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ABSTRACT Cross spectral stereo matching is a challenging task due to different spectral properties causing
unreliable results in correspondence estimation. In this paper, we propose joint disparity estimation and
pseudo near infrared (NIR) generation from cross spectral image pairs. To bridge the spectral gap between
paired images, we adopt differential map operations and non-local blocks to improve the local attention and
global attention of the network. The proposed network is based on unsupervised learning that consists of one
encoder and two decoders, which performs both spectral translation and disparity estimation. For cooperative
learning, we use difference map operation to connect two decoders, thus improving the inference ability
of the decoder in regions even with large spectral differences. Experimental results show that the proposed
network achieves good performance in cross spectral stereo matching for unreliable regions such as shadows
and glasses. Moreover, the proposed network generates pseudo NIR images nearly the same as the ground
truth even in the regions with large spectral difference. Besides, we achieve real-time speed of 27 FPS for
582× 429 image pairs on RTX 2060 6G GPU due to the low computational complexity.

INDEX TERMS Cross spectral, neural networks, disparity estimation, image translation, stereo matching.

I. INTRODUCTION
In recent years, self-driving cars [1], [2], robotics [3]–[6]
and augmented reality [7]–[9] have gained much attention.
The reconstruction and understanding of 3D scenes are the
key for them. Therefore, multiple cameras and sensors are
deployed in many applications such as Tesla assisted driving
car and iPhone face unlocking. This environment provides an
opportunity to realize depth estimation for stereo image pairs
through multiple images. Depth estimation can be achieved
by stereo matching. It finds disparity d at the corresponding
pixel in two images, and then calculates depth by combining
the camera focal length and baseline distance. In traditional
methods, stereo matching usually needs four steps to get
disparity: matching cost calculation, cost aggregation, dispar-
ity estimation and disparity refinement. Although they have
achieved good performance in stereo matching [5], [10], they
still have limitations in many aspects. For example, they are
not appropriate for dealing with and textural regions with
repetitive patterns. With the rapid development of deep learn-
ing, many researchers have introduced deep neural networks
into vision tasks and achieved good performance [11]–[14].
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Some researchers have developed network architectures for
stereo matching. Chang and Chen [15] replaced traditional
four steps of stereomatchingwith neural networks to improve
performance and runtime, named PSMNet. Mayer et al. [16]
reported that only using the features of left and right views
can train an end-to-end network to output disparity directly.
Researchers found that there are some inherent defects in
color image-based stereo matching.

In low light condition, color images are often obtained
by increasing the exposure time, thus resulting in blurry
and noise corrupted pictures. To deal with the problem in
low light condition, Jeon et al. [18] used long exposure gray
scale images and achieved a remarkable improvement in
stereo matching. In low light condition, brightness informa-
tion is more accurate than color information. Compared with
RGB images, NIR images have more brightness information.
Therefore, cross spectral stereo matching from RGB-NIR
image pairs can provide a solution to them. However, due to
the cross spectral difference between two images, it is dif-
ficult to find correspondence for disparity estimation. Fig. 1
shows a large spectral gap betweenY channel andNIR image.
The grass field in the Y channel is dark, but it is very bright
in the NIR image. This is from different reflection degrees
of visible and NIR spectra. The same phenomena appear
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FIGURE 1. Spectral gap between Y channel and NIR image.

FIGURE 2. Results of disparity estimation and pseudo NIR generation.
DMC: deep material aware cross spectral stereo matching. STN: spatial
transform network. Compared with DMC [17], the proposed method
estimates accurate disparity in shadows. Moreover, our pseudo NIR
generation result is closer to the real NIR image in (b) than STN [17]
(see the glass region).

in the areas such as lights and clothes (see Fig. 1(c)). The
spectral inconsistency in some area causes errors in disparity
estimation. However, the proposed method successfully deals

with the spectral gap problem and produces an accurate dis-
parity map (see Fig. 1(d)).

In this paper, we propose joint disparity estimation and
pseudo NIR generation from cross spectral image pairs. Dis-
parity estimation and pseudo NIR generation are closely
related to each other, and better pseudo NIR image generation
leads to better disparity estimation. Thus, we build an end-
to-end network for joint disparity estimation and pseudo NIR
generation based on unsupervised learning that consists of
one encoder and two decoders. In decoding, we obtain a
difference map to improve the capability of translating and
estimating disparity in the regions with large spectral differ-
ence. First, we obtain the translation error by subtracting the
warped NIR image from the generated pseudo-NIR image,
and then take its absolute value to obtain the left difference
image.We calculate the right differencemap from the original
NIR image and the distorted pseudo NIR image. Finally,
we combine the difference map with the features obtained by
the encoder and feed them into the decoder to obtain a pseudo
NIR image and a stereo pair of disparity maps. Moreover,
we add non-local blocks into the decoder to consider global
attention. We use Y channel of RGB image and NIR image
as input, and obtain disparity map and pseudo NIR image as
output. The encoder extracts features of seven scales from the
input image pair, which is connectedwith the two decoders by
skip connection. The two decoders are the disparity estima-
tion decoder (DED) and the pseudo NIR generation decoder
(PNGD). DED and PNGD perform decoding simultaneously.
They calculate the difference maps in the last three blocks
of decoding and add them to the decoding feature. Since the
difference map comes from the disparity map and pseudo
NIR image obtained from the preceding decoding blocks, the
two decoders cooperate with each other, and finally gener-
ate disparity maps (left and right) and pseudo NIR image,
respectively. Fig. 2 shows the results of disparity estimation
and pseudo NIR generation by the proposed method. The
whole architecture of the proposed network is illustrated
in Fig. 3.

Compared with existing methods, the main contributions
of this paper are as follows:
• We propose an end-to-end network for cross spectral
stereo matching that consists of one encoder and two
decoders. We use difference maps and non-local blocks
at the decoders to deal with the cross spectral difference
between paired images.

• We add non-local blocks in the front-end of the
decoder to consider global attention, and use differ-
ence maps in the back-end of the decoder to consider
local attention. Thus, the proposed network overcomes
large spectral gap between paired images while mak-
ing the pseudo NIR image similar to the real NIR
image.

• We build two decoders in the last three blocks: disparity
estimation decoder (DED) and pseudo NIR generation
decoder (PNGD). The decoders are cooperated with
each other, i.e. a cooperative network, thus producing
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FIGURE 3. Whole architecture of the proposed network for cross spectral stereo matching. The proposed network consists of one encoder and two
decoders. We use Y channel of RGB image and NIR image as the input, and we perform disparity estimation and pseudo NIR image generation
concurrently by the two decoders: disparity estimation decoder (DED) and pseudo NIR generation decoder (PNGD). DED and PNGD cooperate with each
other through difference maps. We use the same network structure for DED and PNGD, but utilize different loss functions for them to generate pseudo
NIR images and estimate left and right disparity maps. The loss function for generating pseudo NIR image is Eq. (8), while the loss function of disparity
estimation is Eq. (12).

accurate disparity estimation and pseudoNIR generation
results.

II. RELATED WORK
A. CROSS-SPECTRAL STEREO MATCHING
The key of cross spectral stereo matching is to estimate
correspondence between different spectra. Some methods
focus on the design of a dense feature descriptor for the
correspondence between pixels. Heo et al. [19] proposed a
similarity measure which is robust to illumination and color
changes for stereo matching under different radiation condi-
tions. Shen et al. [20] designed the descriptor, named robust
selective normalized cross correlation (RSNCC), to estab-
lish dense pixel correspondence between input images.
Kim et al. [21] defined a dense adaptive self-correlation
descriptor based on the observation that the self similarity in
the image is not sensitive to modal changes. Jeong et al. [22]
proposed a method based on CycleGAN to extract the hid-
den features for stereo matching. Other methods are spectral
translation that translates the image pairs of different spectra
into the same spectral pair. Chiu et al. [23] approximated
infrared (IR) as the weighted fusion of R, G and B chan-
nels, and obtained the disparity map by global optimization.
Jeon et al. [18] used linear channel combination to convert
RGB images into monochromatic images, and then estimated
the disparity map based on brightness constancy and edge
similarity. Zhi et al. [17] also proposed a spectral translation
network based on channel weighting to generate pseudo NIR
image. They provided an unsupervised CNN framework to
predict the disparity map. Lin et al. [24] used a kernel pre-
diction network (KPN) to sum the NIR images with spatial
weighting, and generated pseudo NIR images aligned with
RGB images for face stereo matching in low light condition.

B. UNSUPERVISED DEPTH ESTIMATION
In recent years, many unsupervised methods have been used
for optical flow and disparity estimation. Based on Taylor
expansion, Garg et al. [25] proposed an unsupervised con-
volution neural network (CNN) for single view depth pre-
diction that was trained from coarse to fine. Xie et al. [12]
designed a Deep3D network to minimize pixel reconstruction
loss and generate the right view image. Godard et al. [26]
proposed a training loss based on epipolar geometry con-
straints that enforced disparity consistency produced by
left and right images. Zhou et al. [27] started from a ran-
domly initialized network, used left and right check to
guide training, and updated network parameters iteratively.
Yang et al. [28] conducted semantic feature embedding and
regularized semantic cues as the loss term to improve learning
disparity. Zhong et al. [29] used image warping errors as
the loss function to drive the training process, and showed
the effectiveness in KITTI and Middlebury stereo bench-
mark datasets. Zhang et al. [30] proposed ActiveStereoNet
whose reconstruction loss was robust to noise, texture free
region and illumination. ActiveStreoNet treated the over-
smoothing problem in unsupervised disparity estimation, and
preserved edges effectively by dealing with occlusion. They
have achieved good performance in stereo matching between
paired color images, but they are not suitable for cross spectral
matching.

C. IMAGE TO IMAGE TRANSLATION
Image to image translation is the transformation between
image domains such as style transfer [14], [31], coloriza-
tion [32], [33] and decolorization [34]. Song et al. [35]
achieved outstanding decolorization performance by adap-
tively calculating the weighted sum of each channel between
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color images. Isola et al. [36] used a conditional confronta-
tion network as a general solution for image translation, and
implemented style conversion between various image pairs.
Zhu et al. [37] used CycleGAN which introduced the loss of
cyclic consistency to achieve image translation of unpaired
images. Because CycleGAN consumes too much memory,
Zhi et al. [17] proposed a spectral translation network (STN)
to generate the weights of RGB three channels and estimate
the pseudo NIR image.

III. PROPOSED METHOD
As illustrated in Fig. 3, the proposed method can be divided
into three parts: backbone of one encoder and two decoders
(1E2Ds), Non-Local block (NLB) [38] and difference map
operation (DMO). NLB is a kind of self attention mechanism
that generates attention on important features, while DMO
makes the decoder improve the translation and disparity esti-
mation capability for the regions with large spectral gap.

FIGURE 4. Encoder block and decoder block. To output the results, the
decoder includes one convolution layer and one ELU activation layer.

A. BACKBONE OF ONE ENCODER AND TWO DECODERS
In recent years, a number of studies on deep learning are
based on the network structure of encoder and decoder. This
is because the encoder can extract both shallow structural
features and deep semantic features, while the decoder can
fuse the features of different scales to improve the accu-
racy. Mayer et al. [16] and Zhi et al. [17] proved that stereo
matching can be realized by an end-to-end network. Inspired
by them, we propose a network architecture based on one
encoder and two decoders, called 1E2Ds. The encoder and
decoder contain seven encoding blocks and seven decoding
blocks, respectively, and realize the same size for output and
input. As shown in Fig. 4, both the encoder block and the
decoder block are composed of two ‘‘convolution layer-batch
normalization [39]-ELU activation [40]’’. We add one ‘‘con-
volution layer-ELU activation [40]’’ into the decoder block
as the output layer. For the disparity estimation, we use the
encoder (YNE) to extract the left and right features FY ,FN
based on Y-NIR stereo pair IY , IN . Then, we use the features
as the input of the disparity estimation decoder (DED) to

predict the left and right disparity d l, d r .Whenwe translate Y
into NIR, we assume that there is a proportional relationship
F between NIR and Y, thus the pseudo NIR is expressed as
follows:

IpN = F(p)IY (p) (1)

where p represents each pixel position. As shown in Eq. (1),
the pseudo NIR generation decoder (PNGD) predicts the
scale matrix F . Different from the previous work, we put the
features of NIR and Y into PNGD to generate F . After that,
we obtain the predicted pseudo NIR image by Eq. (1).

FIGURE 5. Flow of the non-local block (NLB). x is the input feature, z is
the output feature, ‘‘⊗’’ is the matrix multiplication, and ‘‘⊕’’ is the matrix
addition. ‘‘φ’’, ‘‘θ ’’ and ‘‘g’’ are convolution layers with kernel 1 × 1 × 1.

B. NON-LOCAL BLOCK
Wang et al. [38] proposed non-local neural networks to pro-
vide a generic non-local operation in deep neural networks as
follows:

yi =
1

C(x)

∑
∀j

f (xi, xj)g(xj) (2)

where i and j denote the position of features, similarity
f (xi, xj) = e(θ (xi)

T φ(xj)), and coefficient C(x) =
∑
∀j f (xi, xj).

For a given i, 1
C(x) f (xi, xj) performs the softmax computation

along dimension j. Thus, we get:

y = softmax(θ (x)Tφ(x))g(x) (3)

The output z from the input x is as follows:

z = x +Wz · y (4)

where Wz is a weight matrix. By calculating the interaction
between any two positions, the remote dependency can be
captured directly without being limited to adjacent points,
which is equivalent of constructing a convolution kernel with
the same size as the feature map, thus more information can
be retained. Fig. 5 shows the flow of NLB. Firstly, the input
feature is convoluted by 1×1 to compress the number of chan-
nels, and then φ, θ and g features are obtained through three
convolution layers. Based on reshape operation, the dimen-
sions of the three features are transformed, and then matrix
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multiplication is performed to obtain the self-correlation in
the features. Then, softmax operation is performed on the
self-correlation feature to get the weight [0, 1] for input
features. Here, we get the self attention coefficient. Next, the
attention coefficient is multiplied back to g, and expanded to
dimensionC×H×W . Finally, the residual of the input feature
map x is added to the output. As shown in Fig. 3, we add NLB
into the third, fifth and sixth layers of the decoder. The local
blocks in the fifth and sixth layers are mainly used to enhance
the attention of the network in semantic features, and the local
blocks in the third layer are used to enhance the attention of
the network in structural features.

C. DIFFERENCE MAP OPERATION
Based on the careful observation of the previous spectral
translation, we find that it is difficult to translate categories
of clothing, grass, and glass in the spectral translation. There
are still some errors between the generated pseudoNIR image
and the real NIR image. To get good pseudo NIR image
generation for the regions with large spectral gap, we estimate
the spectral translation error by combining the disparity esti-
mation results from the DED network. We use it to connect
the last three decoding blocks between two decoders (see
Fig. 3). As shown in Fig. 6 is the flow of difference map
operation (DMO). First, we need to warp the input NIR image
IN to get the real warped NIR image IwN aligned with the
pseudo NIR image IpN . This process can be described as
follows:

IwN = ω(IN , d l) (5)

where ω is the warping operator, which can be expressed as
follows:

I lx,y = I rx+d lx,y,y
(6)

Then, we take the absolute value of the difference between
IpN and IwN as follows:

I lD = |IpN − IwN | (7)

For PNGD, we feedback the left difference map to the net-
work. For DED, since we generate left and right disparities,
we feedback the left and right difference maps together for
the disparity estimation on unreliable regions.

D. LOSS FUNCTION
Due to the lack of datasets for training, unsupervised learning
is suitable for cross spectral stereo matching. Since it is hard
to generate the ground truth disparity maps, we use three
terms of left-right consistency LLRC , structural similarity
La, and smoothness Ls in the loss function. LLRC measures
consistency between left and right disparity maps, while La
and Ls are estimated from the pseudo NIR and warped NIR
images. Therefore, we use two decoders: One decoder outputs
left and right disparity maps, while the other outputs pseudo
NIR images.

FIGURE 6. Flow of the difference map operation (DMO). ‘‘Warp’’ is is the
warping operator. ‘‘-’’ represents matrix subtraction operation. We take
the absolute value after the ‘‘-’’ operation to get the difference map.

1) DED LOSS
DEDpredicts left-right disparities d l , d r based on the encoder
features. The DED loss consists of three terms: a left and
right consistency (LRC) term LLRC , a material aware align-
ment term La and a material aware smoothness term Ls.
Zhi et al. [17] reported that material aware alignment loss
La,m and smoothness loss and Ls,m effectively improve the
disparity estimation of unreliable regions. Therefore, the total
loss function in this paper follows the Zhi et al.’s work [17]
as follows:

LDED = λcLLRC
+λa,m

∑
m∈M

µm(L la,m + L
r
a,m)

+λs,m
∑
m∈M

µm(L ls,m + L
r
s,m) (8)

where M =’light’, ’glass’, ’glossy’, ’vegetation’, ’skin’,
’clothing’, ’bag’, ’common’; µm denotes segmentation infor-
mation; λc, λa,m and λs,m are weights of terms which are
empirically set in training.

The LRC term LLRC describes the consistency of left and
right disparity maps as follows:

LLRC =
1
N

∑
p∈�

(
|d l(p)− ω(d r ,−d l)(p)|

)
+

1
N

∑
p∈�

(
|d r (p)− ω(d l, d r )(p)|

)
(9)

where N is the number of pixels in one image, and � is the
pixel coordinate space.

The material aware alignment term La compares inten-
sity and structure between the aligned NIR and pseudo NIR
images [17]. We use the structural dissimilarity function
δ(I1, I2) [41] for the term as follows:

L la,m=
1
N

∑
p∈�

(
αδ(IpN , IwN )(p)+ (1−α)|IpN (p)− IwN (p)|

)
(10)
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where α is set to be 0.85 as suggested by
Godard et al. [42].

The material aware smoothness term Ls encourages dispar-
ities to be locally smooth and edge-aware as follows [17]:

L ls,m =
1
N

∑
p∈�

((|∂xd l |e−‖∂x IY ‖ + |∂yd l |e−‖∂yIY‖)(p)) (11)

where ∂I is the gradient of input image I and ∂d is the
gradient of disparity. For La,m and Ls,m, we only provide the
loss function in the left Y channel.

2) PNGD LOSS
The PNGD network predicts the scale matrix F between the
Y channel and real NIR image. Then, the pseudo NIR is
generated by Eq. (1). To make the generated pseudo NIR
image closer to the real NIR image, we use the consistency
between the left and right views as the PNGD loss as follows:

LPNGD = |IpN − IwN | + |IwpN − IN | (12)

where IpN is the pseudo NIR image, IwN is the warped NIR
image, IwpN is the warped pseudo NIR image, and IN is the
input NIR image.

3) TOTAL LOSS
The proposed network is an end-to-end network, and the total
loss function is the sum of two decoders’ losses as follows:

Ltotal = LDED + LPNGD (13)

IV. EXPERIMENTS
A. DATASET
We use Pitts-Stereo RGB-NIR dataset proposed by [17] for
training and testing. The dataset includes a variety of scenes
such as campus roads, highways, downtown, parks and resi-
dential areas with a variety of weather and light conditions:
sunny, cloudy and dark conditions. In addition, Zhi et al. [17]
designed 8 material labels for common, lights, glass, glossy
surfaces, vegetation, skin, clothing, and bags with the pre-
trained Deeplab [43]. We split the dataset into two parts: the
training set contains 40,000 RGB-NIR image pairs, while the
testing set contains 2,000 RGB-NIR image pairs.

B. IMPLEMENTATION DETAILS
1) PARAMETERS
The ratio of disparity to image width is predicted by DED
network, and the ratio of Y to NIR is predicted by PNGD
network. The weights of the losses in DED are set to λc = 2,
λa,m = 1 for all materials. When calculating the smoothing
loss of lights, glass and grosses, set λs,m to 3,000, 1,000
and 80, respectively. For other materials, we set λs,m = 25.

2) TRAINING AND TESTING
We implement the proposed network by PyTorch frame-
work [44] and train it using a DGX station with NVIDIA
Tesla V100 GPU. The parameter setting is as follows.

The weights are initialized by Kaiming initialization [45]
and optimized by Adam optimizer. We set the Adam weight
decay to 0.0001 and the batch size to 32. The learning rate
is 0.0005 decreasing by half every 12 epochs. The model is
trained 48 epochs, which takes 22 hours to finish.

C. COMPARISONS WITH THE STATE-OF-THE-ART
METHODS
1) DISPARITY ESTIMATION
We compare the proposed network with state-of-the-art meth-
ods: PSM Net [15], dense adaptive self-correlation descrip-
tor (DASC) [21] and deep material aware-cross spectral
stereo matching (DMC) [17]. Fig. 7 shows visual comparison
among them. DASC shows good matching results in clothing
and shadow areas, but achieves worse performance in glass.
This is because there exists a big spectral gap in glass, which
makes feature extraction difficult. The overall performance of
DMC is good, but it is easy to have mismatch in shadow areas
and nearby objects causing errors in disparity estimation.
PSM Net achieves the worst matching performance, which
is suitable for stereo matching in single modal image pairs.
The proposed method outperforms the others in most cases
and performs better than DMC in shadow areas. However,
the proposed method performs slightly worse than DMC for
matching distant objects.

2) PSEUDO NIR GENERATION
We compare the proposed method with state-of-the-art
methods for image-to-image translation: CycleGAN [37],
FUCC [22], and the spectral translation network (STN) [17].
CycleGAN [37] has been widely used in other image-
to-image translation fields, while FUCC [22] is an unpaired
image training method based on hidden features. Fig. 8 shows
visual comparison among them in pseudo NIR generation.
It can be seen that the results of CycleGAN are not natural.
FUCC performs better than that of CycleGAN, but its bright-
ness is dark, thus reducing the visual quality. STN seems to
greatly improved, but the translation of clothes is still not
accurate. The proposed method looks closer to the real NIR
image with black holes in the left regions caused by disparity.

TABLE 1. Ablation study on pseudo NIR image generation in terms of
PSNR (unit: dB) and SSIM.

3) ABLATION STUDY
We perform ablation study on the network structure: ‘‘only
using encoder-decoder structure’’, ‘‘not using self attention
mechanism’’ and ‘‘not using difference map operation’’.
Fig. 9 shows ablation study on nonlocal block (NLB) and dif-
ference map operation (DMO). Without NLB and DMO, the
disparity estimation in clothing, shadow and reflective areas
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FIGURE 7. Disparity Estimation qualitative comparison. Rows 1, 8, 9: Clothing. Rows 2, 3: Shadow. Rows 4, 5, 6: Glasses. Row 7: Near scene.
Row 10: Distant scene.

is not accurate. When only DMO is added, the disparity esti-
mation results in shadow and reflective areas become better.
When only the local block is added, the disparity estimation

results in clothing become better, while those in shadow and
glass become worse. The full network structure improves the
results in all aspects. Through the ablation experiment, it can
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FIGURE 8. Visual comparison among different methods in pseudo NIR generation. From the first and second rows, the proposed method performs
better than the others in the glass area. The third and fourth rows show that the proposed method is more accurate than the others in the pseudo
NIR generation of clothes, while the fifth row shows the performance in the reflective area that our result is closest to the real NIR image (see the
left side of cars).

FIGURE 9. Ablation study on nonlocal block (NLB) and difference map operation (DMO). We compare the results in the regions with a big spectral
gap such as clothing, shadow, and glass. The disparity estimation results in them are significantly improved by NLB and DMO. DMO effectively
treats the spectral difference of shadow and reflection area, while NLB overcomes the spectral difference in clothing area.

be revealed that NLB mainly improves the disparity estima-
tion in clothing and glass, while DMO pays more attention
to the shadow and reflective areas. When the two blocks are
used, the proposed method achieves trustworthy performance
in disparity estimation method by taking both advantages.

Moreover, we provide another ablation study on the pseudo
NIR image generation in Table 1. We calculate PSNR and
SSIM values on the pseudo NIR images. NLB and DMO
increase 1.51dB in PSNR and 0.02 in SSIM. However, with-
out both NLB and DMO, the PSNR performance is 26.0 dB,
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which is better than those without NLB and without DMO.
The results indicate that NLB and DMO are complementary.
DMO concerns details in pseudo NIR images, while NLB
concerns global information in them.

TABLE 2. PSNR (unit: dB) comparison among different methods for
disparity estimation and pseudo NIR generation. The proposed method
achieves the best performance.

4) QUANTITATIVE MEASUREMENTS
For quantitative measurements, we use PSNR and SSIM as
evaluation metrics for disparity estimation and pseudo NIR
generation. Since it is difficult to generate the NIR image
aligned with the Y channel, we use the warped NIR image
as the reference for PSNR and SSIM evaluations. For a
convincing experiments, we first use the disparity estimation
results d l to warp IN , and get the warped NIR image IwN by
disparity estimation methods. Then, we measure PSNR and
SSIM on the pseudo NIR images IpN generated by various
spectral translation networks. Tables 2 and 3 show PSNR
and SSIM comparisons among different methods for dispar-
ity estimation and pseudo NIR generation, respectively. As
shown in Table 2, we fix the disparity estimation method
and then get the pseudo NIR generation results. When the
disparity estimation method is DASC [21] or DMC [17],
STN [17] achieves the best PSNR performance by 21.25dB
and 22.51dB, respectively. When we use PSM Net [15] and
the proposed method for disparity estimation, the proposed
method achieves the best PSNR performance by 18.19dB
and 27.50dB, respectively. Then, we fix the pseudo NIR
generation method to get the disparity estimation results.
When we use CybleGAN [37] and FUCC [22] for pseudo
NIR generation, DASC [21] achieves the best PSNR per-
formance by 10.47dB and 11.1dB, respectively. When we
use STN [17] for pseudo NIR generation, DMC has the best
PSNR performance by 22.51dB. On the whole, the proposed
method achieves 27.50dB in PSNR performance and outper-
forms the others in both disparity estimation and pseudo NIR
generation. Moreover, we provide SSIM comparison among
different methods for disparity estimation and pseudo NIR
generation in Table 3. SSIM represents structural similar-
ity in images that reflects perceptual quality of the human
visual system (HVS). As shown in the table, the proposed
method achieves 0.80 in SSIM performance and outper-
forms the others in both disparity estimation and pseudo NIR
generation.

Moreover, we provide quantitative measurements in terms
of disparity RMSE and runtime (s/pair) in Table 4. We use
DMC dataset [23] for experiments. To test PSM Net, DASC,

TABLE 3. SSIM comparison among different methods for disparity
estimation and pseudo NIR generation. The proposed method generates
pseudo NIR images the most similar to the real NIR images.

DMC and the proposed method, we use a PC with Ryzen 5
3600 CPU and Tesla v100 32G GPU running Ubuntu
18.04 and Pytorch 1.4. Since DASC does not need GPU, it is
tested on CPU. As shown in the table, the RMSE of PSM
Net [15] is the largest, which indicates the worst performance.
This is because PSMNet [15] is a disparity estimationmethod
from a color image pair and is not suitable for cross-spectral
images. DASC [21] is a traditional stereo matching method
based on dense adaptive self-correlation descriptor. DASC
performs the best on clothing, and its average RMSE reaches
1.28. It can only run on the CPU, which takes 33.92 s/pair.
DMC [23] reaches 0.80, i.e. the best performance, which
achieves good performance in almost all categories with the
lowest runtime. The proposed method gets the best perfor-
mance in the skin category with comparable runtime, which
is worse than DMC in RMSE.

FIGURE 10. Failure cases by the proposed network. Since clothes have a
big spectral gap between Y channel and NIR image, the proposed
network suffers from disparity estimation for them.

5) FAILURE CASES
However, there are some failure cases in the proposed
method. As shown in Fig. 10, the proposed method causes
errors in the disparity estimation of clothes with a big spectral
gap. The intensity of NIR images highly depends on themate-
rial property, but the intensity of Y channel highly depends on
the visible light reflectivity. Thus, Y channel (dark) and NIR
image (bright) is opposite in the intensity polarity for clothes,
which makes the proposed method a wrong prediction. Since
the proposed method generates pseudo NIR images based on
the disparity estimation results, holes appear in the pseudo
NIR images (see the left regions of our results in Fig. 8).
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TABLE 4. Quantitative measurements in terms of disparity RMSE and runtime (s). For experiments, we use a PC with Ryzen 5 3600 CPU and Tesla v100
32G GPU running Ubuntu 18.04 and Pytorch 1.4. Since DASC does not need GPU, it is tested on CPU.

V. CONCLUSION
In this paper, we have proposed joint disparity estimation
and pseudo NIR generation from cross spectral image pairs.
We have adopted NLB and DMO to bridge the spectral gap
between Y channel and NIR image. The proposed network
consists of one encoder (YNE) and two decoders (PNGD and
DED) based on unsupervised learning. To facilitate coop-
erative learning between two decoders, we have proposed
DMO to obtain the difference map between the generated
pseudo NIR image and the warped NIR image. We have
combined DMO with the encoded features and feed them
into the decoders for joint disparity estimation and pseudo
NIR generation. Moreover, we have introduced NLB into the
decoder to capture global attention in the proposed network.
Experimental results demonstrate that the proposed method
achieves the state-of-the-art performance in both disparity
estimation and pseudo NIR generation, i.e. 27.5dB in PSNR
and 0.8 in SSIM. Our future work includes filling holes
caused by pseudo NIR generation.
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