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ABSTRACT Plants exhibit dynamic changes as they grow. For example, a new leaf may appear suddenly,
and rotate and fold over time. Therefore, it is difficult to predict the growth of plants. For accurate growth
predictions, it is important to predict the shapes, colors and textures of the leaves. The conventional methods
simply use RGB images to predict the next plant at once. In this paper, we propose a novel deep network
which is divided into two subnets of shape estimation and color reconstruction. Four gray time-series images
are first aligned to a future target using a spatial transformer network (STN) for shape estimation. They are
then fused using U-Net with two LSTMs to generate a future shape image. The color reconstruction subnet
fuses the predicted shape with a RGB plant image to restore the color information. In addition, we use gray
images with texture information for shape estimation instead of binary images with only simple information
and RGB images with too much information. The proposed deep network can robustly generate future plant
images for plant growth prediction. It is evaluated using our proprietary dataset as well as two public datasets
for different types of plants. The experimental results demonstrate that our proposed network predicts the leaf
shape more accurately and restores RGB. As a result, our method can create accurate future plant images.

INDEX TERMS Plant growth prediction, time-series images, shape estimation, spatial transformer network,

image generation.

I. INTRODUCTION
It takes much effort to grow plants. For instance, plants

need to be constantly supplied with the appropriate amounts
of water, humidity, sunlight, temperature, and nutrients,
and those environment factors ensure their high-quality
growth [1], [24]-[27], [36], [37]. To improve productivity
in plant cultivation, we can control the environment fac-
tors adaptively, depending on plant growth status. Sensors
and monitoring systems have been used in a number
of agricultural technologies to increase plant produc-
tion [2], [28]-[31], [38]. However, they require expensive
equipment to measure plant growth, and the measurement
also takes much time and is destructive. If plant growth could
be predicted with a cheap and remote sensing device such as
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a vision sensor, that would contribute to cost reduction and
automatic environment control without human intervention.

There are very few researches on plant growth predic-
tion. Existing studies focused on literary analysis, especially
plant leaf prediction among plant growth, and used exist-
ing backbone networks without proposing a new net-
work [3]-[5], [15], [32]. These studies also pass through the
network at once and predicts the next plant image. Also, they
use only RGB images when predicting plant growth. This
paper has a research gap from previous studies. We propose
a new network structure which is suitable for plant growth
prediction, uses additional gray images without using only
RGB images, and is divided into two parts in detail without
predicting the plant growth at once to further improve growth
prediction accuracy.

In this paper, we propose a novel deep network that gen-
erates a future plant image from past and current ones for
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FIGURE 1. The basic concept of the proposed plant growth estimation
network architecture.

TABLE 1. Notation used in the paper.

Notation Definition

St Gray shape image at time ¢t
I RGB image at time t

Sii1 Gray shape image aligned by STN

| RGB image aligned by STN

Sii1 Output of the shape estimation subnet

i Output of the color reconstruction
1 subnet (also final output of the network)

Se_3~Si, I} Input of the proposed network

plant growth prediction. To predict the growth accurately, the
proposed method consists of two subnets. Fig. 1 illustrates
the basic concept of the proposed deep network architec-
ture. First, the overall shape of the plant is predicted from
a number of input gray images without a background. Unlike
conventional methods that work in the RGB domain, we pre-
dict the shape of the plant in gray domain. This reduces
the interference of the texture and background in the plant
image during the shape prediction [3]-[5]. Each individual
input gray image is first aligned to a future target with a
spatial transformer network (STN). The resulting multiple
aligned images enter the network, and are fused in the shape
subnet (U-Net with two LSTMs) to generate a future shape
image. Second, the predicted shape image is grayscale, it does
not have sufficient texture information. For its colorization
and texture replenishment, it passes through the color subnet
(auto-encoder net) where it is fused with an RGB image
which is simply predicted by a STN from a current RGB
image. Finally, the future RGB plant image is generated by
the color subnet.

The main contributions of the paper are summarized as
follows. First, the growth prediction task is decomposed
into the two processes, shape and RGB prediction. The
separation of these processes allows the accuracy of the
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shape prediction to be improved by minimizing the interfer-
ence of the RGB information in affine transform with STN.
In addition, prediction performance was improved using gray
images by excluding color information unnecessary for shape
prediction. Second, all the shape inputs are geometrically
transformed into the future target shape before they enter the
network. This leads to more effective shape prediction com-
pared to direct fusion without the STN. Finally, the proposed
method is evaluated with our proprietary dataset as well as
two public datasets for different types of plants. We built a
new dataset which was acquired from plant factory actually.

Il. RELATED WORKS

A. STN BASED VIDEO PREDICTION

Although CNN has been widely used, there are still some
limitations due to spatial invariance. One of the limita-
tions is that CNN cannot detect objects well when they
change in size, rotate, or shift in space. In contrast, spatial
transformer network (STN) can manipulate data spatially in
the network [6]-[9]. It has been proposed to learn invari-
ance to spatial changes such as size changes, rotations,
and position translations. Even today, it is still widely
applied to motion estimation and future frame prediction,
and is also used in modified forms depending on the pur-
pose [33]-[35], [39], [40]. In [10], a network with dual adver-
sarial training is proposed. The network is divided into the
frame and flow branches. The frame branch directly predicts
future frames, and the other flow predicts the future flows.
The outputs of the two branches are fused to predict the final
future frame. In [11], the authors proposed a network that
predicts the transformation parameters rather than directly
predicting the future frames on the transformation domain.
The affine transformation parameters for the final frame pre-
diction are learned via a CNN by fusing a series of successive
affine transformation parameters from the input video. That
is, the network generates the affine transformation parameters
for future frames.

Even in video prediction studies without STN, there have
been proposed several methods based mainly on LSTM.
In [12], the authors proposed a network that predicts future
frames by separating video information into motion and
content. The network is trained in an end-to-end manner
(rather than separately), and the motion and content parts are
combined after passing through different encoders. A net-
work that performs the three processes of pose estimation,
pose prediction, and image generation was proposed [13].
After estimating the pose of the time-series input images,
the future frames are predicted in the pose domain. It is then
reconstructed through image generation subnet from the pose
input.

B. PLANT IMAGE PREDICTION

In general, a clean plant image can be obtained only when
post-processing such as noise removal is accompanied [20].
However, in as stable environment such as our plant factory,
noise or distortion hardly occurs in the acquired image.
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FIGURE 2. The architecture of the shape subnet. The ((t-3)-th~ t-th) gray shape images pass through the spatial transformer network (STN) to be aligned
to the target (t + 1)-th image. The results from the STN are passed through two LSTMs to estimate the (t + 1)-th shape image. Lastly, the color is

reconstructed by employing RGB image.

In the meantime, there have been studied a number of deep
learning methods to predict future plant images. Research on
plant growth prediction mainly adopts the approach of future
video generation. The conventional plant growth prediction
popularly uses an auto-encoder structure with ConvLSTM,
which is often used in video prediction. Multiple auto-
encoders corresponding to individual input are fused through
ConvLSTM [14]. In [15], the network takes RGB images
of a plant and their labels as an input, simultaneously, and
again produces both label and RGB images in the output.
Although it is a simple network architecture consisting of
only an auto- encoder with ConvLSTM, it introduces four
loss functions. In [3], the network uses GAN in addition to
an auto-encoder with ConvLSTM. Furthermore, by extend-
ing [15], several auto-encoders are hierarchically fused with
1/2 and 1/8 resolution via ConvLSTM. The method was also
modified by replacing the LSTM based fusion with simple
concatenation of CNN-based channels.

On the other hand, there are studies that measure the fea-
tures or contours of individual leaves rather than the overall
appearance of plants and utilize them for growth prediction
or recognition [21], [22]. In another aspect, a method of pre-
dicting growth has been studied by focusing on the prediction
of indicators such as live weight rather than the appearance
of plants [23].
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The proposed network is highly different from these con-
ventional plant image generation methods. The future frame
generation task is divided into the shape and RGB prediction
processes, which are performed in both the gray and RGB
domains. The predicted gray shape image is then combined
with the RGB image estimated by a STN for its colorization.
In addition, extensive experiments are performed using three
datasets, which consist of our own established dataset as well
as two public ones.

/ Localization Net .
Grid generator

Tt
\ Sampler

St-3 Sts1

FIGURE 3. Spatial transformer network. Figure reproduced from [6].

lll. THE PROPOSED METHOD

As plants grow, their leaves change dynamically. For exam-
ple, the leaves are gradually enlarged and new leaves are
generated. In addition, their movements are diverse from
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FIGURE 4. Detailed structure of U-Net with two LSTMs. The 1/2-size and
1/8-size shape images pass through the two LSTMs. The outputs from the
LSTMs are passed through the decoder to generate the final shape
image.

bending to spreading with time. In this paper, we attempt
to predict the future plant image from a number of past and
current images. This technology is particularly useful in plant
factories, where the environmental factors for plant cultiva-
tion can be intelligently controlled according to the status of
plant growth. One of the simplest methods to quantitatively
calculate the amount of growth is to measure the leaf area.
Thus, it is very important to accurately estimate the shape
of the plant. This is the reason why the proposed estimation
process is divided into ‘shape estimation’ and ‘color recon-
struction’ parts.

Fig. 2 illustrates the overall architecture of the proposed
deep network. Gray and RGB images are fed into the net-
work as inputs for shape estimation and color reconstruc-
tion, respectively. The shape of the leaves is estimated with
gray images, while the color information is recovered with
an RGB image which is the affine-transform version of a
current one. The proposed deep network is divided into two
subnets.

First, an affine transformation is performed by the STN
to estimate the amount of plant growth from the past or
current time to future target time. To avoid interference of
background during the transformation, the leaves are seg-
mented in advance. In addition, it was found from diverse
experiments that the color information can be an obstacle
for accurate affine transformation. Thus, the shape estima-
tion is performed in gray domain. After the STN, the input
images at distinct times are geometrically aligned to a future
ground truth shape, and the resulting affine-transformed
images are fed into the shape subnet to predict the future
shape of the input plant. The color information needs to
be replenished because the generated image is gray. For
the task of color reconstruction, the affine-transformed RGB
image is fused with the estimated shape image through an
auto-encoder. It is estimated that the higher accuracy of
the affine transformation could be obtained from a current
image rather than from past images. Thus, we use an RGB
image transformed from just a current time for the fusion.
The two images are hierarchically fused by connecting the
encoder of the RGB to the decoder of the shape as shown
in Fig. 2.
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FIGURE 5. Detailed structure of color reconstruction subnet. The plant
shape and RGB images are hierarchically fused at the decoder.

A. SPATIAL TRANSFORMER NETWORK

The spatial transformer network (STN) conducts the affine
transformation for the input, and finds affine parameters.
In STN, there are three parts, localization network, grid
generator, sampler. Fig. 3 shows the detailed structure of
the STN. The localization network takes the input image
and outputs a set of affine transformation parameters, 6.
We input each of four gray shape images (from S;_3 to S;)
to the localization network, and each individual shape image
is affine-transformed to the target image, S;4;. This affine
operation with the STN is expressed by

6o 6 92i|

where 6,41 is a set of affine parameters, output from the
localization network. Note that the 7-th RGB image, I;, is not
transformed, and the parameters for S; are used directly for
the STN because the STN has poor performance on the RGB
image. In other words, fi,c (I;) is equal to fi,c (S;) as follows.

floc () =floc (Sr) 2
The grid generator then creates a sampling grid, which
is a set of points to be sampled from the input image. The
predicted transformation parameters 6,1 are used to gener-
ate the sampling grid. The grid generator applies the affine
transformation as
1+1 1+1
¥3 i b 6 6] (%"
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where (x;", y;" ') are the target coordinates of the regular

grid in the shape image S;4, (x/, y!) are the source coor-
dinates in the shape image S; that define the sample points,
and 6;41 is the affine transformation matrix, which applies
cropping, translation, rotation, scaling, and skewing to the
input image. The affine transformation matrix consists of six
parameters which are produced by the localization network.

O = [3 0 t"] @)
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The attention allows cropping, translation, and isotropic
scaling by varying s, t,, and t,. Finally, the sampler takes
the input image and sampling grid, and produces the
affine-transformed output by performing bilinear sampling to
generate the shape image Sy 1.

B. SHAPE ESTIMATION
After performing the STN, the future plant shape is predicted
by employing U-Net with two LSTMs. For shape estimation,
we use gray plant images rather than binary or RGB images.
The plant is segmented from the original plant image, and the
resulting image is converted into grayscale. The gray plant
image has no background. So, it can focus on leaves only
without the interference of its surrounding background.
Eventually, it was found through diverse experiments that
using gray images results in better shape prediction. First of
all, for shape estimation, each of the four sequential gray
images that passes through the STN is fed into the encoder
which is connected to a decoder by two LSTMs. In detail,
there are two LSTMs that works in 1/2 and 1/8 image sizes on
the auto-encoder structure. After passing through the encoder,
the 1/2-size image passes through the first LSTM, and the
1/8-size image passes through the second LSTM, as shown in
Fig. 4. Four time-series images are sequentially combined by
U-Net with two LSTMs. A sequential combination is made at
the two distinct hierarchical layers. Likewise, the outputs of
the two LSTMs are combined by decoder LSTMs as shown
in Fig. 4. Using two LSTMs, we can predict the plant shape,
S;+1 that is sophisticated and accurate. The final shape output
S:+1 is obtained by fusing the outputs from the two decoder
LSTMs with a U-Net decoder.

C. COLOR RECONSTRUCTION

The previous shape subnet generates only a gray shape image.
The color information should be reconstructed additionally,
and the estimated shape image still lacks of texture informa-
tion. We fuse the estimated RGB image, ;11 with the shape
from the auto-encoder.

The RGB image, 1,41 is the aligned version of a current
RGB to a target. Note that the STN is performed with the
parameter set 6,4 already obtained by the shape subnet
without performing the STN with the RGB image actually.
The final shape output S;4; from the shape subnet and the
(t + 1)-th RGB image ;4 are employed for restoring the
color information. S;4+1 and I;4+; pass through their respec-
tive encoders, and are hierarchically fused at a decoder.
In detail, the RGB image ;1 passes through the encoder
and its resolution is reduced to 1/2 and 1/4 by convolution.
Then, they are concatenated to the shape decoder. The color
reconstruction process is detailed in Fig. 5. Finally, we can
get the result of predicting the (¢ + 1)-th plant image from
the (z-3)-th~ ¢-th plant images. The final output shows
good growth tracking and sophisticated color and texture for
each leaf as it goes through the shape and color subnets in
sequence.
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D. LOSS FUNCTION

We used the L1 loss to train our network. The network was
trained with other losses such as mean square error and SSIM,
and the best results were obtained when trained using L1 loss.
There are six L1 losses. Four of these are STN losses, and the
remainder are shape and texture losses, as the follows.

L = p1Lsty + poLsaape + uslcoLor (5)

where (1, up and p3 are the coefficients that are experien-
tially determined. The first term, Ls7y, is a loss after passing
through the spatial transformer network. We calculate Lg7y
for the four gray shape inputs, which is given by

3
Loty = ) L1Si—k. St+1) ©)

The second term, Lsyapg, is the loss between the final
shape output image (which is the output of the shape subnet)
and the (# + 1)-th gray shape ground truth, and is given by

Lspape = L1(Si41, Si+1) @)

The last term, Lcoror, is the loss between the final RGB
output of the overall network and the (¢ + 1)-th RGB ground
truth, and is given by

Leoror = L1(y41, I11) (8)

E. USE SCENARIO

Practical usage is illustrated in Fig. 7. A plant is captured
every day (one-day interval). Four snapshots (three past and
one current) are required as the network input, and then, the
network generates the plant image of the next day. From
the network output, we can estimate the plant growth state
at the next day. In this way, the network can predict the future
plant image from just previous four images.

Although the time interval is set to one-day in this paper,
the network can be trained for any interval. However, the pre-
diction performance decreases as the time interval increases.
The future work is to increase the time interval while the
performance is preserved. Also, see Fig. 13 which compares
the performance between one-day and two-days intervals.
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FIGURE 7. The use scenario of the proposed network model.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETTING

Our proposed network is trained with the plant datasets.
The input image of size 128 x 128 is used as it is without
dividing the image into patches. The network is implemented
using the PyTorch framework on a PC with 2 NVIDIA RTX
2080ti GPUs [16]. We adopted the Adam optimizer for loss
optimization. The batch size is 8 [17]. The initial learning rate
is 0.0001 and is divided by 10 for every 30k iterations.

The air temperature, relatively humidity, and CO2 concen-
tration inside a plant factory throughout the experiment (mean
=+ standard deviation) were 18.5 + 0.4°C, 65.2 & 3.1%, and
742 £ 106 ppm, respectively.

B. TRAINING DATASET

We used a variety of datasets for the experimental evaluations
on different types of plants. In particular, we grew plants
in a plant factory to create our own dataset. The acquired
plant images were cropped and segmented for our own plant
dataset. The proposed network is evaluated with the three
kinds of datasets, Aberystwyth [19], Komatsuna [20] and our
own Butterhead. The Aberystwyth and Komatsuna datasets
consist of time-series RGB leaf images and their correspond-
ing binary shapes.

We grew green Butterhead lettuce, which is one of the types
of lettuce directly in a plant factory. Our own dataset, which
is named as ‘“‘Butterhead’, consists of several Butterhead
growth images captured at one-day intervals over a period
18 days. The dataset pre-processing step is shown in Fig. 6.
First, a camera is attached to the ceiling of a plant factory, But-
terhead lettuce seeds are planted in soil, and they are grown
for 18 days. The acquired Butterhead images are cropped to
128 x 128 size so that the plant is located in the center of
an image. Next, from the resulting RGB image, a binary leaf
shape image is obtained by segmentation. The leaves of the
Butterhead images can be easily segmented by appropriately
thresholding RGB values due to almost uniform background.
The binary shape is then multiplied with the RGB image to
extract only the foreground plant leaves without the image

4768

area of intersection

IoU =

area of union

FIGURE 8. Intersection of Union. loU is used to evaluate the prediction of
plant leaf shape.

background. Finally, the images acquired in the previous step
are converted to gray. The remaining two datasets also go
through the same process.

For data augmentation, we rotated the plant image
90 degrees, 180 degrees, 270 degrees and flipped the plant
images along the x- axes and y-axes. As a result, training
data in the Aberystwyth dataset is a total of 1,674 images,
Komatsuna dataset is a total of 448 images and our But-
terhead dataset is a total of 972 images. Averystwyth [19],
Komatsuna [20] and Butterhead have one type of plant.
Averystwyth has grown for 31 days. The Averystwyth leaf
evaluation dataset is composed of Arabidopsis Thaliana
plants. Nine plants are used for training and one plant is
used for test. A total of ten different plants are used in the
experiment. Komatsuna has grown for 56 days. Komatsuna
dataset consists of five Komatsuna plants. Four plants are
used for training and one plant is used for test. A total of
five different plants are used in the experiment. Butterhead
has grown in a plant factory for 18 days. For the experiment,
eight plants are assigned to the training dataset, and one plant
is assigned to the test dataset.

When training, four (t — 3)-th ~ t-th time series images
and one t-th RGB image are used as inputs. At the end of the
training, the (t 4+ 1)-th gray shape image and RGB image are
obtained as outputs.

C. COMPARISON WITH THE EXISTING METHODS

Various experiments have been conducted to demonstrate
that our network is the best suited method for plant growth
prediction. Furthermore, plant growth prediction is evaluated
with the existing video prediction networks [12], [13] as
well as plant growth methods for comparison. Video frame
generation is very similar to plant growth prediction because
the movement of an object is predicted over time in both tasks.
The task of video prediction estimates the next motion of a
moving object, which is very similar to the growth of a plant
in our plant prediction task if the moving object is considered
as a plant. In other words, object motion corresponds to plant
growth in our work.

The future plant images generated by U-Net [3], U-Net-
LSTM [3], MC-Net [12], and HP-Net [13] are evaluated.
The experiments of the existing methods were conducted
by directly putting a sequence of plant images into the
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FIGURE 9. Comparison of plant image prediction results from three datasets. The first and second rows from the Averystwyth [19] dataset, the third and
fourth rows from our Butterhead dataset, and the last two rows from the Komatsuna [20] dataset. Note that the background is not included to the task of
plant image prediction, and the object of a plant only is predicted. Artifact in the background occurs during color reconstruction.

networks instead of video frames. Fig. 9 shows the experi-
mental results. For comparison in detail, take a closer look
at Fig. 9. Fig. 9 (a) shows the RGB ground truth while
Figs. 9 (b) [3] and 9 (c) [3] show the experimental results
from the existing growth prediction methods. The only dif-
ference between the two methods is how to fuse multiple
encoded inputs. Fig. 9 (d) [12] and (e) [13] show the
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respective results from MC-Net and HP-Net, which are used
for video prediction.

As shown in Fig. 9 (b), in the existing U-Net leaves growth
is not predicted correctly. The shapes of the individual leaves
are distorted. Moreover, the leaves are blurred and heavy
artifacts occur. U-Net fails to detect the growth movement
in the time-series data because of the simple concatenation
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FIGURE 10. Intermediate outputs of the proposed network structure. (b) shows the outputs of the fourth STN from the top, (c) the outputs of the shape
estimation subnet, and (d) the final RGB outputs of the network. Note that the numbers in (b) and (c) indicate the loU.

TABLE 2. PSNR and SSIM comparisons of U-Net, U-Net-LSTM, MC-Net, HP-Net and the proposed network.

Dataset Metric Algorithm

U-Net [3] U-Net-LSTM [3] MC-Net [12] HP-Net [13] Proposed

PSNR(dB 30.08 30.29 30.36 3031 30.55

Aberystwyth [19] SSH(\/[ : 0.8283 0.8372 0.8348 0.8316 0.8425
Butterhead PSNR(dB) 2161 22.04 2256 2234 2295
SSIM 0.7607 0.7910 0.7830 0.7769 0.7862

Komatsuna [20] |—PSNR(B) 2535 2522 25.02 24.66 25.95
SSIM 0.8937 0.8945 0.8995 0.8904 0.9042

fusion, consequently leading to inaccurate prediction of the
subsequent leaf.

Replacing concatenation with LSTM for fusion improves
the growth prediction of the individual leaves, as shown
in Fig. 9 (c). Compared with U-Net, we can see that
U-Net-LSTM estimates the shape of individual leaves more
accurately. The importance of LSTM in time series data is
also confirmed in the other methods. Note that all the methods
except for Fig. 9 (b) adopt one or more LSTMs in the network
architecture.

The first result image in Fig. 9 (d) is similar to the ground
truth. Without leaf artifact, the leaf boundary is less distorted
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and the individual leaves are well generated to the right
size. However, the second shows more artifacts than the first.
At the beginning of plant growth, the amount of growth over
time can be clearly recognized at a glance. However, as the
growth is matured, its growth rate decreases. For this reason,
we can see that the leaf shape prediction is poor in the second
result compared to the first. MC-Net is originally divided into
motion and content encoders as our proposed network struc-
ture is divided into shape estimation and color reconstruction
subnets. For the comparative experiments, we use motion
encoders to predict the leaf shape and content encoders to
replenish the leaf color. Fig. 9 (d) shows that the adoption
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FIGURE 11. The aligned images with STN. (a) is the output of S;_5 — §t+1' (b) is the output of S;_, — §t+l' (c) is the output of
St—1 — St41. and (d) is the output of S; — S ;.
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FIGURE 12. Comparison of different shape image types.
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One day

FIGURE 13. Comparison for different time intervals.

of content encoders in MC-Net improves the textures of the
plant leaves compared to Fig. 9 (b) and Fig. 9 (c), for which
no content reinforcement modules are used.

Fig. 9 (e) achieves a similar performance with less artifact
for the first and second images, regardless of the degree of
plant growth. However, if individual leaf is observed closely,
they grow less, so the leaves are either comparatively smaller
or shorter. And the overall shape of the leaves is distorted
compared to the ground truth. HP-net originally consists of
pose estimation and image generation. Similar to MC-Net,
we predict the shape of plant leaves with pose estimation for
the comparative experiments and enhance the texture inside
the plant leaves using image generation. Three convolutional
LSTMs are used for the pose estimation. Because of the poor
posture estimation, the leaves do not grow properly and the
shapes are distorted. The image generation subnet creates
the final image by concatenating the difference between the
t-th and (¢ + n)-th pose with the #-th RGB image. Look at
the leaf texture in Fig. 9 (e), the texture is blurred. These
experimental results show that the image generation subnet
performs poorly in plant growth prediction.

The proposed method in Fig. 9 (f) shows highly accurate
prediction of plant leaves. It is superior to the existing meth-
ods in terms of plant boundary, artifact, and blur. In particular,
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"’
(a) Ground Truth

FIGURE 14. Comparison between results obtained with and without
shape output.

(b} w/o Shape Output  (c) w/ Shape Output

the proposed method performs better in predicting the plant
leaf shapes than the existing methods. This is because the
STN first aligns the plant leaves, and then they are fused with
LSTM for leaf shape prediction. Our experimental results
demonstrate that the blur is reduced while the texture of the
leaves is enhanced. In addition, if the execution time is com-
pared, the conventional U-Net-LSTM [3] takes 3.298 seconds
while the proposed method takes 3.351 seconds. The existing
method predicts a future plant image directly from RGB
inputs. On the other hand, the proposed method consists of
two subnets (shape estimation and color reconstruction). So,
the network is more complex and takes longer to go through
STN. However, the usage scenario of the proposed method
does not require real-time processing. The proposed predic-
tion is used for the control of plant cultivation environment
whose interval is relatively long (one-day at least). In other
words, the prediction is made every day, and based on the
prediction, the environment factors of the plant factory are
controlled.

Fig. 10 shows the intermediate outputs of the proposed
network shown in Fig. 2. Initially, the shape inputs are aligned
to the target, S;+1 by passing through the STN. Fig. 10 (b)
shows the STN output for the input S;. The aligned outputs
are then fused with the U-Net with two LSTMs to estimate
the shape output, which is shown in Fig. 10 (c). If the IoU
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(a) Ground Truth

(b) w/o STN

(c) w/ STN

¥

ye yo

(d) Ground Truth (e) w/o STN () w/ STN

FIGURE 15. Comparison between results obtained with and without STN. (a) gray ground truth images, (b) the outputs of the shape estimation subnet
without STN, (c) the outputs of the shape estimation subnet with STN, (d) RGB ground truth images, (e) the final RGB outputs of the network without STN,
and (f) the final RGB outputs of the network with STN. The numbers in (b) and (c) represent the loU. The results for the Averystwyth[19], Butterhead, and

Komatsuna[20] datasets are shown from the top to bottom rows.

values (the measure of binary shape estimation) are compared
between Figs. 10 (b) and (c), the accuracy of the shape output
is higher than that of the STN output, as expected. The result
confirms that the shape estimation subnet can generate a
shape image that is more accurate than the affine-transformed
version. The final RGB output in Fig. 10 (d) shows that
the leaf texture is restored through the RGB reconstruction
subnet.

Table 2 shows the SSIM and PSNR comparisons of the
results from U-Net, U-Net-LSTM, MC-Net, HP-Net, and the
proposed network. Please, note that SSIM and PSNR are
quantitative evaluation metrics for digital images. The former
measures scene structure similarity while the latter does the
error of image signals. The formulas for SSIM and PSNR are
as follows.

Quapp + C1) 2oap + C2)
(13 + 1+ C1) (13 + pp + C2)
where p is the mean, o is the standard deviation, C is a pre-
defined constant

SSIM(A, B) = 9

2

MSE

where s is the maximum value in the image and MSE indi-
cates mean square error. Detailed explanations are provided
in [41], [42].

Overall, U-Net-LSTM and MC-Net achieve better results
than HP-Net and U-Net among the conventional networks,
and our proposed network achieves the best quantitative
results.

PSNR = 101log

(10)
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Fig. 11 shows the intermediate results of the proposed
network. The (t — 3)-th ~ t-th input images are aligned to the
(t + 1)-th image with STN as a preprocessing. As can be seen
in Fig. 11, the accuracy of STN is higher if the time interval
between the current image and the target image is short. The
STN output of S; — §t+ 1 with the shortest time interval is
the most similar to ground truth. This is straightforward as
expected. By aligning each input to the target as a prepro-
cessing, the shape estimation subnet efficiently works, and it
can generate better accurate shape.

D. EFFECT OF SHAPE IMAGE TYPES

The proposed shape estimation subnet runs in the gray
domain. Its performance is compared for the different image
types of binary, gray, and RGB images. As shown in Fig. 12,
prediction with binary images causes blur and shape distor-
tion in the final RGB output, resulting in poor visual quality
and inaccurate shape estimation. RGB inputs are poor at
predicting the shapes of the leaves, leading to shape boundary
artifacts. Note that for RGB inputs, the color reconstruc-
tion subnet is not needed, and the shape estimation subnet
works only on RGB. The proposed gray inputs accomplish
less blur and better texture restoration for each leaf as con-
firmed in Fig. 12 (e). Comparing Fig. 12 (c¢) with Fig. 12 (d)
and Fig. 12 (e), we can see the importance of the separate
shape estimation. In addition, gray images, which are simpler
than RGB images and contain more information than binary
images, are the most suitable for the shape estimation sub-
net. Recall that for RGB inputs, the shape estimation subnet
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(a)

(b)

(c)

(d)

FIGURE 16. Comparison between shape estimation subnet structures.
(a) Ground Truth (b) Proposed (one LSTM) (c) Proposed (two
Concatenations) (d) Proposed (two LSTMs).

generates the final RGB output without the color reconstruc-
tion subnet, unlike the binary and gray inputs.

E. EFFECT OF TIME INTERVAL

When time-series plant images are fed into the network,
the time interval between inputs is increased to identify its
effect on the plant growth prediction accuracy. The proposed
network is evaluated for the two time intervals, of one-day
and two-days. As shown in Fig. 13, the capability of plant
growth prediction is superior for the one-day interval rather
than the two-days interval as expected.

F. ABLATION STUDIES

The proposed network is evaluated by changing its structure
to demonstrate its superior performance. First, the shape
output in the shape estimation subnet is removed to find
its importance as a constraint. Fig. 14 shows the results of
the experiment with and without the shape output. Note that
‘with shape output’ means adding a shape loss at the output
of the shape estimation subnet. As shown in Fig. 14 (b),
the leaf boundary is not restored properly for the case of
‘without shape output’. The results are closer to input rather
than ground truth. For the case of ‘with shape output’ in
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Fig. 14 (¢), plant leaf shape prediction is better without arti-
fact, and unlike ‘without shape output’, it is closer to the
ground truth than the input. This confirms the significance
of the shape constraint.

Next, our network is compared with the network with-
out the STN preprocessing to know the effectiveness of the
STN. If there is no STN preprocessing, the boundaries of
the leaves are not clear and their shape distortion is severe.
On average, the IoU value is lower when STN preprocessing
is not performed. In particular, the second row of Fig. 15 (b)
shows a significant difference between with and without STN
preprocessing in IoU values. As a result, we can see that
the alignment of the plant shape before the shape estimation
subnet can contribute to clear and less distorted shape.

Finally, we evaluate the performance of different shape
estimation subnet structures. The proposed subnet is com-
pared to two structures. One is to use a single LSTM, and
the other is to fuse multiple inputs by concatenation instead
of the proposed LSTM fusion. As confirmed in the red box
in Fig. 16 (b), the size of the predicted leaf is still small.
This means that ‘one LSTM’ fails to predict the plant growth
properly. For concatenation in the red box of Fig. 16 (c),
we observe a gray boundary artifact in the outer area of the
leaf. This is an error caused by the poor plant shape predic-
tion. The proposed method shown in Fig.16 (d) is the most
similar to the ground truth. This demonstrates that fusing with
two LSTMs produces the best results.

V. CONCLUSION
In this paper, we proposed a new plant growth prediction
network, which consists of two subnets; shape estimation
and color reconstruction. In the former, the shape of the
plant leaves is estimated with gray images to increase the
accuracy of affine transformation by the STN. Then, the latter
performs color reconstruction by the hierarchical fusion of
shape and RGB images with auto-encoder. Unlike existing
networks, we first align four shape inputs with a future target
as a preprocessing, and this achieves better shape prediction.
We evaluate three different kinds of plant datasets where the
Butterhead dataset is created by growing plants ourselves
in plant factory. Diverse experiments demonstrate that the
proposed network shows the superior prediction performance
for plant growth, compared with the existing plant growth
prediction method and video frame generation methods.

In the future, we will study the prediction of plant growth
using other information (e.g., illumination on leaves) as well
as plant image.
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