, C2, and C3,
respectively. The load demand has been rescheduled because of three DRPs, i.e., critical peak pricing (CPP),
real-time electricity pricing (RTEP), and time of use (TOU). Further, the EV load has also been analyzed in
autonomous and coordinated charging strategies. Using a judgement matrix, the proposed multi-objective
problem is transformed into a single-objective problem. The results of an artificial bee colony (ABC)
algorithm are compared with the particle swarm optimization (PSO) algorithm. The simulation analysis was
accomplished by employing ABC and PSO inMATLAB. The mathematical model ofMGwas implemented,
and the effects of DRPs based MGwere investigated under different numbers of EVs and load data to reduce
different costs. To analyze the impact of DRPs, the residential, rural MG is implemented for 50 homes with
a peak load of 5 kW each and EV load with 80 EVs and 700 EVs, respectively. The simulation results
with different test cases are formulated while analyzing the tradeoff between ABC and PSO algorithms. The
simulation analysis shows that multiple DRPs, EVs, and RERs offered a substantial trade-off.

INDEX TERMS Demand response programs (DRPs), distributed generations (DG), electric vehicles (EVs),
joint sequential optimization, multi-objective optimization, residential microgrids.
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NOMENCLATURE
Subscripts:
ABC Artificial bee colony.
BBSA Binary BSA.
BSA Backtracking search algorithm.
BSS Battery storage system.
CCP Chance constraints programming.
CPP Critical peak pricing.
DEs Diesel engines.
DERs Distributed energy resources.
DG Diesel generator.
DGs Distributed energy generations.
DOD Depth of discharge.
DRPs Demand response programs.
DSM Demand-side management.
EMA Exchange market algorithm.
EMS Energy management system.
ESRMC Energy and spinning reserve market

clearing.
ESS Energy storage system.
EVs Electric vehicles.
FC Fuel cell.
GA Genetic algorithm.
GAMS General algebraic modeling system.
GHG Greenhouse gas.
GSA Gravitational search algorithm.
HES Hybrid energy system.
HOMER Hybrid optimization of multiple energy

resources.
LCOE Levelized cost of energy.
LPSP Loss of power supply probability.
LSA Lightning search algorithm.
MBAT Modified bat algorithm.
MILP Mixed integer linear programming.
MIP Mixed-integer programming.
MOPSO Multi-objective PSO.
MPGSA Multi-period GSA.
MPSO Modified PSO.
MT Micro-turbine.
NPC Net present cost.
NREL National renewable energy laboratory.
OPF Optimal power flow.
PDFs Probability density functions.
PFs Participation factors.
PQ Power quality.
PSO Particle swarm optimization.
PV Photovoltaic.
RERs Renewable energy resources.
RO Robust optimization.
RTED Real-time economic dispatch.
RTEP Real-time electricity pricing.
SA Simulated annealing.
SG Smart grid.
SNO Social network optimization.
SPEA Strength Pareto evolutionary algorithm.
TOU Time of use.

TS Tabu search.
V2G Vehicle-to-grid.
WGA Wild goat algorithm.
WT Wind turbine.
Superscripts:
m Type of DER.
t Index for a time interval.
x Type of dispatch-able DG (MT, DE).
Parameters
and Constants:
Cgas Gas price in PKR/m3.
Lgas Low-hot value of gas in kWh/m3.
CD Diesel price in PKR/litre.
kOM,x Maintenance cost of xth DG unit in

PKR/kWh.
Cs(t) Selling price in PKR/kWh at time t.
Cb(t) Buying price in PKR/kWh at time t.
ρm Initial investment cost of mth DG in

PKR/kW.
ζx (min) Minimum power limit of x DG.
ζx (max) Maximum power limit of x DG.
γC (max) Maximum charging rate

coefficient of BSS.
γD (max) Maximum discharging rate

coefficient of BSS.
SOC State of charge.
ηC Charging efficiency of BSS.
ηD discharging efficiency of BSS.
1t Time interval of 1 hour.
γx Emission coefficient of pollutant from

xth DG.
γg Emission coefficient of pollutant from

the grid
Functions
and Variables:
PPVr PV rated power output.
Icp Certain solar irradiation point.
Isv Standard solar irradiation value.
A, B, C Windpower constants.
Vi Cut-in wind speed.
Vo Cut-out wind speed.
VWr Rated wind speed.
PWTr Wind turbine rated power output.
PMT Rated power capacity of MT.
PDG(t) Power capacity of DE generator at t.
σL(t) Standard deviation.
µL(t) Average load demand.
L(t) Total load for all consumers during time

interval t.
F0, F1 Coefficients of fuel consumption curve

fitting.
FC, CE Objective functions for total annualized

cost and emission.
ωw Weighting factor.
λs Scaling factor.
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CC Total annual capital cost of all DERs.
COM Total annual operation & maintenance

cost of all DERs.
CO(t) Total operation cost of a microgrid at time t.
Cx(t) Power generation cost of xth DG unit at time t.
Px(t) Power generation of xth DG unit at time t.
Ps(t) Selling power at time t.
Pb(t) Buying power at time t.
�m Total capacity of mth DG.
PPV(t) Solar power generation at time t.
PWT(t) Wind power generation at time t.
PLd(t) Total load demand at time t.
PB(t) Battery charging power at time t.
PD(t) Battery discharging power at time t.
nm Actual number of mth DER.
nx Actual number of xth DER.
�BSS Total capacity of BSS.

I. INTRODUCTION
A rapid increase in global energy demand requires further
distributed energy generation with the existing fossil fuels-
based conventional generation. Fossil fuel-based generation
leads to other acute challenges in terms of global warm-
ing and environmental pollution. However, microgrid (MG)
based distributed and hybrid energy generation systems are
less dependent on fossil fuels based power generations.
MG can partially handle the environmental issues to fulfill
the increasing load demand locally with different distributed
generations (DGs). These DGs include solar photovoltaic
(PV), wind turbines, fuel cells, micro-turbines, and diesel
generators [1], [2].

MG modes for power generations play a prominent role
in a smart grid (SG) environment. In general, there are two
modes of MG, namely grid-tied and standalone. MG power
generation is mostly dependent on intermittent-based renew-
able energy resources (RERs). The MG central control sys-
tem effectively handles the uncertain nature of load demands
and RERs power generation by managing and controlling all
MG unit operations. Various benefits can be achieved with
the help of optimal MG operations under SG environment,
such as improved reliability, higher operation flexibility, peak
shaving, lower energy cost, load balancing, auto control
operation, protection, integrated EMS operation, matching
load-generation capacity, minimum pollution, and improved
power quality (PQ) [3]–[5]. Due to the inclusion of shiftable
loads, MGs can apply demand response programs (DRPs) for
balancing the system loads [6], [7]. Therefore, optimal
scheduling and sizing problems are taken as critical issues.
Moreover, the availability of RERs and their operation uncer-
tainty have placed complex challenges for optimal opera-
tion [8], [9], which must be considered at the designing
stage; so that the overall system can work properly. Dif-
ferent research articles with different strategies have been
published on different scenarios of the problem with DRPs.
Table 1 shows the comparison of different methods with
related literature.

Various articles have been published on new heuristic
methods. A discrete harmony searching technique was pro-
posed in [20] to manage a PV-WT-BSS-DG hybrid model.
A hybrid SA-TS algorithm was implemented in [21] to han-
dle optimal configuration challenges. Reference [22] utilized
MPSO to optimize the hybrid energy system (HES). A new
two-layer iterative algorithm implemented the optimal alloca-
tion of grid-tied HES [23]. The first layer was implemented
for RERs optimization, and the second layer was considered
for optimal BSS capacity. In [24], SNO for optimal controller
training of rule-based standalone HES was obtained. The
authors in [25] introduced a double loop two-level hybrid
technique with multiple heuristic optimization techniques for
optimally allocated switching capacitors and reactive power
managing. The multi-objective adaptive evolutionary tech-
nique is proposed in [26] for optimal allocation of hybrid
PV-WT-BSS-DG system. Moreover, WGA-EMA with paral-
lel processing quality is implemented in [27] for dynamically
reconfiguring the MGs and distribution networks. In [28],
novel multi-layer optimization with a time-dependent price
algorithm is proposed for optimal sizing and planning of
residential MGs to minimize energy costs.

Different software tools were used for MG optimization
and EMS. HOMERwas utilized in [29] for optimal allocation
and size optimization of MG components. Moreover, techno-
economic size optimization of islandedMGwas implemented
in [30] with the help of HOMER and GAMS software tools.
Some articles used deterministic and mathematical methods
rather than heuristic algorithms. The authors in [31] proposed
a novel deterministic optimization technique for size opti-
mization of hybrid PV-WT-DGmodel. In [32], theMIP-based
optimization method for MG planning was implemented to
minimize risk in profit. Reference [33] used a new deter-
ministic method by incorporating LCOE and LPSP for size
optimization of the standalone PV-WT model. The authors
in [34] proposed two-level predictive EMS with MILP for
standaloneMG. The first level was used for unit commitment,
and the second level was implemented to regulate real-time
MG operation.

The objective function selection is another critical problem
that must be efficient and suitable to optimize sizes and
allocation. Reference [21] uses size optimization’s objective
function to minimize the total MG energy cost. The objective
function of hybrid MG is to minimize LCOE and LPSP while
maximizing the RERs penetration [26]. The authors in [33]
claimed optimal sizing to minimize investment costs with
higher reliability. The authors in [35] introduced a novel
smart scheme for size optimization and energy trading of
standaloneMGs clusters. Significant profit allocation forMG
owners with enhanced overall system reliability are the main
objectives of this study.

Various factors influence the MG performance in size
optimization and allocation, such as DRPs, ESS, major uncer-
tainties, and environmental challenges. Few articles have
discussed the impact of these factors on MGs size opti-
mization. The authors in [21] introduced RERs intermittency
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TABLE 1. Comparative analysis of different methods with related literature studies.

with sensitivity study on different case scenarios. In [36],
optimization of a single objective function was used to find
the optimal sizes of the MG components. Probability den-
sity functions (PDFs) were also used to incorporate RERs
intermittency while finding the optimal sizes of the DGs.
Reference [37] used deterministic uncertainty sets rather than
PDFs to optimize MG sizes and placement. HES with a new
techno-economic approach is implemented in [38] for the
MG system designing. Load shifting scheme with priority
load scenarios was used, and their impact on MG sizing
was investigated. Reference [30] used DRPs for the cost
reduction and improvement of theMG sizingmethod. In [39],
the impact of DRPs and environment on optimal sizing was
analyzed. This paper’s uncertain nature of RERs and loads
was not investigated. Moreover, twenty-four (24) hours’ time
steps were considered with yearly samples of RERs and
loads. The authors in [29] investigated DERs combinations
by utilizing the HOMER tool. Moreover, GHG emission was
also considered in this study. Similarly, reference [31] inves-
tigated the impact of ESS on MG sizing. It was shown that
BSS installation to a standalone HES reduced the investment
cost.

In [40], the authors replaced the conventional method,
which employed RTED with 5 to 15 minutes static snap-
shot forecasted data, including each minute variation data
of RERs and load. DGs manage power unbalancing based
on ‘‘best-fit’’ PFs obtained from previous ED, keeping the
same objective dimension by evaluating only PFs at the start.
This approach is applicable for both sequential and dynamic
variability. Two test systems are used for the verification of
the proposed scheme. The authors in [41] proposed SPEA
2+ for bi-objective (total cost and system risk) ESRMC

scheme for wind-thermal systems with two market models:
thermal alone and thermal DGs with demand. Weibull PDF
is employed for handling the stochastic nature of wind, while
normal PDF is used for load. IEEE 30 bus system is validated
with the proposed scheme. In [42], stochastic optimization
technique is proposed for voltage and VAR control with
OPF under variable loads and uncertainty of RERs. The
proposed method is validated on a 24 bus system. In [43],
the authors proposed an integrated optimal and dynamic fast
and slow reserve action plan during emergency conditions
of line interruption or/and load demand increment. The three
sources of reserves are considered: conventional DGs, hydro,
and load. The proposed schemes are tested on IEEE 30, 57,
and 300 bus systems while implementing GA,MATLAB, and
GAMS.

By summarizing the above literature work, the following
observations regarding limitations in literature studies are
observed:
• Grid-connected operation and EVs load are not consid-
ered. Only one DRP is considered [18].

• DRPs and EVs load are not considered [19].
• BSS charging and discharging scenarios of EVs are not
investigated [17].

• BSS of EVs and DE are not included [16].
• DE emission cost and uncertain nature of load are not
included [15].

• Single loads are investigated without DE emission
cost [14].

This paper proposes a joint optimization approach for the
optimal planning and operation of grid-connected residential
PV-WT-FC-DE based community rural microgrid (MG) inte-
grated into EVs in view of multiple DRPs. A multi-objective
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optimization problem has been formulated to minimize the
operating cost (C1), pollutant treatment cost (C2), and carbon
emissions cost (C3). The load demand has been rescheduled
in view of three DRPs such as CPP, RTEP, and TOU. More-
over, the EV load has also been analyzed in autonomous
and coordinated charging strategies. The suggested multi-
objective optimization problem is transformed into a single
objective problem using a judgement matrix, and the results
of the ABC algorithm are compared with the PSO algorithm.
To analyze the impact of DRPs, the residential community
rural MG is implemented for 50 homes with a peak load of
5 kW each and EV load of 80 EVs and 700 EVs, respectively.
The main contributions of this paper can be summarized as:
• Comparison of two heuristic algorithms under three
DRPs.

• Analysis in grid-connected MG increases the complex-
ity of the optimization problem. However, the authors
in recent literature mostly considered the islanded MG
cases.

• Consideration of RERs uncertainty and DRPs by
employing ABC and PSO algorithms. However,
literature studies lack: (1) the consideration of RERs
uncertainty and DRPs, (2) grid-connected EVs inte-
grated residential PV-WT-MT-DE based community
rural microgrid (MG) by employing single-objective
problem using ABC and PSO algorithms [44]–[57].

• Analyzing tradeoff perspectives between two heuristic
algorithms with load rescheduling as the major part of
three DRPs.

• Investigating EVs load with autonomous and coordi-
nated charging scenarios.

• Rescheduling the load demand based on different tariffs
as DRPs and economic dispatch (ED) by considering
optimal sizing as DSM.

• For incorporating the uncertainties in RERs, their
stochastic nature is modeledwith a probabilisticmethod.

The rest of the paper is organized as follows. Section II
involves modeling of the studied MG system, in which
the role of ABC and PSO algorithms is explained. The
solution steps for applying ABC and PSO algorithms are
also explained. Modeling of RERs uncertainty, WT, PV,
load demand, fuel cell, and the diesel generator is also
part of this section. Problem formulation is explained in
Section III, which includes objective functions, and con-
straints. Section IV highlights all test cases which are ana-
lyzed in this paper. Simulation data for the study system is
mentioned in Section V which includes unscheduled sum-
mer load, scheduled (summer and winter) loads with (CPP,
RTEP, and TOU) tariffs. Section VI analyzes the results with
discussion. Comparison between PSO and ABC for (summer
and winter) loads with (unscheduled, CPP, RTEP, and TOU)
tariffs during autonomous and coordinated modes of 80 EVs
and 700 EVs, respectively are explained in detail. Section VII
presents critical analysis and discussion. The conclusion is
given in Section VIII.

II. MODELING OF THE STUDIED MICROGRID SYSTEM
Fig. 1 shows the schematic configuration of the rural commu-
nity microgrid under study. The initial data and components
of the microgrid model under study are taken from the base
papers [57], [58]. The details of the studied system can be
seen from the base papers. ABC and PSO algorithms are
not planning tools. They are metaheuristic algorithms used to
solve the multi-objective optimization problem. This paper
analyzes joint multi-objective optimization problems based
on load scheduling and optimal sizing considering demand-
side management (DSM). The first step involves DSM, and
the second step involves optimal sizing, and it has been
analyzed which algorithm (ABC or PSO) performs well for
the proposed optimization problem is incorporated in this
paper. Future planning also involves deciding the size and
type of DG, which was emphasized in this paper. Conver-
sion from multi-objective to single-objective is done with a
judgment matrix by assigning weights, which are taken from
base papers. ABC and PSO are then used for solving the
optimization problem.

Moreover, the diesel generator is the normal tradition in
Pakistan as the main generation source for handling the
basic load demand. Hence, adding a diesel generator is a
reasonable choice for the extension of the MG system by
incorporating the existing DGs. The MG model is suggested
for the residential, rural community load of Shah Allah Ditta
of Islamabad, Pakistan. The authors in [59] used the Indian
location, while this paper used the Pakistani location. In this
way, we tailored the proposed problem according to our local
context.

A community MG is studied in this paper formed by com-
bining the prosumers close to serve multiple customers [49].
It may include residential customers (residential micro-
grid) or other community servings such as hospitals, public
buildings, etc. [60].

The solution steps of applying the ABC algorithm for
optimization problem are as follows:
Step1: Initializing the solutions populationX , i.e., themax-

imum number of beesMB, total number of iterations imax , the
controlling parameter limit, lower (Xj,max) and upper (Xj,min)
limits of the searching space, and random generated initial
population (Xii = 1, 2, 3 . . . .,MB);
Step2:Calculate the nectar value of the population through

their fitness function.
Step3: Producing neighbouring solutions for the employed

bees through random numbers and validating them according
to step 2.
Step4: Applying the selection procedure.
Step5: Go to step 9 for distributed onlooker bees, other-

wise, follow next step 6.
Step6: Calculate the probability values for the solutions.
Step7: Producing neighbouring solutions for the nomi-

nated onlooker bee, based on the value, through random
numbers and applying step 2.
Step8: Applying step 4.
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FIGURE 1. Schematic configuration of the studied rural community microgrid.

Step9: Determining the abandoned solution for the scout
bees if available, and replacing it with an entirely new solu-
tion, and evaluating them according to step 2.
Step10: Save the best solution obtained so far.
Step11: Stopping and printing results if the maximum

number of iterations is reached. Otherwise, repeat step 3.
The PSO process for solving the optimization problem is

as follows:
Step1: Start initialization of the swarmwith its velocity and

position, coefficients, and maximum iterations.
Step2: Initialize X and V .
Step3: Set the objective as a fitness value.
Step4: Calculate the fitness of each swarm for personal

best Pbest , while comparing with other swarms for global
best Gbest .
Step5:Modify swarm velocity and position.
Step6:Modify the personal best Pbest and global bestGbest

solutions accordingly.
Step7:Repetitions of steps 5 and 6 until achieving the limit

for maximum iterations tmax .
Step8: The end product is global best Gbest , personal best

Pbest, and its relevant position X .

A. UNCERTAINTY MODELING OF RER
Integrating renewable energy resources (RERs), such as solar
and wind, can be an alternative approach to saving the envi-
ronment from contaminated fossil fuel-based power genera-
tion. Nevertheless, the main complexities involve modeling
the uncertain and intermittent nature of these RERs worsen-
ing the MG planning. Consequently, MG optimal scheduling
with the modeling of the uncertain and intermittent nature of
RERs is analyzed in this work, considering the scenario in
which MG is operating in grid-connected under autonomous
and coordinated modes. With optimal scheduling, the pro-
posed MG system can schedule the load and manage the
optimal sizing of DGs for optimal power generation. Besides
diesel generators, other RERs are used for load scheduling
based on variable and unpredictable load demands.

Their stochastic nature is modeled with a probabilistic
method for uncertainty modeling MG components, such as
solar and wind. The mathematical modeling for these three
scenarios can be written as follows [51]:

E(xt ) =
N∑
n=1

Pn(xt ).Xt (1)
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FIGURE 2. The power curve of wind turbine.

where E(xt ) denotes the expectation of variable xt at time t ,
Pn(xt ) shows the probability of xt at scenario n. The E values
are calculated, then used in the optimization algorithms, and
three cost objectives are obtained.

B. POWER GENERATION MODELING OF PV AND WT
Renewable energy resources such as solar and wind are the
best choices abundant in nature and easily accessible. The
output power of each PV and WT unit are highly dependent
on solar irradiation and wind speed, respectively. The PV
output power in [59] is represented as

PPV (t) =


PPVr .

I2(t)
Icp.Isv

; 0 ≤ I (t) ≤ Icp

PPVr .
I (t)
Isv
; Icp ≤ I (t) ≤ Isv

PPVr ; I (t) ≥ Isv

(2)

Icp and Isv are usually set at 0.15 kW/m2 and 1 kW/m2, respec-
tively. The approximation of WT output power is expressed
as [59]

PWT (t) =



0;
V (t) ≤ Vi,V (t) ≤ Vo{

A+ BV (t)+ CV 2(t)
}
PWTr ;

Vi ≤ V (t) ≤ VWr

PWTr ;
VWr ≤ V (t) ≤ Vo

(3)

where cut-in, cut-out, and average ratedwind speeds are taken
as 3, 25, and 5.71 m/s, respectively.

Average wind speed is mentioned only for the selected
site’s information, but the authors have used hourly wind
speed data. Moreover, the power curve of the selected wind
turbine XANT M-21 is also shown in Fig. 2. Hub height is
31.80 m, while rotor diameter is 21 m. This type of wind
turbine is easy to transport and can be erected without support
from a crane. Their design is based on JEEP (just enough
essential parts) to save capital. ThisWTdesign is alignedwith
the IEC 64100-1 and GL standards.

C. MODELING OF LOAD DEMAND
For a practical scenario, hourly load demand varies signif-
icantly because of various energy utilization patterns at the
consumer’s end. The mathematical relationship of the normal
distribution function (fnd(t)) for load demand is expressed as
follows [59]

fnd (t) =
1

√
2π ∗ σL (t)

e
−[L(t)−µL (t)]2

2∗[σL (t)]2 (4)

D. MODELING OF FUEL CELL (FC)
The mathematical modeling of the FC power is represented
as follows [61]

PFC = H × ηFC × 37.8 (5)

where ηFC represents FC efficiency which is 37.8, H repre-
sents usage of hydrogen in kg. The mathematical relationship
of FC cost is as follows [61]:

CFC = IC (N .CC .CR.COM .L.ir .LP) (6)

Ic, N, CC , CR, COM , L, ir , and R represent cost index, the
number of FC units, capital cost, replacement cost, repair-
ing/maintenance cost, life span, interest rate, project lifetime,
respectively. For 24-hours simulation, the net cost in one day
is represented as follows [61]:

Cd =
(

CFC
365× 20

)
(7)

E. MODELING OF DIESEL GENERATOR
Diesel engine (DE) generators are normally used as backup
sources. The fuel consumption (FDG (t)) and generation cost
(CDG(t)) of DE generator are expressed as follows [59]

FDG(t) = F0 ∗ PDG + F1 ∗ PDG (t) (8)

CDG(t) = CD ∗ FDG (t) (9)

where F1 and F2 are taken as 0.08415 and 0.246 in litre/kWh,
respectively [21], [62].

III. PROBLEM FORMULATION
The total annualized cost and emission objectives are taken
in this combined optimal planning and operation modeling
concerning economic and environmental perspectives. The
suggested multi-objective problem is devised as follows

minωsFC + λw (1− ωs)FE , 0 ≤ ωs ≤ 1 (10)

The objective functions and their constraints are mathemati-
cally modeled as follows [63]–[65].

A. OBJECTIVE FUNCTIONS
1) TOTAL ANNUALIZED COST (TAC)
The minimization of TAC of a grid-connected residential,
rural microgrid is formulated as follows [59]

minFC = CC + COM +
N∑
t=1

CO (t) (11)
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where

CO (t) =
X∑
x=1

[
Cx (t)+ kOM ,x .Px (t)

]
+Cb (t)Pb (t)− Cs (t)Ps (t) (12)

CC =
M∑
m=1

[ρm.�m] (13)

2) TOTAL ANNUALIZED EMISSION (TAE)
The TAE is formulated as follows [59]

minCE =
N∑
t=1

X∑
x=1

{ γx (CO2)+ γx (SO2)

+γx (NOx)

}
∗Px (t)


+

{ γg (CO2)+ γg (SO2)

+γg (NOx)

}
∗Pb (t)

 (14)

3) OPERATION COST
The OC (OC) of the microgrid is expressed [57]:

minOC = OC

{
Fuel + OM + DC + N .GRID
+(1− N )LS

(15)

where Fuel,OM ,GRID, LS, and N represent costs for fuel;
O&M; MG-Grid coordination; compensation cost for load
interruption; grid On/Off, respectively. N = 1 indicates MG
is connected with the grid, while N = 0 shows an islanded
operation.

The depreciation cost (OC(DC)) is determined [57]:

OC(DC) =
InCos t ∗

[
a(1+a)l

(1+a)l−1

]
Pmax ∗ 8760 ∗ bc

∗ Pi (16)

where Pi, i, bc, InCos t, a, l and Pmax are output power;
capacity factor; installation costs; interest rates (8%); DGs
life; and DGs maximum capacity, respectively.

4) POLLUTANT TREATMENT COST
The pollutant treatment cost (PTC) of the microgrid is [57]:

minPTC=
M∑
j=1

∑
m

(
Cjγjm

)
Pj+

∑
m

(CmγGridm)PGrid (17)

where M ,m,Cm, γjm, γGridm, and PGrid represent DGs sum;
pollutant emission type; treatments cost; emission coeffi-
cient; coefficient of grid pollutant emission; and grid output
power, respectively.

B. CONSTRAINTS
1) DER SIZING
The sizing constraint of each MG component is mathemati-
cally represented as [59]

nm (min) ≤ nm ≤ nm (max) , ∀m ∈ {1, 2, 3, . . .M} (18)

2) POWER BALANCE
At any given time t, the difference of total load demand and
total power generation must be equal to zero, which can be
represented as follows [59]

X∑
x=1

Px (t)+PPV (t)+ PWT (t)− PLd (t)

−PC (t)+ PD (t)+ Pb (t)− Ps (t) = 0 (19)

3) DG POWER LIMITS
The power limits for DG units can be represented as fol-
lows [59]

nxξx (min) ≤ Px (t) ≤ nxξx (max) ,

∀x ∈ {1, 2, 3, . . .X} (20)

4) EXCHANGING POWER LIMIT
The power exchanging limits between grid and MG can be
represented as follows [59]

0 ≤ Pb (t) ≤ Pb (max) bb (t) ,

0 ≤ Ps (t) ≤ Ps (max) bs (t) ,

bb (t)+ bs (t) ≤ 1,

bb (t) , bs (t) ∈ {0, 1} (21)

5) EV BATTERY CHARGING/DISCHARGING LIMITS
The charging and discharging limits of BSS can be repre-
sented as follows [59]

0 ≤ PC (t) ≤ γC (max)�BSS ,

0 ≤ PD (t) ≤ γD (max)�BSS ,

PC (t) .PD (t) = 0, (22)

The SOC constraint of BSS can be represented as fol-
lows [59]

SOC (min) ≤ SOC (t) ≤ SOC (max) ,

SOC (t) = OC (t − 1)

+

[
ηCPC (t)1t − PD (t)1t

/
ηD
]

�BSS
(23)

At any given time interval t, the sum of total charged energy
and initial energy level must be greater than the total dis-
charged energy of the battery. It can be represented as fol-
lows [59]
N∑
t=1

PD (t)1t
/
ηD ≤ SOC (min)�BSS +

N∑
t=1

ηCPC (t)1t

(24)

6) RAMP RATE LIMITS
DEs ramp rate can be represented as [57]:

|PDE (t)− PDE (t − 1)| ≤ rmax ∗1t (25)

where PDE (t),PDE (t − 1), rmax and t are outputs; maximum
ramp rate, and time interval, respectively.
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FIGURE 3. Flowchart of proposed optimization methodology to find feasible scheduling for DSM and optimal DGs sizing.

7) LINE TRANSMISSION CAPACITY
Power flow between MG and PG is expressed as [57]:

−PLineMax ≤ PGrid ≤ PLineMax (26)

where PLineMax shows the maximum line capacity.

IV. TEST CASES
The grid-connected MG system is analyzed under different
scenarios of RERs and DGs. During scheduling strategy-1,
EVs are charging in autonomous mode. During scheduling
strategy-2, EVs are charging and discharging in coordinated
mode. This study’s analysis includes 80 EVs and 700 EVs.
Performance ofABC and PSO are compared for the following
test cases that are analyzed in this paper and explained as
follows:

• Test Case 1: Unscheduled summer loads with 80 EVs
during autonomous mode and coordinated mode.

• Test Case 1: Unscheduled summer loads with 80 EVs
and 700 EVs during autonomous mode and coordinated
mode.

• Test Case 2: CPP summer loads with 80 EVs and
700 EVs during autonomous mode and coordinated
mode.

• Test Case 3: RTEP summer loads with 80 EVs and
700 EVs during autonomous mode and coordinated
mode.

• Test Case 4: TOU summer loads with 80 EVs and
700 EVs during autonomous mode and coordinated
mode.

• Test Case 5: Unscheduled winter loads with 80 EVs
and 700 EVs during autonomous mode and coordinated
mode.

• Test Case 6: CPP winter loads with 80 EVs and 700 EVs
during autonomous mode and coordinated mode.

• Test Case 7: RTEP winter loads with 80 EVs and
700 EVs during autonomous mode and coordinated
mode.

• Test Case 8: TOUwinter loads with 80 EVs and 700 EVs
during autonomous mode and coordinated mode.

V. SIMULATION DATA FOR STUDY SYSTEM
Fig. 3 shows the flow chart of the proposed methodology.
In this research, hourly data of PV andWT speed for one year
is taken from NREL for the rural town (Shah Allah Ditta) in
Islamabad, Pakistan (33.7209642 ◦N 72.9143201 ◦E). This
location’smaximum andminimum temperatures are 30.93 ◦C
(June) and 8.61 ◦C (January), respectively. The annual aver-
age temperature is 20.43 ◦C. The maximum and minimum
values of daily solar radiation are 7.063 kWh/m2 (June) and
2.566 kWh/m2 (December), respectively. The annual average
radiation is 4.89 kWh/m2. The maximum wind speed of this
location is 6.99 m/s (April), while the annual average speed
is 5.71 m/s. This rural town is 700 years old and was used
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FIGURE 4. The power output (wind & solar).

FIGURE 5. Unscheduled load profiles for summer and winter.

to route from Kabul (Afghanistan) to the Gandharan city of
Taxila (Hindustan) by Alexander the Great and Sher Shah
Suri. Other emperors, including Mughal rulers, frequently
travelled from Afghanistan to the Hindustan [52].

The grid-connected residential, rural community MG is
analyzed under different RERs and DGs. Different costs
(such as annual capital, O&M, and emission coefficients) and
other DER parameters are taken from [48], [51], [53], [54].
The power limits of all DGs are adopted from [46]. Home
appliances details are taken from [70]–[75]. The total num-
ber of 50 smart residential, rural consumers, are considered.
Three pricing schemes (CPP, RTEP, and TOU) are used to
handle power exchanging costs between the grid, and MG.
Fig. 4 shows the power output curves of solar and wind
used in this study. The time step of the simulation is based
on 24 hours. Therefore, the estimated profile of 24 hours is
shown to find cost by solving the optimization problem with
24 hours. The data is taken from the base papers [57], [58],
which used 24 hours in their simulation. Fig. 5 shows the total
unscheduled load for summer and winter. Fig. 6 shows the

FIGURE 6. TOU tariff.

FIGURE 7. Unscheduled load profile of MG for 80 EVs under
(a) autonomous mode; (b) coordinated mode.

TOU tariff for an unscheduled load. All other load conditions
with CPP and RTEP tariffs are taken from base paper [77].

8) UNSCHEDULED SUMMER LOAD
Fig. 7 and Fig. 8 show the unscheduled load profiles of MG
under autonomous mode and coordinated modes for 80 EVs
and 700 EVs, respectively. Fig.7a shows unscheduled load
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FIGURE 8. Unscheduled load profile of MG for 700 EVs under
(a) autonomous mode; (b) coordinated mode.

for an autonomous mode of MG operation with and without
EVs load. It is shown that the load with EVs increased from
1400 onward compared to the load without EVs. The peak
load is almost 250 kW, the same peak value with and without
EVs load. Fig. 7b shows the same procedure for coordinated
mode. It is observed that EVs introduced more charging
load during the morning (0100 to 0800) while contributing
the power in the evening (1700-2400). The peak loads are
observed as 370 kW and 250 kW with and without EVs load.
In Fig.8a, EVs load absorbs energy throughout the day during
autonomous mode with a peak load of 790 kW. The peak
load without EVs remained at 250 kW in all summer tariffs.
Fig. 8b shows that EVs are in charging mode in the morning
(0100-0800) while in discharging mode in the evening
(1600-2400). The peak load is recorded as 1800 kW.

9) CPP SCHEDULED SUMMER LOAD
Fig. 9 shows the CPP tariff of summer load with peak
pricing at 1200-1600 due to hot weather while maximum
usage of cooling load. The peak pricing value of the CPP
tariff is 5.5 which is greater than the unscheduled tariff
peak of 1.4. Fig. 10a and Fig. 10b show almost the same
trend as the relevant graph of unscheduled load but with the

FIGURE 9. CPP tariff for summer load.

FIGURE 10. CPP summer load profile of MG for 80 EVs under
(a) autonomous mode; (b) coordinated mode.

peak value of 320 kW and 440 kW, respectively. Similarly,
Fig. 11a and Fig. 11b show a similar profile compared to
unscheduled load but with the peak load demand of 900 kW
2000 kW, respectively.

10) RTEP SCHEDULED SUMMER LOAD
Fig. 12 shows the RTEP tariff for the summer load. Load
profiles for this tariff are the same as that of unscheduled load,
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FIGURE 11. CPP summer load profile of MG for 700 EVs under
(a) autonomous mode; (b) coordinated mode.

FIGURE 12. Electricity rate for summer load with RTEP tariff.

as shown in the relevant fiures (Fig. 13a, Fig. 13b, Fig. 14a,
and Fig. 14b).

11) TOU SCHEDULED SUMMER LOAD
Fig. 15a and Fig. 15b show the TOU load profile
for autonomous and coordinated modes with 80 EVs,

FIGURE 13. RTEP summer load profile of MG for 80 EVs under
(a) autonomous mode; (b) coordinated mode.

respectively. Fig. 16a and Fig. 16b show the autonomous and
coordinated modes with 700 EVs, respectively.

12) UNSCHEDULED WINTER LOAD
Fig. 17a and Fig. 17b show the unscheduled load profile for
autonomous and coordinated modes with 80 EVs, respec-
tively. Fig. 18a and Fig. 18b show the unscheduled load
profile for autonomous and coordinatedmodes with 700 EVs,
respectively.

13) CPP SCHEDULED WINTER LOAD
Fig. 19a and Fig. 19b show the scheduled load profile for
autonomous and coordinated modes with 80 EVs, respec-
tively. Fig. 20a and Fig. 20b show the scheduled load pro-
file for autonomous and coordinated modes with 700 EVs,
respectively.

14) RTEP SCHEDULED WINTER LOAD
Fig. 21a and Fig. 21b show the scheduled load pro-
file for autonomous and coordinated modes with 80 EVs,
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FIGURE 14. RTEP summer load profile of MG for 700 EVs under
(a) autonomous mode; (b) coordinated mode.

respectively. Fig. 22a and Fig. 22b show the scheduled load
profile for autonomous and coordinatedmodes with 700 EVs,
respectively.

15) TOU SCHEDULED WINTER LOAD
Fig. 23a and Fig. 23b show the scheduled load profile for
autonomous and coordinated modes with 80 EVs, respec-
tively. Fig. 24a and Fig. 24b show the scheduled load pro-
file for autonomous and coordinated modes with 700 EVs,
respectively.

VI. RESULT ANALYSIS AND DISCUSSIONS
Fig. 25 and Fig. 26 show the scheduled load profiles for
summer and winter, respectively. Fig. 27a and Fig. 27b show
the autonomous and coordinated EVs load profiles with three
scenarios of EVs. Still, this study’s analysis includes only two
scenarios of EVs, such as 80 EVs and 700 EVs.

A. SUMMER LOAD
Fig. 28a and Fig. 28b show the unscheduled convergence
curves for 80 EVs during autonomous and coordinated

FIGURE 15. TOU summer load profile of MG for 80 EVs under
(a) autonomous mode; (b) coordinated mode.

modes, respectively. It is observed that the performance of
the ABC algorithm is better in autonomous mode, while
PSO performed well in coordinated mode. Table 2 shows
the computational burden of unscheduled load under different
circumstances. These table values are used as the base values
for comparing three DRPs.

Table 3 shows data for the CPP summer tariff. During the
CPP summer tariff, a significant reduction of computational
burden is observed in the PSO algorithm for 80 EVs in
autonomous mode. The simulation time reduction is also
observed with ABC and PSO for 80 EVs in autonomous
and coordinated modes, respectively. All remaining scenarios
show more computational burden as compared to the base
case.

Fig. 29a and Fig. 29b show the convergence curves for the
RTEP summer tariff. The almost same trend of final con-
vergence is observed for both algorithms during autonomous
and coordinated modes. Table 4 shows the data of simulation
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FIGURE 16. TOU summer load profile of MG for 700 EVs under
(a) autonomous mode; (b) coordinated mode.

time for RTEP summer tariff. During the RTEP summer tariff,
a significant reduction in computational burden is observed
with PSO for 80 EVs in autonomous mode. The simulation
time reduction is also observed with PSO for 80 EVs and
700 EVs in coordinated and autonomous modes, respectively.
All remaining scenarios show more computational burden as
compared to the base case.

Fig. 30 shows the convergence curve for the TOU sum-
mer tariff. It is observed that the performance of the PSO
algorithm is better in coordinated mode. Table 5 shows
the data of simulation time for the TOU summer tariff.
During the TOU summer tariff, a significant reduction in
computational burden is observed with PSO for 80 EVs in
autonomous mode. The simulation time reduction is also
observed with PSO and ABC for 80 EVs in coordinated and
autonomous modes, respectively. All remaining scenarios
show more computational burden as compared to the base
case.

FIGURE 17. Unscheduled load profile of MG for 80 EVs under
(a) autonomous mode; (b) coordinated mode.

TABLE 2. Comparative analysis of computational burden between two
algorithms for unscheduled load.

1) UNSCHEDULED SUMMER LOAD
Fig. 31a and Fig. 31b show PSO-based unscheduled load
scheduling with 80 EVs in autonomous and coordinated
modes. During autonomous mode, excess energy from DGs
is supplied to the grid for three hours in the early morning
(0100-0300) and one hour afternoon (1300). EVs charging
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FIGURE 18. Unscheduled load profile of MG for 700 EVs under
(a) autonomous mode; (b) coordinated mode.

TABLE 3. Comparative analysis of computational burden between two
algorithms for summer CPP.

load is negligible during the starting day time (0600-1300),
while EVs discharging load is significantly increased (above
50 kW) during the second half-day (1600-2300). DE is sup-
plying power at an almost constant rate, while the main grid
handles FC power fluctuations. During coordinated mode,
excess energy from DGs is supplied to the grid for the second

FIGURE 19. CPP summer load profile of MG for 80 EVs under
(a) autonomous mode; (b) coordinated mode.

half-day (1700-2200). EVs discharging load is significant
during the start of the day (0100-0700), while EVs charg-
ing load is significantly increased during the second half
of the day (1700-2400). DE supplies negligible power at
an almost constant rate, while the main grid handles EVs
power fluctuations. Fig. 32a and Fig. 32b show ABC-based
unscheduled load scheduling with 80 EVs in autonomous and
coordinated mode. During autonomous mode, excess energy
from DGs is supplied to the grid for three hours in the early
morning (0100-0300) and at different daytime (0800, 1000,
1300-1400, 2100). EVs charging load is negligible during
the starting day time (0600-1400), while EVs charging load
is significantly increased (above 50 kW) during the second
half-day (1600-2300). DE is supplying power with slightly
changing power output, while the main grid handles FC
power fluctuations. During coordinated mode, excess energy
from DGs is supplied to the grid for the second half-day
(1700-2200). EVs discharging load is significant during the
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FIGURE 20. CPP summer load profile of MG for 700 EVs under
(a) autonomous mode; (b) coordinated mode.

start of the day (0100-0700), while EVs charging load is
significantly increased during the second half of the day
(1700-2400). DE is supplying constant power at the start
of the day (0100-0700) and almost negligible power dur-
ing midday (0800-1800), while no power during nighttime
(1900-2300). EV excess power is supplied to the main grid
(1700-2400). The demand-generation mismatch is supplied
by RERs (PV, WT). Fig. 33a and Fig. 33b show unscheduled
load scheduling with 700 EVs in autonomous and coordi-
nated modes, respectively. During autonomous mode, EVs
charging load is more during the starting day (0100-0700),
while EVs charging load is significant throughout the simu-
lation with a 700 kW peak during the night (2000). DE and
FC are supplying almost constant power. During coordinated
mode, excess energy from DGs is supplied to the grid at night
(1600-2400). EVs charging load is more during the starting
day (0100-0700), while EVs discharging load is significant
at night (1700-2400). DE and FC are supplying almost
negligible power.

FIGURE 21. RTEP summer load profile of MG for 80 EVs under
(a) autonomous mode; (b) coordinated mode.

TABLE 4. Comparative analysis of computational burden between two
algorithms for summer RTEP.

Fig. 34a and Fig. 34b show unscheduled load schedul-
ing with 700 EVs in autonomous and coordinated modes,
respectively. The almost same trend of PSO-based modes is
observed during autonomous and coordinated modes. The
demand-generation gap is supplied by RERs (PV, WT).
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FIGURE 22. RTEP summer load profile of MG for 700 EVs under
(a) autonomous mode; (b) coordinated mode.

TABLE 5. Comparative analysis of computational burden between two
algorithms for summer TOU.

Table 6 and Table 7 shows unscheduled load results during
scheduling scheme 1 (autonomous) and scheduling scheme 2
(coordinated), respectively. The data of these tables are used
as the base case for three DRPs.

2) CPP SCHEDULED SUMMER LOAD
Fig. 35a and Fig. 35b show the CPP summer load
scheduling with 80 EVs in autonomous and coordinated

FIGURE 23. TOU summer load profile of MG for 80 EVs under
(a) autonomous mode; (b) coordinated mode.

TABLE 6. Dispatch results under scheduling schemes 1 and 2 for 80 EVs.

modes, respectively. Excess energy from DGs is sup-
plied to the grid (0600, 0800-1300). EVs charging load
is negligible during the starting day (0100-1400), while
EVs’ charging load increases during the second half-
day (1500-2400). DE supplies power at an almost con-
stant rate, while FC power is variable. Excess energy
from DGs is supplied to the grid (0800, 1000-1400,
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FIGURE 24. TOU summer load profile of MG for 700 EVs under
(a) autonomous mode; (b) coordinated mode.

TABLE 7. Dispatch results under scheduling schemes 1 and 2 for 700 EVs.

1700-2000). EVs charging load is significant during the start
of the day (0100-0700), while EVs discharging load is sig-
nificantly increased during the second half of the day (1700-
2400). DE is supplying almost constant power.

Fig. 36a and Fig. 36b show ABC-based CPP summer
load scheduling with 80 EVs in autonomous and coor-
dinated modes. Excess energy from DGs is supplied to

the grid (0800-2200). EVs charging load is significant
during the starting day (0100-0700), while EVs discharging
load is significantly increased during the second half-day
(1700-2400). DE supplies power at the start of the day till
noon with a slight change in power output afternoon, while
FC power fluctuates. Excess energy from DGs is supplied
to the grid (0800-2200). EVs discharging load is significant
during the start of the day (0100-0700), while EVs discharg-
ing load is significantly increased during the second half of
the day (1700-2400). DE supplies constant power at the start
of the day and almost negligible power at night. EV excess
power is supplied to the main grid (1700-2400), while the
demand-generation mismatch is supplied by RERs (PV,WT).

Fig. 37a and Fig. 37b show PSO-based summer CPP
load scheduling with 700 EVs in autonomous and coordi-
nated modes. EVs charging load is significant during the
autonomous mode throughout the daytime with a 700 kW
peak at night (2000). DE and FC are supplying almost con-
stant power. During coordinated mode, excess energy from
DGs is supplied to the grid at night (1700-2400). EVs charg-
ing load is more during the starting day (0100-0700), while
EVs discharging load is significant at night (1700-2400).
DE and FC are supplying almost negligible power.

Fig. 38a and Fig. 38b show ABC-based summer CPP
load scheduling with 700 EVs in autonomous and coordi-
nated modes. The almost same trend of PSO-based modes
is observed during autonomous and coordinated modes. The
demand-generation gap is supplied by RERs (PV, WT).

Table 8 shows CPP summer load scheduling results for
80 EVs during scheduling scheme 1 (autonomous) and
scheduling scheme 2 (coordinated). During autonomous
mode, the ABC algorithm outperformed PSO by reducing
all four costs, such as the operating cost (C1), pollutant
treatment cost (C2), carbon emissions cost (C3), and the
overall cost (C). The ABC algorithm also outperformed PSO
during coordinated mode by reducing three costs C1, C3,
and C.

Table 9 shows the CPP summer load scheduling results
for 700 EVs during scheduling scheme 1 (autonomous)
and scheduling scheme 2 (coordinated). During autonomous
mode, the ABC algorithm performed better by reducing all
four costs such as C1, C2, C3, and C. The PSO algorithm
performed better by reducing one cost, such as C2. Both ABC
and PSO algorithms performed better during coordinated
mode by reducing all four costs such as C1, C2, C3, and C.
Significant reduction in cost C3 is observed during both ABC
and PSO algorithms. However, ABC reduced C3 cost twice
as compared to PSO.

3) RTEP SCHEDULED SUMMER LOAD
Fig. 39a and Fig. 39b show PSO-based RTEP summer load
scheduling with 80 EVs in autonomous and coordinated
modes. Excess energy from DGs is supplied to the grid
(0100-0300). EV charging load is negligible during the start-
ing day (0100-1400), while EVs’ charging load increases
during the second half-day (1500-2400), and Excess energy
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FIGURE 25. Scheduled load profile for summer.

FIGURE 26. Scheduled load profile for winter.

from DGs is supplied to the grid (1700-2200). EVs charging
load is significant during the start of the day (0100-0700),
while EVs discharging load is significantly increased during
the second half of the day (1700-2400). DE is supplying
almost constant power.

Fig. 40a and Fig. 40b show ABC-based RTEP summer
load scheduling with 80 EVs in autonomous and coordinated
modes. Excess energy from DGs is supplied to the grid

(0500, 0800, 1000, 1200-1300). EVs charging load is signif-
icant during the starting day (0100-1400), while EVs’ charg-
ing load increases during the second half-day (1500-2400).
Excess energy from DGs is supplied to the grid (0800-1000,
1200-1300, 1700-2100, 2300-2400). EVs charging load is
significant during the start of the day (0100-0700), while EVs
discharging load is significantly increased during the second
half of the day (1700-2400).
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FIGURE 27. The load profile (a) autonomous mode; (b) coordinated mode.

Fig. 41a and Fig. 41b show PSO-based RTEP sum-
mer load scheduling with 700 EVs in autonomous and
coordinated modes. EVs charging load is significant dur-
ing the autonomous mode throughout the daytime with
a 700 kW peak at night (2000). During coordinated
mode, excess energy from DGs is supplied to the grid at
night (1600-2400). EVs charging load is more during the
starting day (0100-0700), while EVs discharging load is sig-
nificant at night (1700-2400).

Fig. 42a and Fig. 42b show ABC-based RTEP summer
load scheduling with 700 EVs in autonomous and coordi-
nated modes. The almost same trend of PSO-based modes
is observed during autonomous and coordinated modes.

Table 10 shows RTEP summer load scheduling results
for 80 EVs during autonomous and coordinated modes. The
PSO algorithm performed better during autonomous mode by
reducing one cost, such as C2. The PSO algorithm performed
better during coordinated mode by reducing three costs such
as the C1, C3, and C.

Table 11 shows RTEP summer load scheduling results
for 700 EVs during autonomous and coordinated, while the

FIGURE 28. Unscheduled convergence value for PSO and ABC with 80 EVs
(a) autonomous mode; (b) coordinated mode.

TABLE 8. CPP summer dispatch results under scheduling schemes 1 and
2 for 80 EVs.

TABLE 9. CPP summer dispatch results under scheduling schemes 1 and
2 for 700 EVs.

ABC algorithm performed better during autonomous mode
by reducing all four costs. Both ABC and PSO algorithms
performed better during coordinated mode by reducing all

VOLUME 10, 2022 7617



H. U. R. Habib et al.: Analysis of Microgrid’s Operation Integrated to Renewable Energy and Electric Vehicles

FIGURE 29. Summer RTEP convergence value for PSO and ABC with 80
EVs (a) autonomous mode; (b) coordinated mode.

FIGURE 30. Summer RTEP convergence value for PSO and ABC with
80 EVs with coordinated mode.

four costs. A significant reduction in cost C3 is observed
during the ABC algorithm.

4) TOU SCHEDULED SUMMER LOAD
Fig. 43a and Fig. 43b show PSO-based TOU summer load
scheduling with 80 EVs in autonomous and coordinated

FIGURE 31. PSO-based unscheduled economic dispatch with 80 EVs
(a) autonomous mode; (b) coordinated mode.

modes. Excess energy fromDGs is supplied to the grid (0800-
1300). EV charging load is negligible during the starting day
(0100-1400), while EVs’ charging load increases during the
second half-day (1500-2400), and excess energy from DGs
is supplied to the grid (0700-2400). EVs charging load is
significant during the start of the day (0100-0700), while EVs
discharging load is significantly increased during the second
half of the day (1700-2400).

Fig. 44a and Fig. 44b show ABC-based TOU summer
load scheduling with 80 EVs in autonomous and coordinated
modes. Excess energy fromDGs is supplied to the grid (1000-
1300). EVs charging load is small during the starting day
(0100-1400), while EVs’ charging load increases during the
second half-day (1500-2400). Excess energy from DGs is
supplied to the grid (1000-1300). EVs charging load is small
during the starting day (0100-1400), while EVs’ charging
load increases during the second half-day (1500-2400).
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FIGURE 32. ABC-based unscheduled economic dispatch with 80 EVs
(a) autonomous mode; (b) coordinated mode.

TABLE 10. RTEP summer dispatch results under scheduling schemes 1
and 2 for 80 EVs.

TABLE 11. RTEP summer dispatch results under scheduling schemes 1
and 2 for 700 EVs.

Fig. 45a and Fig. 45b show PSO-based TOU summer
load scheduling with 700 EVs in autonomous and coor-
dinated modes. EVs charging load is significant during

FIGURE 33. PSO-based unscheduled economic dispatch with 700 EVs
(a) autonomous mode; (b) coordinated mode.

the autonomous mode throughout the daytime with almost
700 kW peak at night (2000). During coordinated mode,
excess energy from DGs is supplied to the grid at night
(1600-2400). EVs charging load is more during the starting
day (0100-0700), while EVs discharging load is significant at
night (1700-2400).

Fig. 46a and Fig. 46b show ABC-based TOU summer
load scheduling with 700 EVs in autonomous and coordi-
nated modes. The almost same trend of PSO-based modes
is observed during autonomous and coordinated modes.

Table 12 shows TOU summer load scheduling results
for 80 EVs during autonomous and coordinated modes.
Both PSO and ABC algorithms performed better during
autonomous mode by reducing all four costs. A significant
reduction in cost C2 is observed during both PSO and ABC
algorithms. During coordinated mode, the ABC algorithm
performed better by reducing all four costs such as the C1,
C2, C3, and C. PSO algorithm performed better by reducing
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FIGURE 34. ABC-based unscheduled economic dispatch with 700 EVs
(a) autonomous mode; (b) coordinated mode.

three costs such as the C1, C3, and C. Significant reduction
in cost C3 with PSO and C2 with ABC are observed.

Table 13 shows TOU summer load scheduling results
with 700 EVs. The ABC algorithm performed better during
autonomous mode with the reduction of all four costs. The
PSO algorithm performance is better with a reduction of
C1, C3, and C. Both algorithms performed better during
coordinated mode by reducing all four costs. A significant
reduction in C3 is observed with both algorithms. However,
cost reduction with ABC is 1.5 times as compared to PSO.

B. WINTER LOAD
Fig. 47 and Fig. 48 show the unscheduled convergence
curves for winter load during autonomous mode for 80 EVs
and 700 EVs, respectively. It is observed that the performance
of the ABC algorithm is better with 80 EVs, while both per-
formed well with 700 EVs. Table 14 shows the computational
burden of unscheduled load under different circumstances.

FIGURE 35. PSO-based summer CPP scheduled economic dispatch
with 80 EVs (a) autonomous mode; (b) coordinated mode.

TABLE 12. TOU summer dispatch results under scheduling schemes 1
and 2 for 80 EVs.

These table values are used as the base values for the com-
parison of three DRPs.

Fig. 49 and Fig. 50 show the convergence curves for
CPP winter tariff during autonomous mode for 80 EVs and
700 EVs, respectively. It is observed that the performance
of the ABC algorithm is better with 80 EVs, while both
performed well with 700 EVs. Table 15 shows data for the
CPP winter tariff. During the CPP winter tariff, no significant
reduction of computational burden is observed. The simula-
tion time reduction is only observed with PSO for 700 EVs
in autonomous mode. All remaining scenarios show more
computational burden as compared to the base case.
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FIGURE 36. ABC-based summer CPP scheduled economic dispatch
with 80 EVs (a) autonomous mode; (b) coordinated mode.

TABLE 13. TOU summer dispatch results under scheduling schemes 1
and 2 for 700 EVs.

Fig. 51 and Fig. 52 show the convergence curves for the
RTEP winter tariff. It is observed that the performance of
the PSO algorithm is better for both cases, with 80 EVs
and 700 EVs in autonomous mode. Table 16 shows the data
of simulation time for RTEP winter tariff. During the RTEP
winter tariff, no significant reduction in computational burden
is observed. All scenarios show more computational burden
as compared to the base case.

FIGURE 37. PSO-based summer CPP scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

TABLE 14. Comparative analysis of computational burden between two
algorithms for unscheduled load.

Fig. 53 shows the convergence curve for the TOU winter
tariff. It is observed that the performance of both algorithms is
better in coordinated mode with 80 EVs. Table 17 shows the
data of simulation time for the TOU winter tariff. During the
TOU winter tariff, no significant reduction in computational
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FIGURE 38. ABC-based summer CPP scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

TABLE 15. Comparative analysis of computational burden between two
algorithms for winter CPP.

burden is observed. All scenarios show more computational
burden as compared to the base case.

1) UNSCHEDULED WINTER LOAD
Fig. 54a and Fig. 54b show PSO-based unscheduled winter
load scheduling with 80 EVs in autonomous and coordinated

FIGURE 39. PSO-based summer RTEP scheduled economic dispatch
with 80 EVs (a) autonomous mode; (b) coordinated mode.

modes. Excess energy from DGs is supplied to the grid
(0100-0700, 0900-1000, 1300-1400, 1900-2400). EVs charg-
ing load is negligible during the starting day (0100-1400),
while EVs’ charging load increases during the second half-
day (1500-2400). Excess energy from DGs is supplied to
the grid (0600, 0900, 1300-2400). EVs charging load is sig-
nificant during the start of the day (0100-0700), while EVs
discharging load is significantly increased during the second
half of the day (1700-2400).

Fig. 55a and Fig. 55b showABC-based unscheduledwinter
load scheduling with 80 EVs in autonomous and coordinated
modes. Excess energy fromDGs is supplied to the grid (0100-
0700, 1000, 1300-1400, 2100-2400). EVs charging load is
small during the starting day (0100-1400), while EVs’ charg-
ing load increases during the second half-day (1500-2400).
Excess energy from DGs is supplied to the grid (0600-0700,
0900, 1300-2400). EVs charging load is small during the
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FIGURE 40. ABC-based summer RTEP scheduled economic dispatch
with 80 EVs (a) autonomous mode; (b) coordinated mode.

TABLE 16. Comparative analysis of computational burden between two
algorithms for winter RTEP.

starting day (0100-1400), while EVs’ charging load increases
during the second half-day (1500-2400).

Fig. 56a and Fig. 56b show PSO-based unscheduled win-
ter load scheduling with 700 EVs in autonomous and coor-
dinated modes. EVs charging load is significant during
the autonomous mode throughout the daytime with almost

FIGURE 41. PSO-based summer RTEP scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

TABLE 17. Comparative analysis of computational burden between two
algorithms for winter TOU.

700 kW peak at night (2000). During coordinated mode,
excess energy from DGs is supplied to the grid at night
(1600-2400). EVs charging load is more during the starting
day (0100-0700), while EVs discharging load is significant at
night (1700-2400).
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FIGURE 42. ABC-based summer RTEP scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

TABLE 18. Dispatch results under scheduling schemes 1 and 2 for 80 EVs.

Fig. 57a and Fig. 57b show ABC-based, unscheduled win-
ter load scheduling with 700 EVs in autonomous and coordi-
nated modes. Almost the same trend of PSO-based modes is
observed during autonomous and coordinated modes.

Table 18 and Table 19 shows unscheduled load results
during scheduling scheme 1 (autonomous) and scheduling
scheme 2 (coordinated), respectively. The data of these tables
are used as the base case for three DRPs.

FIGURE 43. PSO-based summer TOU scheduled economic dispatch
with 80 EVs (a) autonomous mode; (b) coordinated mode.

TABLE 19. Dispatch results under scheduling schemes 1 and
2 for 700 EVs.

2) CPP SCHEDULED WINTER LOAD
Fig. 58a and Fig. 58b show PSO-based CPP winter load
scheduling with 80 EVs in autonomous and coordinated
modes. Excess energy from DGs is supplied to the grid
(0100-1400). EVs’ charging load is negligible during the
starting day (0100-1400), while EVs’ charging load increases
during the second half-day (1500-2400), and Excess energy
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FIGURE 44. ABC-based summer TOU scheduled economic dispatch
with 80 EVs (a) autonomous mode; (b) coordinated mode.

from DGs is supplied to the grid (0600-2400). EVs charging
load is significant during the start of the day (0100-0700),
while EVs discharging load is significantly increased during
the second half of the day (1700-2400).

Fig. 59a and Fig. 59b show ABC-based CPP winter
load scheduling with 80 EVs in autonomous and coor-
dinated modes, respectively. Excess energy from DGs is
supplied to the grid (0100-1700, 2000). EVs’ charging
load is small during the starting day (0100-1400), while
EVs’ charging load increases during the second half-day
(1500-2400), and Excess energy from DGs is supplied to the
grid (0600-2200). EVs charging load is large during the start-
ing day (0100-0700), while EVs’ discharging load increases
during the second half-day (1700-2400).

Fig. 60a and Fig. 60b show PSO-based CPP winter load
scheduling with 700 EVs in autonomous and coordinated
modes, respectively. EVs charging load is significant during
the autonomous mode throughout the daytime with almost

FIGURE 45. PSO-based summer TOU scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

700 kW peak at night (2000). During coordinated mode,
excess energy from DGs is supplied to the grid at night
(1600-2400). EVs charging load is more during the starting
day (0100-0700), while EVs discharging load is significant at
night (1700-2400).

Fig. 61a and Fig. 61b show ABC-based CPP winter load
scheduling with 700 EVs in autonomous and coordinated
modes. The almost same trend of PSO-based modes is
observed during autonomous and coordinated modes.

Table 20 shows CPP winter load scheduling results for
80 EVs during scheduling scheme 1 (autonomous) and
scheduling scheme 2 (coordinated). During autonomous
mode, the ABC algorithm performed well by reducing three
costs, such as C1, C3, and C. PSO algorithm performed
well by reducing one cost such as C2. The ABC algorithm
performed better during coordinated mode by reducing one
cost, such as C3. PSO algorithm performed better by reducing
one cost such as C1.
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FIGURE 46. ABC-based summer TOU scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

FIGURE 47. Unscheduled convergence value for PSO and ABC with 80 EVs
with an autonomous mode.

Table 21 shows the CPP winter load scheduling results
for 700 EVs during scheduling scheme 1 (autonomous)
and scheduling scheme 2 (coordinated). During autonomous

FIGURE 48. Unscheduled convergence value for PSO and ABC with 700
EVs with an autonomous mode.

FIGURE 49. Winter CPP convergence value for PSO and ABC with 80 EVs
with an autonomous mode.

FIGURE 50. Summer CPP convergence value for PSO and ABC with 700
EVs with an autonomous mode.

mode, both algorithms performed better by reducing three
costs such as C1, C3, and C. During coordinated mode;
both algorithms performed better by reducing all four costs.
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FIGURE 51. Winter RTEP convergence value for PSO and ABC with 80 EVs
with an autonomous mode.

FIGURE 52. Winter RTEP convergence value for PSO and ABC with 700 EVs
with an autonomous mode.

FIGURE 53. Winter TOU convergence value for PSO and ABC with 80 EVs
with coordinated mode.

A significant reduction in cost C3 is observed during both
algorithms. However, PSO reduced C3 cost twice as com-
pared to ABC.

FIGURE 54. PSO-based unscheduled economic dispatch with 80 EVs
(a) autonomous mode; (b) coordinated mode.

TABLE 20. CPP winter dispatch results under scheduling schemes 1 and
2 for 80 EVs.

3) RTEP SCHEDULED WINTER LOAD
Fig. 62a and Fig. 62b show PSO-based RTEP winter load
scheduling with 80 EVs in autonomous and coordinated
modes. Excess energy from DGs is supplied to the grid
(0100-0700, 0900-1000, 1300-1400, 1700, 2100-2400).
EVs charging load is negligible during the starting day
(0100-1400), while EVs’ charging load increases during
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FIGURE 55. ABC-based unscheduled economic dispatch with 80 EVs
(a) autonomous mode; (b) coordinated mode.

TABLE 21. CPP winter dispatch results under scheduling schemes 1 and
2 for 700 EVs.

the second half-day (1500-2400). Excess energy from DGs
is supplied to the grid (0700, 0900-1000, 1300-1400,
1600-2400). EVs charging load is significant during the
start of the day (0100-0700), while EVs discharging load
is significantly increased during the second half of the day
(1700-2400).

FIGURE 56. PSO-based unscheduled economic dispatch with 700 EVs
(a) autonomous mode; (b) coordinated mode.

Fig. 63a and Fig. 63b show ABC-based RTEP winter
load scheduling with 80 EVs in autonomous and coordinated
modes. Excess energy from DGs is supplied to the grid
(0100-1400, 1700). EVs’ charging load is small during the
starting day (0100-1400), while EVs’ charging load increases
during the second half-day (1500-2400), and excess energy
from DGs is supplied to the grid (0600-1400, 1700-2400).
EVs’ charging load is large during the starting day
(0100-0700), while EVs discharging load is significantly
increased during the second half-day (1700-2400).

Fig. 64a and Fig. 64b show PSO-based RTEP winter
load scheduling with 700 EVs in autonomous and coor-
dinated modes. EVs charging load is significant during
the autonomous mode throughout the daytime with almost
700 kW peak at night (2000). During coordinated mode,
excess energy from DGs is supplied to the grid at night
(0300-0700, 0900). EVs charging load is more during the
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FIGURE 57. ABC-based unscheduled economic dispatch with 700 EVs
(a) autonomous mode; (b) coordinated mode.

starting day (0100-0700), while EVs discharging load is sig-
nificant at night (1700-2400).

Fig. 65a and Fig. 65b show ABC-based RTEP winter
load scheduling with 700 EVs in autonomous and coor-
dinated modes. Almost the same trend of PSO-based
modes is observed during autonomous and coordinated
modes.

Table 22 shows RTEP winter load scheduling results for
80 EVs during autonomous and coordinated modes. During
autonomous mode, the ABC algorithm performed better by
reducing three costs, such as C1, C3, and C. PSO algorithm
performed better by reducing one cost such as C2. The
ABC algorithm performed better during coordinatedmode by
reducing one cost, such as C3. The PSO algorithm performed
better by reducing two costs, C2 and C3. A significant reduc-
tion in cost C2 is observed during the PSO algorithm.

Table 23 shows RTEP winter load scheduling results
for 700 EVs during autonomous and coordinated. During

FIGURE 58. PSO-based winter CPP scheduled economic dispatch with
80 EVs (a) autonomous mode; (b) coordinated mode.

TABLE 22. RTEP winter dispatch results under scheduling schemes 1
and 2 for 80 EVs.

autonomous mode, both algorithms performed better by
reducing three costs such as C1, C3, and C. During coordi-
nated mode; both algorithms performed better by reducing
all four costs. A significant reduction in cost C3 is observed
during the ABC algorithm.

4) TOU SCHEDULED WINTER LOAD
Fig. 66a and Fig. 66b show PSO-based TOU winter load
scheduling with 80 EVs in autonomous and coordinated
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FIGURE 59. ABC-based winter CPP scheduled economic dispatch with 80
EVs (a) autonomous mode; (b) coordinated mode.

TABLE 23. RTEP winter dispatch results under scheduling schemes 1
and 2 for 700 EVs.

modes. Excess energy from DGs is supplied to the grid
(0100-0700, 0900-1000, 1300-1400, 1700, 1900, 2100-
2400). EVs charging load is negligible during the starting
day (0100-1400), while EVs’ charging load increases during
the second half-day (1500-2400). Excess energy from DGs
is supplied to the grid (0600-0700, 0900, 1400, 1600-2400).
EVs charging load is significant during the start of the day

FIGURE 60. PSO-based winter CPP scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

(0100-0700), while EVs discharging load is significantly
increased during the second half of the day (1700-2400).

Fig. 67a and Fig. 67b show ABC-based TOU winter load
scheduling with 80 EVs in autonomous and coordinated
modes. Excess energy from DGs is supplied to the grid
(0100-1000, 1200-1500, 1700, 1900-2400). EVs’ charging
load is small during the starting day (0100-1400), while
EVs’ charging load increases during the second half-day
(1500-2400). Excess energy from DGs is supplied to the grid
(0900-1000, 1300-2400). EVs charging load is large during
the starting day (0100-0700), while EVs’ discharging load
increases during the second half-day (1700-2400).

Fig. 68a and Fig. 68b show PSO-based TOU winter
load scheduling with 700 EVs in autonomous and coor-
dinated modes. EVs charging load is significant during
the autonomous mode throughout the daytime with almost
700 kW peak at night (2000). During coordinated mode,
excess energy from DGs is supplied to the grid at night
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FIGURE 61. ABC-based winter CPP scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

(0700, 0900, 1600-2400). EVs charging load is more during
the starting day (0100-0700), while EVs discharging load is
significant at night (1700-2400).

Fig. 69a and Fig. 69b show ABC-based TOU winter
load scheduling with 700 EVs in autonomous and coordi-
nated modes. The almost same trend of PSO-based modes
is observed during autonomous and coordinated modes.

Table 24 shows TOU winter load scheduling results
for 80 EVs during autonomous and coordinated modes.
Both PSO and ABC algorithms performed better during
autonomous mode by reducing three costs such as C1, C3,
and C. Significant reduction in cost C3 is observed during the
ABC algorithm. Both ABC and PSO algorithms performed
better during coordinated mode by reducing two costs: the
C2 and C3. Significant reductions in cost C2 with PSO and
ABC are observed.

Table 25 shows TOU winter load scheduling results for
700 EVs during autonomous and coordinated. TheABC algo-
rithm performed better during autonomous mode by reducing
all four costs. PSO algorithm performed better by reducing
three costs such as C2, C3, and C. During coordinated mode,

FIGURE 62. PSO-based winter RTEP scheduled economic dispatch with 80
EVs (a) autonomous mode; (b) coordinated mode.

TABLE 24. TOU winter dispatch results under scheduling schemes 1 and
2 for 80 EVs.

both ABC and PSO algorithms performed better by reducing
all four costs such as C1, C2, C3, and C.

VII. CRITICAL ANALYSIS AND DISCUSSION
• During unscheduled summer load, a significant reduc-
tion of computational burden is observed in the case of
the PSO algorithm for 80 EVs in autonomous mode.
The convergence curves showed that the performance of
the ABC algorithm is better in autonomous mode, while
PSO performed well in coordinated mode.
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FIGURE 63. ABC-based winter RTEP scheduled economic dispatch with 80
EVs (a) autonomous mode; (b) coordinated mode.

TABLE 25. TOU winter dispatch results under scheduling schemes 1 and
2 for 700 EVs.

• During the CPP summer tariff, a significant reduc-
tion of computational burden is observed in the PSO
algorithm for 80 EVs in autonomous mode. The sim-
ulation time reduction is also observed with ABC
and PSO for 80 EVs in autonomous and coordinated
modes, respectively. All remaining scenarios showmore
computational burden as compared to the base case.
CPP summer load scheduling results for 80 EVs dur-
ing scheduling scheme 1 (autonomous) and schedul-
ing scheme 2 (coordinated) are analyzed. During
autonomous mode, the ABC algorithm outperformed

FIGURE 64. PSO-based winter RTEP scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

PSO by reducing all four costs, such as the operating cost
(C1), pollutant treatment cost (C2), carbon emissions
cost (C3), and the overall cost (C). During coordinated
mode, the ABC algorithm also outperformed PSO by
reducing three costs as the operating cost (C1), carbon
emissions cost (C3), and the overall cost (C). CPP sum-
mer load scheduling results for 700 EVs during schedul-
ing scheme 1 (autonomous) and scheduling scheme 2
(coordinated) are analyzed. During autonomous mode,
the ABC algorithm performed better by reducing all four
costs such as C1, C2, C3, and C. The PSO algorithm
performed better by reducing one cost, such as C2. Both
ABC and PSO algorithms performed better during coor-
dinated mode by reducing all four costs such as C1, C2,
C3, and C. Significant reduction in cost C3 is observed
during both ABC and PSO algorithms. However, ABC
reduced C3 cost twice as compared to PSO.

• During the RTEP summer tariff, a significant reduc-
tion in computational burden is observed with PSO
for 80 EVs in autonomous mode. The simulation time
reduction is also observed with PSO for 80 EVs and
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FIGURE 65. ABC-based winter RTEP scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

700 EVs in coordinated and autonomous modes, respec-
tively. All remaining scenarios show more computa-
tional burden as compared to the base case. The almost
same trend of final convergence is observed for both
algorithms during autonomous and coordinated modes.
RTEP summer load scheduling results for 80 EVs dur-
ing autonomous and coordinated modes are analyzed.
The PSO algorithm performed better during autonomous
mode by reducing one cost, such as C2. The PSO
algorithm performed better during coordinated mode by
reducing three costs such as the C1, C3, and C. RTEP
summer load scheduling results for 700 EVs during
autonomous and coordinated. The ABC algorithm per-
formed better during autonomous mode by reducing all
four costs. During coordinated mode, both algorithms
performed better by reducing all four costs. A signifi-
cant reduction in cost C3 is observed during the ABC
algorithm.

• During the TOU summer tariff, a significant reduction in
computational burden is observed with PSO for 80 EVs
in autonomous mode. The simulation time reduction
is also observed with PSO and ABC for 80 EVs in

FIGURE 66. PSO-based winter TOU scheduled economic dispatch with
80 EVs (a) autonomous mode; (b) coordinated mode.

coordinated and autonomous modes, respectively. All
remaining scenarios show more computational bur-
den as compared to the base case. The convergence
curves showed that the performance of the PSO algo-
rithm is better in coordinated mode. TOU summer load
scheduling results for 80 EVs during autonomous and
coordinated modes are analyzed. Both PSO and ABC
algorithms performed better during autonomous mode
by reducing all four costs. A significant reduction in
cost C2 is observed during both PSO and ABC algo-
rithms. During coordinated mode, the ABC algorithm
performed better by reducing all four costs such as
the C1, C2, C3, and C. PSO algorithm performed bet-
ter by reducing three costs such as the C1, C3, and
C. Significant reduction in cost C3 with PSO and C2
with ABC are observed. TOU summer load scheduling
results for 700 EVs during autonomous and coordi-
nated are analyzed. The ABC algorithm performed bet-
ter during autonomous mode by reducing all four costs.
PSO algorithm performed better by reducing three costs
such as C1, C3, and C. During coordinated mode; both
algorithms performed better by reducing all four costs.
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FIGURE 67. ABC-based winter TOU scheduled economic dispatch with
80 EVs (a) autonomous mode; (b) coordinated mode.

A significant reduction in cost C3 is observed during
both ABC and PSO algorithms. However, cost reduction
with ABC is 1.5 times as compared to PSO.

• During unscheduled winter load, convergence curves
showed that the performance of the ABC algorithm
is better with 80 EVs, while both performed well
with 700 EVs.

• During the CPP winter tariff, the convergence curves
showed that the performance of the ABC algorithm is
better with 80 EVs, while both algorithms performed
well with 700 EVs. No significant reduction of computa-
tional burden is observed. The simulation time reduction
is only observed with PSO for 700 EVs in autonomous
mode. All remaining scenarios showed more computa-
tional burden as compared to the base case. CPP winter
load scheduling results for 80 EVs during autonomous
and coordinatedmode are analyzed. During autonomous
mode, the ABC algorithm performed well by reducing
three costs, such as C1, C3, and C. PSO algorithm per-
formed well by reducing one cost such as C2. The ABC
algorithm performed better during coordinated mode by

FIGURE 68. PSO-based winter TOU scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mode.

reducing one cost, such as C3. PSO algorithm performed
better by reducing one cost such as C1. CPP winter load
scheduling results for 700 EVs during autonomous and
coordinated are analyzed. During autonomous mode,
both algorithms performed better by reducing three costs
such as C1, C3, and C. During coordinated mode; both
algorithms performed better by reducing all four costs.
A significant reduction in cost C3 is observed during
both algorithms. However, PSO reduced C3 cost twice
as compared to ABC.

• During RTEP winter tariff, the convergence curves
showed that the performance of the PSO algorithm is
better for both cases with 80 EVs and 700 EVs in
autonomous mode. No significant reduction in compu-
tational burden is observed. All scenarios showed more
computational burden as compared to the base case.
RTEP winter load scheduling results for 80 EVs during
autonomous and coordinated modes are analyzed. Dur-
ing autonomous mode, the ABC algorithm performed
better by reducing three costs, such as C1, C3, and C.
PSO algorithm performed better by reducing one cost
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FIGURE 69. ABC-based winter TOU scheduled economic dispatch
with 700 EVs (a) autonomous mode; (b) coordinated mod.

such as C2. The ABC algorithm performed better during
coordinated mode by reducing one cost, such as C3.
The PSO algorithm performed better by reducing two
costs, C2 and C3. A significant reduction in cost C2 is
observed during the PSO algorithm. RTEP winter load
scheduling results for 700 EVs during autonomous and
coordinated. During autonomous mode, both algorithms
performed better by reducing three costs such as C1,
C3, and C. During coordinated mode; both algorithms
performed better by reducing all four costs. A signifi-
cant reduction in cost C3 is observed during the ABC
algorithm.

• During the TOU winter tariff, the convergence curve
showed that the performance of both algorithms is bet-
ter in coordinated mode with 80 EVs. No significant
reduction in computational burden is observed. All sce-
narios showed more computational burden as compared
to the base case. TOU winter load scheduling results
for 80 EVs during autonomous and coordinated modes
are analyzed. Both algorithms performed better during
autonomous mode by reducing three costs such as C1,
C3, and C. Significant reduction in cost C3 is observed

during the ABC algorithm. During coordinated mode,
both algorithms performed better by reducing two costs,
such as the C2 and C3. Significant reductions in cost
C2 with PSO and ABC are observed. TOU winter
load scheduling results for 700 EVs during autonomous
and coordinated are analyzed. The ABC algorithm per-
formed better during autonomous mode by reducing all
four costs. PSO algorithm performed better by reducing
three costs such as C2, C3, and C. During coordinated
mode, both algorithms performed better by reducing all
four costs.

VIII. CONCLUSION
In this paper, the joint optimization modeling approach is
proposed for the planning and operation of grid-connected
residential MGs with the help of demand response programs
(DRPs). The constraints complexity of many smart residen-
tial appliances is included in the DRPs load shifting process.
Proposedmodel performance is investigatedwith andwithout
DRPs under summer and winter load data. MG planning and
operation optimization models are validated while comparing
different results with two algorithms, i.e., ABC and PSO.
Overall assessment of results showed that the proposed MG
planning and operation modeling approach can provide good
solutions while maximizing RERs and EVs integration with
the support of DRPs.
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