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ABSTRACT Semantic segmentation neural networks require pixel-level annotations in large quantities
to achieve a good performance. In the medical domain, such annotations are expensive because they are
time-consuming and require expert knowledge. Active learning optimizes the annotation effort by devising
strategies to select cases for labeling that are the most informative to the model. In this work, we propose
an uncertainty slice sampling (USS) strategy for the semantic segmentation of 3D medical volumes that
selects 2D image slices for annotation and we compare it with various other strategies. We demonstrate the
efficiency of USS on a CT liver segmentation task using multisite data. After five iterations, the training
data resulting from USS consisted of 2410 slices (4% of all slices in the data pool) compared to 8121 (13%),
8641 (14%), and 3730 (6%) slices for uncertainty volume (UVS), random volume (RVS), and random
slice (RSS) sampling, respectively. Despite being trained on the smallest amount of data, the model based on
the USS strategy evaluated on 234 test volumes significantly outperformed models trained according to the
UVS, RVS, and RSS strategies and achieved a mean Dice index of 0.964, a relative volume error of 4.2%,
a mean surface distance of 1.35mm, and a Hausdorff distance of 23.4mm. This was only slightly inferior
to 0.967, 3.8%, 1.18mm, and 22.9mm achieved by a model trained on all available data. Our robustness
analysis using the 5th percentile of Dice and the 95th percentile of the remaining metrics demonstrated that
USS not only resulted in the most robust model compared to other strategies, but also outperformed the
model trained on all data according to the 5th percentile of Dice (0.946 vs. 0.945) and the 95th percentile of
mean surface distance (1.92mm vs. 2.03mm).

INDEX TERMS Active learning, convolutional neural network, deep learning, segmentation, uncertainty
sampling.

I. INTRODUCTION
Semantic segmentation of medical images plays a key role
in many treatment planning workflows. In recent years,
segmentation algorithms utilizing deep neural networks
have provided state-of-the-art results for many segmentation
tasks [1]–[3]. Training such systems typically requires
large datasets with pixel-level annotations to achieve good
performance. In the medical domain, such annotations
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require expert knowledge and are time-consuming and thus
expensive to obtain. Althoughmany pre-trained segmentation
models are currently available, it is known that neural
networks underperform when applied to data coming from
different sites or imaging protocols [4], [5]. Therefore,
training on the annotated target data is recommended to
achieve optimal performance.

Various approaches have been developed to optimize
the annotation effort. Çiçek et al. [6] proposed a semi-
automated segmentation setup in which a user only needs to
annotate several image slices to obtain dense segmentation.
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O’Neil et al. [7] investigated the utility of crowdsourcing
from non-expert annotators for medical tasks and concluded
that an acceptable quality ground truth can be obtained given
a sufficient number of observers per scan. Cai et al. [8] pro-
posed a weakly supervised 3D segmentation approach, where
a CNN model is trained using dense annotations returned
by the GrabCut method initialized with RECIST strokes.
The CNN model was initially trained on 2D annotations,
and then propagated segmentation to neighboring slices in
an iterative manner. Bortsova et al. [9] presented a semi-
supervised learning approach that trains an FCNmodel using
unlabeled data by exploiting the fact that the segmentations
of deformed versions of the same image should be consistent.
Leveraging unlabeled data improved model performance
significantly when compared with a supervised learning
setting. Tajbakhsh et al. [10] investigated transfer learning in
this context and showed that pre-trained models fine-tuned
on a target domain are not only outperforming but are also
less sensitive to the size of the target training set than models
trained from scratch.

Active learning is a prominent technique that primarily
focuses on annotation effort optimization [11]. Its setup
consists of query strategies that select cases from a pool of
unlabeled examples for annotation and an oracle that provides
labels for the selected cases. Typically, the query strategies
aim to maximize the model performance while maintaining
a low annotation cost. The query strategies usually take the
model uncertainty [12], [13], sample representativeness [14],
or both of them [15], [16] into account to guide the
selection process. Smailagic et al. [16] proposed a strategy
for a classification problem that uses predictive entropy
to identify the most uncertain examples in a data pool.
Among these examples, those that maximize the distance
to the training set in a feature space, defined by the output
of one of the model layers, were selected. The addition
of the distance maximization criterion resulted in a 32%
reduction in the number of required labeled examples.
A similar approach to a segmentation task was demonstrated
by Yang et al. [15], where an ensemble was used to select
uncertain cases defined as those with the highest average
per-pixel output variance. Additionally, examples with the
highest representativeness according to the cosine similarity
distance based on descriptors obtained from the model were
selected for manual annotation. Models trained using this
approach achieved a state-of-the-art performance using only
50% of the training data. Wang et al. [12] introduced
cost-effective active learning for image classification, where
in addition to manually labeled uncertain cases, those
with high confidence were pseudo-labeled by the model
and added to the training set with no annotation effort.
Sinha et al. [17] proposed a variational adversarial query
strategy that employs a discriminator network to differentiate
between labeled and unlabeled examples. This approach
selects points that are not well represented in the labeled set
without the need for explicit uncertainty measurements on the
main task.

While most of the pool-based active learning research
focuses on uncertainty quantification and example represen-
tativeness, little attention has been paid to the incorporation
of partial annotations into the workflow. Partial annotations
are particularly relevant to semantic segmentation tasks
because they can result in a substantial reduction in the
annotation effort [6], especially when dealing with the
volumetric data. In this work, we propose an uncertainty slice
sampling (USS) query strategy to optimize the annotation
workflow of 3D medical images. Our strategy selects 2D
image slices for annotation from a pool of unlabeled 3D
volumes using predictive entropy as the uncertainty measure.
We see this as a way to increase the variability of the training
set without the need for explicit modelling of example
representativeness. We demonstrate the efficiency of our
strategy on a CT liver segmentation task using multisite
data. We analyze the proposed strategy together with several
alternatives: uncertainty volume sampling (UVS), random
volume sampling (RVS), and random slice sampling (RSS).
The primary goal of this study is to provide an extensive
comparative evaluation of the proposed USS query strategy.

II. METHODS
A. NEURAL NETWORK ARCHITECTURE
We used a 3D anisotropic u-net (au-net) architecture (see
Fig. 1), which is a modified version of the commonly used
encoder-decoder u-net segmentation network design [18].
The model works on five resolution levels. In the upper
two levels, convolutional layers work only along x and y
spatial dimensions and the remaining levels contain separable
3D convolutions to minimize the number of trainable
parameters. Each convolution layer is followed by a batch
normalization layer [19] and the ReLU activation function.
Max pooling (transposed 3D convolution) layers are used in
the encoder (decoder) for transitioning down (up) between
the resolution levels. A dropout layer [20] with a drop rate
p = 0.25 is placed at each resolution level in the decoder
path to prevent overfitting and facilitate Monte Carlo (MC)
sampling used for the uncertainty estimation.

B. DATA PREPROCESSING
For training, all CT volumes were rescaled into Hounsfield
units and resampled to a 1.0mm × 1.0mm × 1.5mm voxel
size.

C. UNCERTAINTY ESTIMATION
Several uncertainty estimation methods for segmentation
models have been proposed, including the volume varia-
tion coefficient [21], prediction variance [15], predictive
entropy [16], [21]–[23], and mutual information [22]. These
methods require multiple samples, which are typically
obtained from an ensemble or via MC dropout [24]. In our
work, we used the predictive entropy as, to the best of
our knowledge, it is one of the most frequently used
uncertainty measures and can be seen as a de facto standard.
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FIGURE 1. Anisotropic u-net (au-net) architecture. The model has 4 975
346 trainable parameters.

The predictive entropy for a voxel x is computed as follows:

U (x)=−
∑
c

(
1
n

∑
n

pn(y = c|x)

)
ln

(
1
n

∑
n

pn(y=c|x)

)
(1)

where c is the number of classes, n is the number of samples,
and pn(y = c|x) is the softmax probability of input x
belonging to class c in the nth sample. In our experiments,
we obtained n = 20 samples via MC dropout to capture
the epistemic uncertainty accounting for the uncertainty in
the model parameters [25]. We found 20 samples to make
a reasonable trade-off between the uncertainty resolution and
the computation speed.

Volume-level uncertainty Similar to [23], we used the
average voxel-wise predictive entropy as a measure of
uncertainty at the volume level. As CT volumes in our
dataset have a substantial slice count variability, computing
the average over all voxels would cause the volume-level
uncertainty scores for CTs with a small slice count (e.g.,
abdominal acquisitions) to be overestimated when compared
to volumes with a larger slice count (e.g., whole body
acquisitions). To account for this, we excluded voxels outside
of a dilated liver mask (11 × 11 × 11 box kernel) from the
computation.

Slice-level uncertainty is computed as the average of the
predictive entropy for all voxels belonging to a given slice.
As the slice size variability across our dataset is negligible,
there is no need to exclude any voxels from the computation
as in the case of volume-level uncertainty.

D. QUERY STRATEGIES
Query strategies select which samples from the unlabeled
data pool should be annotated and added to the training set.
In our study, we investigated two orthogonal dimensions of
query strategies: i) selection of 3D image volumes vs. 2D
image slices and ii) random vs. uncertainty-based sampling.
These dimensions define four sampling strategies that work
as follows.

Uncertainty Volume Sampling (UVS) selects volumes
with the largest volume-level uncertainty.

Random Volume Sampling (RVS) selects volumes at
random.

Uncertainty Slice Sampling (USS) selects slices with the
largest slice-level uncertainty from a set of slice candidates
coming from all volumes. The slice candidates of one volume
correspond to the local maxima of a slice-level uncertainty
profile (slice-level uncertainty vs. slice index curve, see
Fig. 2). To avoid selecting neighboring slices as candidates,
we require the minimum distance between the local maxima
to be at least five slices.

Random Slice Sampling (RSS) selects slices at random.

E. TRAINING SETUP
All models were trained with a mini-batch size of 2 using
180×180×4 image patches that were padded (reflect mode)
on each side with 92 voxels along x and y, and 20 voxels along
the z spatial dimension to account for valid convolutions. The
optimization was performed using the Adam optimizer with
a 10−5 learning rate. All models were applied to the validation
data every 1000 training steps and the best model according
to the Jaccard index was used for the final evaluation.
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FIGURE 2. Slice-level uncertainty profile of one volume. The red dots
correspond to slice candidates available to the uncertainty slice sampling
strategy.

The minimal slice-related output patch size of our model
along the z-dimension is four. For slice-sampling strate-
gies (USS and RSS), where single slices are annotated,
the loss needs to be computed only on labeled slices.
To enable this, we used a weighted version of the soft dice
loss [26]:

LDSC = 1−
2
∑

i wiyipi∑
i wiyi +

∑
i wipi

(2)

where yi is ith voxel label (1 - liver, 0 - background), pi is
the output probability of the liver class, wi is 1 for annotated
voxels and 0 otherwise, and i runs over all voxels in a mini-
batch.

Stratified patch sampling was employed to speed up the
training by ensuring that at least one patch in a mini-batch
contains liver pixels.

F. EVALUATION METRICS
We evaluated the segmentation quality with four commonly
used metrics: Dice index (DICE), relative volume error
(RVE), mean surface distance (MSD), andHausdorff distance
(HD) [27]. These metrics are defined as follows:

DICE(X ,Y ) =
2|X ∩ Y |
|X | + |Y |

(3)

RVE(X ,Y ) =
|VX − VY |

VY
· 100% (4)

MSD(X ,Y ) =
1

|SX | + |SY |

( ∑
x∈SX

min
y∈SY
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+

∑
y∈SY

min
x∈SX

d(x, y)
)

(5)

HD(X ,Y ) = max{ sup
x∈SX

inf
y∈SY

d(x, y), sup
y∈SY

inf
x∈SX

d(x, y)} (6)

where X and Y are sets of voxels belonging to the test and
reference object, respectively, SX is the set of surface voxels
ofX ,VX denotes the volume ofX , and d(x, y) is the Euclidean
distance between points x and y.

Evaluation results on the test set are reported using the
mean and the 5th and 95th percentiles. We used these
percentile-based measures to assess the impact of investi-
gated query strategies on models’ robustness.

FIGURE 3. Examples of excluded LiTS cases: (a) inconsistent annotations
- inferior vena cava included in the liver mask (b) poor segmentation
quality.

III. DATA
In this work, we simulated the active learning-based anno-
tation workflow by using abdominal CT volumes with
reference liver segmentations. To increase the statistical
power of our study, we decided to use five sets of imaging data
containing 484 CT volumes in total. Three of these datasets
are proprietary and were obtained via cooperation with
our clinical partners: Yokohama City University, Yokohama,
Japan (Yokohama), Städtisches Klinikum Dresden, Dres-
den, Germany (Dresden), and Radboud University Clinical
Center, Nijmegen, the Netherlands (Rumc). The remaining
two datasets (LiTS, CHAOS) come from publicly organized
challenges [3], [28]. Reference liver segmentations for the
proprietary data were created manually by experienced
clinical experts using dedicated annotation software [29]. The
challenge data comes with training liver masks that we used
as reference segmentations. We found 65 out of 131 LiTS
cases to have either a poor reference segmentation quality
or inconsistent annotations (e.g., inferior vena cava included
in the liver mask) with the rest of our data. We decided to
exclude these cases from our dataset, as training on such cases
could bias our study. See Fig. 3 for examples of excluded
LiTS cases.

The resulting combined dataset was divided into three
subsets containing 240, 10, and 234 cases that were used as
data pool, validation set, and test set, respectively. The reader
is referred to Tab. 1 for more details.

IV. EXPERIMENTS
Our goal was to compare the investigated query strategies by
keeping the required annotation time at a comparable level.
We made the following assumptions on the annotation time.

1) The annotation time required for a slice without a liver
is negligible in comparison to the time needed for
a slice with a liver.

2) The time required for the annotation of N slices with
a liver coming from the same volume allows for the
annotation of approximately N/3 slices with a liver
from different volumes.

The second assumption was derived empirically from our
observations that for a segmentation of one volume one needs
to manually draw contours on average on every third slice
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TABLE 1. Dataset details.

when using modern segmentation tools with interpolation
functionality.

A. QUERY STRATEGY COMPARISON
To evaluate the efficiency of the query strategies, we per-
formed five active learning iterations and compared the
models after each iteration. A model trained on five fully
annotated cases was used as the initial model. In each
iteration, we trained a model from scratch and used the best
model according to the validation score for the evaluation
and uncertainty estimation. All models were trained for
a maximum of 30 epochs to guarantee that the model training
and selection of cases for annotation could be performed
overnight.

For the volume sampling strategies (UVS and RVS),
we added five volumes to the training set in each iteration.
We denote the average count of liver slices added in eachUVS
iteration by Ñ liver

S . Based on our assumption on the annotation
process, in the USS strategy we addedNS = Ñ liver

S /3 slices in
each iteration, whereas in the RSS we sampled random slices
until NS liver slices were selected.

B. CONVERGED MODELS COMPARISON
To evaluate the representativeness of the training sets
obtained with the investigated query strategies after five
active learning iterations, we compared the models trained
on these training sets until convergence. This was motivated
by the fact that 30 epochs were not sufficient for somemodels
to converge.

V. RESULTS
A. ANNOTATION EFFORT
The initial model was trained using five fully annotated
volumes, accounting for 1410 (501) annotated slices (liver
slices). On average, 1342 (576) and 1446 (558) slices were
annotated in each UVS and RVS iteration, respectively. In the
USS and RSS iterations, we sampled NS = 200 (576/3 ≈
200) slices. Consequently, in the 5th and final iteration, the
models were trained using 13% (13%), 14% (12%), 4% (5%),
and 6% (6%) of all slices (liver slices) available in the data
pool for the UVS, RVS, USS, and RSS strategy, respectively.
Further details can be found in Tab. 2.

B. QUERY STRATEGY COMPARISON
For all strategies, an overall improvement in all segmentation
metrics was observed over the course of the active learning

TABLE 2. Training data summary (annotated slices / annotated liver
slices / unique patients) over the course of five active learning iterations
for each investigated query strategy.

TABLE 3. Training step counts for models used for evaluation of four
investigated query strategies over five active learning iterations. For
reference, data for the initial and data pool models are given.

iterations (see Fig. 4). The mean performance metrics of the
initial model were 0.925, 7.87%, 2.94mm, and 36.3mm for
DICE, RVE, MSD, and HD, respectively. The mean perfor-
mance metrics of the models resulting from the fifth (last)
iteration of the investigated query strategies were in the
ranges of [0.956, 0.960], [3.98, 6.04]%, [1.4, 1.73]mm, and
[25.6, 28.6]mm for DICE, RVE, MSD, and HD, respectively
(see Tab. 4-7). The model obtained from the last iteration of
the USS strategy was significantly better (Wilcoxon signed-
rank test) than the models resulting from the remaining
strategies. When considering the segmentation metrics for
all five iterations, the USS strategy resulted in the best-
performingmodelmost of the time. Interestingly, this strategy
produced the worst model according to all metrics in the
first iteration, even failing to improve the performance of the
initial model for RVE and HD. None of the models trained
with 4%-14% of the data was able to match the results of the
model trained on thewhole data pool that achieved on average
the values of 0.967, 3.8%, 1.18mm and 22.9mm for DICE,
RVE, MSD and HD, respectively.

For volume sampling strategies, no clear difference
between uncertainty-based and random sampling was
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FIGURE 4. Box plots summarizing evaluation results for models trained throughout five active learning iterations. For reference, results of the initial
and whole data pool models are included. Lower (upper) caps correspond to the 5th (95th) percentile.

FIGURE 5. Sample slices selected in the first USS iteration with overlaid liver reference segmentation (green contour) and model liver probability
output (heatmap): (a)-(c) slices with the biggest slice level uncertainty, (d) slice with the lowest uncertainty among selected ones.

observed. In the case of slice sampling strategies, the
uncertainty-based sampling resulted in an improvement in
all the metrics (excluding the first iteration).

C. CONVERGED MODELS COMPARISON
Training until convergence using data resulting from the
fifth active learning iteration resulted in an improvement
in all the segmentation metrics for all the query strategies,
with the exception of the RVE metric for the USS strategy
(see Tab. 8 and Fig. 7). The model trained on data resulting

from the RSS strategy required the longest training time
(465 000 training steps) among the models trained using the
investigated query strategies, whereas the USS model needed
the shortest (291 000). For reference, the model trained on the
whole data pool needed 825 000 steps until convergence (see
Tab. 3 for more details). Among the investigated strategies,
the USS model had the best performance when compared
to the other models, with most of the differences being
significant. None of the models achieved comparable results
to the whole data pool model, but we observed that the USS
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FIGURE 6. Representative examples presenting segmentation output of the converged models and the model trained on the
whole data pool.

model resulted in more robust segmentations than the whole
data pool model with respect to the 5th percentile for DICE
and the 95th percentile for the MSD and HD metrics.
To quantify an impact of uncertainty-based vs. ran-

dom sampling and slice vs. volume sampling on the 5th

percentile of DICE and 95th percentile of the remaining

metrics, we performed quantile regression analysis using
the evaluation results of the converged models (Tab. 9). The
uncertainty sampling resulted in a significant improvement
over the random sampling expressed by an increase in the
5th percentile of DICE by 0.012 and a decrease in the 95th

percentile of MSD by 0.41. Similarly, changing from the
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FIGURE 7. Box plots summarizing evaluation results for models trained for maximum of 30 epochs (left) and until convergence (right)
using data from the fifth iteration. For reference, results of the whole data pool model are included. Lower (upper) caps correspond to the
5th (95th) percentile.

TABLE 4. DICE for models trained using the investigated query strategies over five active learning iterations. Reported values represent mean and 5th to
95th percentiles (in the parentheses).

TABLE 5. RVE for models trained using the investigated query strategies over five active learning iterations. Reported values represent mean and 5th to
95th percentiles (in the parentheses).

TABLE 6. MSD for models trained using the investigated query strategies over five active learning iterations. Reported values represent mean and 5th to
95th percentiles (in the parentheses).
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TABLE 7. HD for models trained using the investigated query strategies over five active learning iterations. Reported values represent mean and 5th to
95th percentiles (in the parentheses).

TABLE 8. Evaluation results for the converged models. Reported values represent mean and 5th to 95th percentiles (in the parentheses).

TABLE 9. Quantile regression results quantifying an impact of uncertainty vs. random sampling and slice vs. volume sampling on the 5th percentile of
DICE and the 95th percentile of RVE, MSD, and HD. This analysis was done using the evaluation results of the converged models.

volume to slice sampling resulted in an increase in the 5th

percentile DICE by 0.012 and a decrease in the 95th percentile
of MSD by 0.48. The effect on the remaining metrics
did not pass the significance test (95% confidence interval
included 0).

VI. CONCLUSION AND DISCUSSION
In this work, we proposed an uncertainty slice sam-
pling (USS) strategy in the context of pool-based active
learning. Our strategy selects 2D image slices from a pool of
3D volumes using aggregated voxel-wise predictive entropy
as the uncertainty measure. We evaluated the proposed
strategy on a CT liver segmentation task and compared it with
random slice sampling (RSS), uncertainty volume sampling
(UVS), and random volume sampling (RVS) strategies. The
model trained by using the USS data (4% of the available
data) achieved significantly better results than the models
resulting from the remaining strategies. Although after five
active learning iterations the USS model was performance-
wise inferior in mean performance to the model trained on
all the available data, it provided a more robust segmentation
output as measured by the 5th percentile of DICE and the
95th percentile of MSD. We hypothesize that this can be
attributed to the differences in the training set composition.

The training set resulting from the USS contains a larger
proportion of difficult and rare cases compared to the whole
data-pool training set, which effectively makes the model
see them more frequently during the training process. Fig. 6
shows sample outputs of the investigated models including
two hard cases from the test set: a polycystic (Fig. 6a) and
a resected (Fig. 6b) liver. We think that the robustness of the
whole data pool model could be increased by employing hard
example mining during training to dynamically adjust the
sampling rate of difficult examples [30], [31].

Selecting only uncertain cases in the course of active
learning can overload the model with difficult examples
causing a performance drop. This was observed for the USS
strategy after the first iteration when the model performed
substantially worse than its random counterpart (see Fig. 4).

The uncertainty information made a substantial contribu-
tion to the USS model performance. The model resulting
from the RSS strategy, which selects slices at random, was
inferior to the USS model in all but the initial iteration.
Moreover, in the comparison of the converged models,
the RSS model had the worst performance among all the
investigated strategies. For the volume-level query strategies,
we did not observe clear differences in results between UVS
and RVS. A possible explanation for this is the uncertainty
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captured at the volume level that provides a low signal-to-
noise ratio if a model makes only small local errors and
produces accurate segmentations. We think that this was
the case, as according to the DICE metric, which describes
the global level segmentation quality, the initial model
provided mostly correct outputs (0.925 average DICE). The
final converged models managed to improve this metric
by only ∼4%.

Because our proposed strategy relies on the model’s
uncertainty to query cases, the confidence calibration of
a model can have a substantial impact on which cases
are deemed uncertain. Recently, it has been shown that
modern deep neural networks do not output well-calibrated
probabilities and tend to be overconfident [32]. In our work,
we used MC dropout to improve the calibration quality of
models trained with the Dice loss [23]. Sample probability
maps produced by our model are shown in Fig. 5. We think
that an investigation of various calibration techniques, e.g.,
deep ensembles and temperature scaling, in the context
of active learning could be an interesting future research
direction.

In our study, we focused on a detailed investigation of
the proposed query strategy, and we did not intend to
achieve state-of-the-art results on the CT liver segmentation
task. We are aware that in addition to using more training
data, increasing the model capacity or changing its archi-
tecture could further boost the segmentation performance.
Examining the impact of various neural network designs
on the efficiency of our proposed query strategy would,
in our opinion, lead to a compelling experiment. Moreover,
we think that an investigation of active learning along
with AutoML frameworks such as nnU-net [33], which
make state-of-the-art segmentation accessible to people
without ML expertise, would be an interesting extension of
our work.

LimitationsOur conclusions are based on the assumptions
on the annotation effort derived from our experience of
annotation workflows. These assumptions might not hold for
some annotators or if different labeling tools are used.
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