IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 9, 2021, accepted December 30, 2021, date of publication January 6, 2022, date of current version January 13, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3140720

Density Evolution for Noise Propagation Analysis

in Biological Networks

STEPHEN KOTIANG ", (Member, IEEE), AND ALI ESLAMI", (Member, IEEE)

Department of Electrical and Computer Engineering, Wichita State University, Wichita, KS 67260, USA

Corresponding author: Ali Eslami (ali.eslami @wichita.edu)

This work was supported in part by the National Aeronautics and Space Administration (NASA) under Award SONSSC20M0133.

ABSTRACT Accurate prediction of noise propagation in biological networks is key to understanding faithful
signal propagation in gene networks as well as for designing noise-tolerant synthetic gene circuits. Knowl-
edge on how biological fluctuations propagate up the development ladder of biological systems is currently
lacking. Similarly, little research effort has been devoted to the analysis of error propagation in biological
networks. To capture and characterize error evolution, this paper considers a Boolean network (BN) model
representation of a biological network such that nodes on the graph represent diverse biological entities, e.g.,
proteins, genes, messenger-RNAs, etc. In addition, the network edges capture the interactions between nodes.
By conducting a density evolution analysis on the graphical model based on node functionalities, a recursive
closed-form expression for error propagation is derived. Subsequently, the recursive equation allows us to
obtain a necessary condition to guarantee noise-error elimination in dynamic discrete gene networks. Our
analytical formulations provide a step toward achieving optimal network parameters for resilience against
variability or noise in biology.

INDEX TERMS Boolean networks, density evolution, error propagation, factor graph, gene regulatory

networks.

I. INTRODUCTION

The execution of biological functions relies on faithful signal
propagation from one gene to another. The execution process
may be hindered by biological fluctuations that introduce
noise or variability in gene expressions. In the literature,
noise is considered a fundamental, inherent aspect of gene
expression, having a diverse functional role in biological pro-
cesses [1]. This noise can emanate from either environmental
or biological fluctuations due to small changes in external
stimuli such as pH changes, mutagens, heat stress, etc. [2].
According to Wang and Zhang [3], variability or randomness
in gene expression more often presents a hindrance to proper
biological functions such as decision-making, development,
spatiotemporal population dynamics, and reaching optimal
fitness. In addition, it poses entropy-increasing effects of
limiting signal fidelity, robustness, and channel capacity of
signaling relays. For example, in genomic signal processing,
genetic switches that control cellular decisions can flip under
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fluctuations that bring the biological system close to the
threshold for a phase transition [1].

Despite the hindrances introduced by gene expression vari-
ation, studies indicate that fluctuations can be biologically
meaningful [1], [4]-[6]. Variability plays an important role
in natural resistance to harmful chemicals [5], and has been
found useful for balancing precision and diversity in eukary-
otic gene expression [6]. In addition, stochasticity in biology
becomes a benefit when it is used to generate novelty at higher
levels of organization [4], [7].

The majority of studies on biological noise are concerned
mainly with elucidating sources of gene expression noise [2],
understanding mechanisms and effects of expression varia-
tions in biological systems [8]-[13], and characterizing noise
properties using small-noise approximations [14], [15]. How-
ever, little research emphasis has been placed on the study
and quantification of noise propagation in biological sys-
tems. Noise propagation is considered important in assessing
the information capacity of a regulatory interaction, i.e., the
number of distinct stable states of a target gene expression
level that can be achieved by varying the concentration of a
transcription factor [16]. Knowledge of noise propagation can
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enable us to develop strategies that enhance the performance
of downstream cascades in many biological applications. For
instance, to engineer predictable behavior through synthetic
gene networks, one must develop reliable means for con-
necting smaller functional artificial gene circuits to realize
predictable high-order networks.

Pedraza and van Oudenaarden [17] quantified how noise
propagates in gene networks by measuring expression cor-
relations between genes in single cells. They considered
a simple synthetic gene network consisting of only four
genes. Their approach provides a step toward understand-
ing noise propagation; however, no rigorous analysis or
how the method can be extended into more complex bio-
logical networks is provided. In another work, Arola-
Fernandez et al. [18], applied error propagation to estimate
uncertainty in the critical threshold for some dynamical pro-
cesses in complex networks with noisy links. In their work,
they considered network noise resulting from experimental
errors such as device accuracy, sampling biases, or data entry.
However, they did not analyze errors emanating from gene
expression variations.

In biological networks, feedback loops are common and
are known to have a critical role in cellular signaling [19],
[20]. Zhang et al. [19] employed frequency domain analy-
sis [20], [21] to investigate the role of feedback loops in
sensitivity and noise amplification on the dynamical behav-
ior of a biological system. They observed that interlinked
positive and negative feedback loops dynamically tune noise
propagation signals rather than monotonically suppressing or
amplifying them, as would be expected in single feedback
loops. However, their biochemical and kinetic network model
demands more knowledge, namely kinetics of individual pro-
cesses as well as deduction of signal sensitivity and noise-
amplification parameters. Information on kinetic parameters
can be extracted from the literature; however, this is difficult
to find [22].

In this paper, we study and quantify noise propagation
in regulatory networks of gene interactions by applying a
messages-passing algorithm that evolves network states. For
analytical purposes, we consider noise to introduce errors
randomly on the state of nodes in the network. We explore
Boolean network (BN) model representation of biological
networks where nodes represent biological entities such as
proteins, mRNAs, genes, etc., and the edges represent the
types of interaction, either inhibiting or activating, between
nodes [23], [24]. BNs are simple and have proven to effec-
tively and qualitatively explain some fundamental charac-
teristics, e.g., steady-state behavior, of biological networks.
To analyze error propagation in a gene network, we transform
the BN model into an equivalent factor graph or bipartite
graph following the formulation introduced in [25]. Subse-
quently, we apply a message-passing algorithm as an infer-
ence technique to the factor graph model, where messages
represent the states of the nodes plus the error function in the
network.
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The factor graph representation is convenient and is known
for its many applications in probability theory, systems biol-
ogy, cyber-physical systems, coding theory, and complex
networks [25]-[28]. In systems biology, the factor graph
representation has been successfully employed to predict
the impact of single gene deletions on the global dynamic
behavior of gene regulatory networks (GRNs) [25], refine
regulatory networks of gene interactions with improved fit
to experimental data and discover new regulatory relation-
ships [27], optimize gene regulation functions [29], and even
characterize the steady-state behavior of Bayesian gene net-
works [30]. We employ the concept of density evolution (DE)
used in the performance analysis of factor graphs [25], [26]
to characterize error propagation in biological networks after
an initial disturbance. The resultant closed-form recursive
formula derived is referred to as the “density evolution equa-
tion.” Based on the DE equation, we derive a necessary con-
dition for network parameters to guarantee vanishing errors
or optimize the design of a biological system for high signal
fidelity.

In [25], we introduced density evolution as a proof of
concept in the analysis of error propagation in biological
networks. We considered the activation-inhibition Boolean
functions that encode majority voting rule to determine the
next state of a node in the network. The majority rule is
simple; however, it is less likely used in many biological
models that often rely on complex logical rules to account
for biological processes such as cooperative effects, selective
inhibitions, and dual interactions [23], [31].

The rest of this paper is organized as follows: In section II,
we briefly review background material regarding the use
of factor graphs, message passing, and density evolution in
graphical models. Then, Section II-C starts the error propa-
gation analysis by applying density evolution to gene regu-
latory networks. Section III is devoted to discussion, results,
and performance analysis. Finally Section IV concludes the

paper.

Il. MODEL AND METHODS

In this section, we provide background information on fac-
tor graphs and the message-passing inference algorithm,
which is required to understand the analysis described here.
We explain the general message-passing technique, followed
by a brief description of density evolution analysis employed
on factor graphs. Then, we introduce DE in the analysis of
GRNE.

A. FACTOR GRAPHS AND MESSAGE-PASSING ALGORITHM
In general, a factor graph for variables xi, - - - , x, and func-
tions f1, - - - , fx could be defined as a bipartite graph associ-
ating a set of nodes known as variable nodes corresponding
to the variables, and a set of control nodes corresponding to
the functions [32]. Each control node depends on a subset of
variable nodes, i.e., an edge exists between variable node x;
and control node fi, if and only if x; is an argument of f. The
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FIGURE 1. Factor graph for joint distribution product
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joint distribution function over the variables is given by

) = [ [ (ke e))

keK

p(_x]’

where K is a discrete index set, C, is the index set of variables
that are connected to the function f;, and xc, denotes this set
of variables. Also, we refer to each control f; (xck) in (1)
as a local function. Fig. 1 shows an example of a function
p(x1, x2, x3, X4) on a bipartite graph that can be obtained as
the product of fi (x1)f2(x1, X2, x4)f3(x1, x3)f4(x2, X4).

Factor graphs encompass many graphical models includ-
ing Markov random fields [33], Bayesian networks [34],
and Tanner graphs [28], [35]. It is plausible that many
algorithms and mathematical models in these fields are
naturally expressed in terms of factor graphs. One such
algorithm is the sum-product algorithm, also known as
belief -propagation [32], which operates in a factor graph by
passing “‘messages” along edges of the graph, following a
single, simple computational rule.

In many circumstances, we seek to compute the posterior
distributions, also referred to as marginal functions, p;(x;), for
more than one value of i. In the sum-product message-passing
algorithm, it is worth noting that there is no fixed parent/child
relationship among neighboring nodes. As such, each two
neighboring nodes are regarded as a parent of the other at
some point. The computation of p;(x;) begins at the leaves
(i.e., nodes without descendants) of a factor graph. Each
leaf control node and each leaf variable node send “belief”
messages to their parent nodes. A control node f with parent
x computes the product of all received messages from its
children and then operates on the result with a summary
operator Z~{x} over all its variables except x to send its
belief. On the other hand, a variable node x simply sends the
product of all received messages as its belief.

To obtain a mathematical expression for the belief-
propagation, let n(v) denote a set of all neighbors of a node
V, Mx—sf(x) represent a message sent from node x to f, and
let puf—x(x) denote the message sent from control node f
to variable node x. Therefore, as illustrated in Fig. 2, the
message computations are expressed as follows [32]:

posr@ = [ a0, )
ken(\{f}

uqum:Z(f(xc) I1 M_Hf@)), 3)
~{x} yen(f\{x}
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FIGURE 2. Factor-graph fragment depicting update rules of sum-product
message-passing algorithm.

TABLE 1. Symbols used in the model and analysis.

Symbol Description

Mo f(x)  message sent from variable node x to control node f
ifo(x)  message sent from control node f to variable node x
Ta logical combination of activators

Ty logical combination of repressors

[ probability of error on node x

€] average propagated error in [-th iteration

ko (kr) number of activating (inhibiting) edges into node

Pij fraction of edges incident to control node with degree

1 activators and degree j repressors

where x¢c = n(f) is the set of arguments of the function f.
Table 1 lists a summary of symbols and their definitions as
used in this article.

Considering p(x3) in Fig. 1 as an example, p(x3) can be
obtained as follows:

P(x3) = x5 (X3), “4)
where
1fyoxy(X3) = Y f3 (X1, X3) g p(X3), )
{x1}
and
My —f(03) = Uf—x (X1) Uy (X1). (6)

At the end of each message-passing cycle, a variable node
updates according to the rule given in (2), while the update
rule at a local function node is given in (3). This iterative
process continues until convergence, i.e., when no significant
difference in belief update occurs. Then the algorithm termi-
nates, and we compute p;(x;) as the product of all messages
directed toward x;.

B. DENSITY EVOLUTION ON FACTOR GRAPHS

In the literature, density evolution refers to tracking the
probability density function (pdf) of error messages between
variable nodes and control nodes with the aim of studying the
behavior and performance of a factor graph model [28], [36].
As an illustrative example, consider the factor graph shown
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FIGURE 3. Message-passing in factor graph with erroneous messages.
#(.) represents probability of error message from variable to control node,
whereas y(.) denotes probability of error message from control to
variable node.

in Fig. 3 having a modulo 2 check-sum control node func-
tionality on the values of its neighboring variable nodes to
zero. A belief-propagation algorithm is applied to the graph,
where the messages passed between the variable and control
nodes are defined as log-likelihood ratios of probabilities that
a given state is ‘0’ or ‘1’. Let ¢; denote the probability of an
error message from a variable node to a control node, and let
y; represent the probability of an error from a control node
to a variable node, both in the [-th iteration of a message-
passing algorithm. Thus, conditioned on the event that the
control node has degree d, we have y; = 1—(1—¢;)¢~! under
the assumption of independence [28]. Of note, the degree of a
node in the factor graph denotes the number of edges incident
to the node.

To obtain a closed-form expression for the total error prob-
ability in the graph, from control nodes to variable nodes,
we define a generating function p(z) = Y, ,odzd_l, which
represents the control node degree distribution, where py is
the fraction of nodes with degree d. Hence, we obtain the
following: y; = 1 — p(1 — ¢;). For this example, we assume
that a variable node performs no computation on the received
messages but simply sends back the received messages on
each edge. Then, for the next iteration, ¢;41 = y;. Hence,
we can write the closed form recursive expression for the
graph as ¢;41 =1 — p(1 — ¢y).

In [25], we hypothesized that density evolution can be
employed to provide an exact analytic characterization of the
impact of random network perturbation on the steady-state
behavior of a biological network. Additionally, DE analy-
sis has also been employed in other research fields such
as multi-layered complex networks and coding theory. The
authors in [26] used DE analysis to study the dynamics of
failure propagation and healing in networked cyber-physical
systems. Likewise, in [28], density evolution was employed
to track the density of erasure messages in order to analyze the
performance of a decoding algorithm for low-density parity-
check codes.

C. DENSITY EVOLUTION ANALYSIS OF GRNs

This section presents a Boolean network model and its equiv-
alent factor graph model in biological systems. Given an
initial disturbance due to noise in the system, we then derive a
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FIGURE 4. (a) Simple directed gene graph, and (b) equivalent undirected
factor graph representation of (a). Red blunt edges in (a) and black
dashed edges in (b) indicate inhibition links, whereas black arrowheads
represent activation interactions.

recursive DE equation that numerically characterizes network
parameters for resiliency and robustness against network dis-
turbance.

1) NETWORK MODEL

For our analysis, let us consider a Boolean gene regulatory
graph defined by a set of n binary-valued nodes {xi, - - - , x,,}
representing biological entities, and a list of Boolean func-
tions {f1, - - - , f} denoting the rules of regulatory interaction
between the nodes (i.e., genes). Each x; € {0, 1}, where
i =1,---,n has k; nodes assigned to it, which completely
determines its value at time 7 4 1 following f;, that is,

5+ 1) = fi(xn 0,520, ®), (D)

where {il,--- ,ik;} is the index set of variables that are
connected to node x;. The state of x; denotes the expression
of the gene, where x; = 1 indicates that the gene is active
(expressed), and x; = 0 means the gene is inactive. Here,
we assume all genes update synchronously in accordance
with the f;’s assigned to them, and the process is repeated
iteratively in time. In addition, in this paper, we consider
the activation-inhibition Boolean functions proposed in the
literature [23], [31] that encode complex biological rules or
processes such as the cooperative effect of the interacting
genes of the form x(t + 1) = (xal(t) V xg(t) Vv ) A
- (xrl(t)V)crg(t)v- .- ), where x,1, x42, - - - are activators, and
Xr1,Xr2, - - - are inhibitors or repressors acting on the node.
The logical operators {V, A, and —} bear the usual meanings.
An example of a gene network with three genes and its
equivalent bipartite graph is shown in Fig. 4. The state of a
gene x; at time ¢ + 1, for instance, x> (t +1) = /> (xl(t), x3(1) ),
is given by x1(¢) A — x3(1).

In this work, to evolve network states on the factor graph,
a control node receives input from its neighboring variable
nodes, computes an output according to (7), and passes it
to its corresponding variable node. In the subsequent iter-
ation, a variable node simply sends its current state to its
neighboring control nodes, i.e., a variable node performs no
computation on its received message. The network states
evolve iteratively until a stable state is attained.

VOLUME 10, 2022
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FIGURE 5. Factor graph with initial disturbance error probability ¢. Genes
x; and x, activate gene x, whereas genes x5 and x, inhibit gene x.
Dashed edges denote inhibition interactions.

TABLE 2. Boolean truth tables for implementing logical cooperative rule
in (8).

Activation Repression
1 T2 | Ta T3 T4 7
0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 0

Cooperative Effect

Tq Tr Tag N\ Tr
0 0 0
0 1 0
1 0 0
1 1 1

2) ERROR ANALYSIS

Consider a portion of a factor graph with five variable nodes,
as shown in Fig. 5. Nodes x| and x; activate node x, whereas
nodes x3 and x4 repress x. We have implemented a log-
ical cooperative effect at the control nodes following the
activation-inhibition function proposed in [23]. The next state
of node x is given by the formulation

X =(x1Vx) A —(x3Vxg), (8)
—_—— —_———
Xq X

where x, (x,) is the logical combination of all activa-
tors (repressors) regulating a node, respectively. Therefore,
Xx = x4 AXr. Each node in the graph is initially disturbed with
a small probability €, where € < 1, independently from other
nodes. We assume that € is sufficient enough to change the
state of a node. Let €, denote the event that there is an error on
node x due to random error from its regulators. To study the
overall error propagation in the biological network, we repre-
sent the logical cooperative effect using truth tables, as shown
in Table 2.

Furthermore, let ¢; represent the propagated error in the
[-th iteration of message passing. We may look at the evolu-
tion within one (any) iteration, and see how the disturbance
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probability changes for the gene nodes. If this probability
increases at the end of each iteration, then a cascade will
occur. However, if it decreases, then the effect of disturbance
is minimized. Let us consider the /-th iteration on node x in
Fig. 5. Using the cooperative effect truth table in Table 2,
we can represent the probability of error in node x as

€; = Pr(ex|x, =0,x, =0) - Pr(x, =0, x, =0) (9a)
+Pr(exlxs = 1,x, =0)-Pr(x, = 1,x, =0)  (9b)
+ Pr(ex|x, =0,x, =1)-Pr(x, =0,x, = 1) (9¢)
+Priexlxs =1,x, =1)-Pr(xga = 1,x, = 1). (9d)

We obtained (9) by considering the probability of having an
error on node x, i.e., €, given the input states, x, and x,.
Assuming that we are at the beginning of the /-th iteration,
we describe this error in terms of the (I — 1)-th iteration, i.e.,
€; = f(€;—1). The detailed derivation to solve (9) is shown in
the Appendix. It yields

1
€ = 27{ ki (2"a - 1) - [(2"a+1 - 1) (1= e_p)ka

— 3.2k 4 gk y 1] 2= 2e-1)"
_ (2kr _ 1) [1 — (1 —gla — 2k +4ka]

x [ = e - 1]} (10)

where k, (k,) denotes the cardinality of activating (inhibiting)
edges of a node, respectively. In addition, k; = k, + k, is the
discrete index set referred to as the degree of a node x;.

To account for the average error probability in the network,
we employ polynomials that represent the degree distribu-
tions of the networks in terms of activation and inhibition as
follows:

plu,v) =) pyu'V, (1D

i,j=0

where p;; is the fraction of edges incident to a control node
with degree i activators (#) and degree j repressors (v), con-
strained to Zi,jzo p; = 1. The polynomial representation
allows us to model random networks with arbitrary degree
distributions such as biological networks. Of note, p(u, v) is
obtained from the topology of the network. Therefore, given
a biological network with control node degree distribution
p(u,v) and experiencing a perturbation, the average error
probability of the network can be obtained as

o= I ) [e)
x (1 — ke — 3.2k 4 gk 1] (2 —2e_ )"

- (2"r - 1) [1 — (1 —g_y)ka —2ka 4 4"&]
x [(1 ) — 1]} (12)
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Equation (12) represents the recursive DE equation for the
cooperative effect biological model in (8). After an initial
perturbation occurs in the network, error messages appear in
the network. It is expected that the impact of disturbance in
the network diminishes if and only if ¢, — 0 as [ — oo.
Once the recursive equation of density evolution is
obtained for the network, it can be used to gain useful insights
into the structure of biological networks and allow us to
quantify network parameters in designing models for reverse
engineering gene networks from gene-expression profiles.
Consider the recursive DE equation (12). By taking the Taylor
series from the right-hand side of (12) at ¢;_; = 0, we obtain

€1 = Buvei—1 + O ), (13)

where

3 3 5 57 7
Buy = | 700+ 701+ 5P+ 55l T gpzo

4 4 8 128
7 163 45 129
+ 0, + gpzz + ﬁp23 + apso + @,031
241 45
+ﬁp32 + 6_4p33i| (14)

In this series expansion, we have computed ¢; for every
{ks, k,} = {0, - - -, 3}. Here, we limit the maximum value of
{kq, k-} = 3. Similarly, in most gene network reconstruction
tools and algorithms proposed in the literature, researchers
limit the size of each node’s parents. This is done to reduce
the computational complexity required to search all combi-
nations of parents [37]-[39]. For vanishing errors, i.e., € to
be less than €;_1, we conclude from (13) that

Buv€i—1 < €1-1. (15)

Inequality (15) holds for every [ if it holds for / = 1. There-
fore, the necessary condition becomes B, , < 1. From (14),
we note that p,, and p,, are the dominant factors having
coefficients > 1 . Also, factors p,,, py,, and p,, are absent;
thus, we hypothesize that nodes with only inhibiting regula-
tors have less significance in cascading errors in biological
systems.

Ill. DISCUSSION AND RESULTS

In this section, we provide a quantitative evaluation of the
proposed error propagation model in MATLAB environment.
We evaluate the density evolution equation (12) and the
inequality B,, < 1, and then provide a computational com-
plexity analysis of the propagation model.

A. NUMERICAL EVALUATIONS

First, we evaluate (12) for a sample random Boolean network
with parameter value 8, , = 0.6651, where the maximum
k, and k, value is 3. We exemplify a random network with
random py , values such that 213% k>0 Prar, = 1, Tesulting
in a B, value of 0.6651 following (14). In Fig. 6, we show
the total propagated error for different numbers of iterations,
1. At the end of the first iteration, the average propagated error
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FIGURE 6. Propagated error in biological network with gy v = 0.6651 in
different iterations w.r.t. the initial disturbance. As /| — oo, the evolved
error vanishes in gy,y < 1.

0.25

«+eeo- Yeast cell-cycle: 3, = 0.6989
—e— Random network: S, , = 0.5451
== p(u,v) = 0.4u?v + 0.6u’v 4
plu,v) = 0.9uv + 0.1uv?
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FIGURE 7. Probability of error for networks with different polynomial
degree distributions, i.e., fy,v values (shown in the plot) versus the
number of iterations, / — cc. Initial disturbance ¢; = 0.25. Networks
o(u,v) =0.9u3v + 0.1u3v2 and p(u, v) = 0.4u?v + 0.6u3v both have
Bu,v > 1.

on any particular node decreases, and so €; < ¢€;_1 if and only
if v < 1.

Similar to observations made in decoding algorithms for
codes on graph, the network or graph structure plays an
important role in the propagation of errors or noise in genetic
graphs as depicted in Fig. 7. In Fig. 7, the plots show the
quantity of error propagated in sample Boolean gene graphs,
such as the budding yeast cell-cycle network model presented
by Li et al. [40], a random network with B,, = 0.5451,
and two theoretical networks represented using polynomial
degree distributions given by p(u, v) = 0.9’y + 0.1u3v?
and p(u,v) = 0.4u%v + 0.61%v, both of which guarantee
that B,, > 1. Moreover, the yeast logical network [40]
considered has the following polynomial degree distribution
according to (11):

o, v) = 0.0345u + 0.1379uv + 0.1034uw” + 0.1379uv’
+0.1379u” 4 0.1034u%v + 0.3448u>V>.  (16)

VOLUME 10, 2022



S. Kotiang, A. Eslami: Density Evolution for Noise Propagation Analysis in Biological Networks

IEEE Access

The polynomial degree distribution (16) yields B,, =
0.6989, which implies that the network may be resilient
against random state disturbances. As can be seen in Fig. 7,
for networks with B,, < 1, an error introduced due to a
network disturbance vanishes as [ — 00, in accordance with
the inequality (15). In addition, a violation of this inequal-
ity is such that ¢, 4 0 . For instance, the two networks
evaluated in Fig. 7 with dominant p,, and p,, factors are
such that 8, , > 1; thus, their corresponding line plots do not
converge to zero. If the error vanishes, then we may deduce
that the initial states of the network are reset, and therefore,
the steady-state distribution of the network remains invariant.
Conversely, a non-zero error indicates that the initial pertur-
bation throws the network out of its steady-state condition,
which is consistent with several theoretical and experimental
studies [10], [20]. That is, gene expression noise can create
new stable states or destabilize existing ones [11]-[13].

Of note, in [40], the authors observed that the yeast logical
network has an observable large stable state, thus making it
robust against network perturbations. Our results highlight
the importance of degree distribution restrictions on genetic
graphs that will be necessary for understanding signal fidelity
in natural networks as well as in the design of noise-tolerant
artificial gene circuits. This observation supports conclusions
made in the literature that the topology of a genetic graph
does not only determine its information-procession capability
but also encodes its sensitivity to noise [10], [20]. In simple
terms, network topology provides a means to locally tune
noise propagation.

Here, we have assumed that the error introduced into the
network is sufficient to change the state of nodes randomly
in the graph. Unlike the check node functionality in codes on
graphs that is simple and only performs a modulo 2 operation
to derive what it believes about the value of its neighbor-
ing nodes, the control nodes in a biological factor graph
may assume a more complicated functionality. For example,
to a certain extent, the cooperative effect biological process
implemented in this work using discrete states, tends to cor-
rect errors introduced in the network. From the DE equation,
we obtained the necessary condition as a function of the
network connectivity, i.e., Bxy = f (:0,-,-)- Hence, we deduce
that network structure plays a critical role in the stability of
biological graphs.

B. PERFORMANCE ANALYSIS

1) COMPUTATIONAL COMPLEXITY

In our proposed model, the overall computational cost of
characterizing the propagated error in the network is given by
the complexity of the message-passing algorithm employed
on the factor graph model. This cost grows linearly with the
number of edges in the network [25], [28]. The computation
at the control nodes occurs in parallel, and in each iteration
a control node performs only a single linear computation
given by (8). Given that each Boolean computation incurs
a constant complexity, i.e., O(1), the total time complexity
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of a control node is O(1). On the other hand, variable nodes
in our factor graph model simply send out the value of their
current state. Similarly, a variable node incurs a constant time
complexity of O(1). Therefore, the time complexity of our
proposed model is O(1) per iteration for each pair of control
node and variable node. For a constant number of iterations,
the complexity of our model is proportional to the number
of nodes in the graph, i.e., of order O(n). In large biological
networks where few highly connected nodes regulate large
poorly connected nodes, the complexity of our model is linear
in the number of nodes.

2) MODELS COMPARISON

In the literature, noise propagation in biological systems has
been studied theoretically and experimentally. For example,
in [17], the authors explored noise propagation in genetic
cascades using single-cell measurements. Hooshangi and
Weiss [43] also computationally and theoretically analyzed
noise propagation in linear cascades and reported that the
existence of feedback loops in biological systems may pro-
vide robustness to extrinsic noise. They further showed that it
is impossible to achieve lower-than-intrinsic noise control for
n-ring gene regulatory networks with an odd number of nodes
and negative regulations. In their work [19], Zhang et al. per-
formed bifurcation analyses of ordinary differential equations
for the Myc/E2F/miR-17-92 network [44], in order to study
the role of feedback loop in sensitivity and noise amplifica-
tion on the dynamic properties of the system.

These previous works mostly depend on the knowledge
of biochemical and kinetic reactions which may be difficult
to obtain for large genetic networks. Moreover, they focus
mainly on investigating noise propagation in biological sys-
tems by considering how feedback loops impact noise in the
system. These investigations have provided insights into how
to tune or control noise; however, a study on how to quantify
noise in large arbitrary genetic networks without the explicit
determination of biochemical equations is lacking, thereby
obscuring a direct quantitative comparison with our proposed
model.

3) APPLICATION TO HUB-LIKE GRNs

The general framework of factor graphs is a powerful tool that
has been employed in many fields of research [25], [26], [28],
[32]. For example, in coding theory, factor graphs have been
used to model networks of 100, 000 nodes and more, due to
the sparse distribution of nodes in these networks. Similarly,
a key experimental observation is that large biological graphs
have sparsely distributed and possibly long edges [41], [42],
i.e., a few highly connected nodes known as hubs regulate
large, poorly connected nodes. In regulatory hub-like net-
works or large biological networks, we can adapt (14) by
including higher-order terms in the Taylor series expansion
of (12) as well as increasing the maximum allowable k, and &,
values to obtain a more refined necessary condition in terms
of B, for vanishing errors or noise.

4267



IEEE Access

S. Kotiang, A. Eslami: Density Evolution for Noise Propagation Analysis in Biological Networks

IV. CONCLUSION

Here, we have explored a graphical model representation
of biological networks and applied message passing to
evolve errors or disturbances in such networks. Subsequently,
we provided a density evolution analysis to study the behav-
ior of biological systems in the presence of noise. The
derived closed-form expressions enable an analytic approach
to quantify and characterize the evolution of errors due to
randomness in gene expressions. Our analysis resulted in
a necessary condition on the network parameters for net-
work resilience against perturbations. In other words, given
the activation-inhibition Boolean functions implemented to
model the cooperative effect biological rules, our derived nec-
essary condition can allow us to constrain network parameters
such as connectivity in designing reliable and noise-tolerant
artificial gene circuits. Our work and approach provide a step
towards understanding error propagation in complex genetic
graphs with the aim of inciting research on noise control and
intervention strategies for noisy biological systems. Finally,
a possible future path would be to consider error propagation
in factor graph models with unique computational rules on
each control node.

APPENDIX

After a random perturbation or disturbance that introduces
an error with probability € has occurred, we can describe the
probability that an error exists on node x at the beginning of
the [-th iteration in the form of (9). Under the assumption
that the error events on x, and x, are independent and identi-
cally distributed (i.i.d), we have Pr(x,, x,) = Pr(x,) - Pr(x,).
To solve the first part on the right-hand side of (9a), i.e.,
Pr(ex|x, = 0,x, = 0), we note that there is an error in
x, if and only if (iff) both x, and x, have errors. Using the
third Boolean function truth table in Table 2, only when both
X — 1 and x, — 1 does the output state change from the
expected O state to 1. In this particular case, the input error on
either x, or x, is not masked by the other. Hence, we represent
the first part of (9a) as follows:

Pr(e,xa =0, x, =0)=Pr(ey, [x,=0) - Pr(ey, [x,=0).  (17)

Now consider the network configuration shown in Fig. 5 with
two activating edges and two inhibiting edges. We assume
that an error is introduced with a positive probability € < 1
by which the state of nodes can randomly be changed. Using
the Boolean truth table for activation in Table 2, there will be
an error in x, if at least one of the edges x1 and x; has an error,
giving Pr(ey, |x, =0) =1—-(1 — 6)2. In general, for a node
with k, activating edges

Pr(ey, xa = 0) =1 — (1 — &)« (18)

Similarly, using the Boolean truth table for repression,
we compute the probability of error in x, by

Pr(exr |x, =0) = 2Lk, [1 —(1- e)kr] , (19)

where k, denotes the number of repression edges on a node.
Subsequently, we compute the probabilities Pr(x, = 0) = 2%“

4268

ki _ . .
and Pr(x, = 0) = 2 > L Hence, we write the expression
for (9a) as

Pr(ex|x, = 0,x, =0) - Pr(x, =0, x, = 0)

:2%.21(,2%'27[1_(1_6)“]
x [1 —(- e)k’] : (20)

We next compute the probability expression for (9b). From
the third Boolean truth table in Table 2, we observe that there
will be an error in x iff x, — 1 and no error on x,. The
probability of error in x,, i.e., Pr(ey, |x, = 0), is given by (19).
Using the activation and repression truth tables in Table 2 and
considering the general case of a node with k, and k, input
edges, we compute the following probability of error:

1
Pr(es,lta = 1) = 3~ [1 —(- e)k"] . Q1)
Therefore, Pr(e,, |x, = 1) = 1 — Pr(ey,|x, = 1), where
€(, denotes the event where there is no error. In addition,
we compute the probability Pr(x, = 1) = 2k;k;1 and then

write the expression for (9b) as

Pr(ec|xa =1, =0)-Pr(x, = 1,x, = 0)
= Pr(éx, |x, = 1) - Pr(ey, |x, = 0) - Pr(x, = 1, x, = 0)

X;Tr[l—(l—e)k’]. (22)

Likewise, we can compute the probability of error in (9¢) by

Pr(ex|xa =0,x, =1)-Pr(x, =0,x, = 1)
= Pr(ey,|xs = 0) - Pr(€y, |x, =1) - Pr(x, =0,x, = 1)

L1 [1 —q —e)k“](l — o), (23)

T 2k 2k
where an error results in x iff x, — 1 and no error on x,.
Finally, to solve (9d), we note that there will be an error in
x if at least one of the inputs in the third Boolean truth table
of Table 2 has an error, i.e., the output x, A X, changes state
from 1 to 0. Hence, we express the first part of the right-hand
side of (9d) as:
Pr(eclx, = 1,x, = 1)
= Pr(€y,|xa = 1) - Pr(ey, [x, = 1)
+ Pr(ex, |Xg = 1) - Pr(€y, [x, = 1)
+Pr(ex,|xa = 1) - Pr(ey, |x, = 1). (24)
Furthermore, we express the error probability Pr(e,, [x, =
1) =1 — (1 — €)*. Therefore, (24) yields

Pr(ex|xs =1,x = 1)

- {1—%[1—(1 —e)k“]} [1—(1—€)k’]

+% [1-a-ef]a-or
+2% [1-a-ek]i-a-eo]. 05
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Then, we can express the probability of error in (9d) as

Priexlx, =1,x, =1)-Pr(x, = 1,x, = 1)
2ka 1

1
= —2ka . ZTr ‘Prieclxs =1,x, =1). (26)

Inserting (20), (22), (23), and (26) into (9) and after simplifi-
cation, we obtain the total probability of error on node x as

€@ = ﬁ{z’ﬂ (2 1) = [ = 1) - o

— 3.2k 4 gka 4 1] 2 —2e)kr

- (2’<r - 1) [1 — (1 — e)ka — ke 4 4"0]
x [(1 — e — 1]} 27)

where k; = k, + k.
Conflict of Interest: none declared.
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