IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 22, 2021, accepted November 29, 2021, date of publication January 5, 2022, date of current version January 14, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3140181

Systematic Literature Review on Security Risks
and Its Practices in Secure Software Development

RAFIQ AHMAD KHAN !, SIFFAT ULLAH KHAN“1, HABIB ULLAH KHAN"2,
AND MUHAMMAD ILYAS !

ISoftware Engineering Research Group, Department of Computer Science & IT, University of Malakand, Chakdara 18800, Pakistan
2Department of Accounting and Information Systems, College of Business and Economics, Qatar University, Doha, Qatar

Corresponding authors: Habib Ullah Khan (habib.khan@qu.edu.qa) and Rafiqg Ahmad Khan (rafigahmadk @ gmail.com)

This work was supported in part by the Qatar National Library, Doha, Qatar; in part by the Qatar University Internal Grant under
Grant QUHI-CBE-21/22-1; and in part by the Department of Computer Science & IT, University of Malakand, Pakistan.

ABSTRACT Security is one of the most critical aspects of software quality. Software security refers to
the process of creating and developing software that assures the integrity, confidentiality, and availability
of its code, data, and services. Software development organizations treat security as an afterthought issue,
and as a result, they continue to face security threats. Incorporating security at any level of the Software
Development Life Cycle (SDLC) has become an urgent requirement. Several methodologies, strategies, and
models have been proposed and developed to address software security, but only a few of them give reliable
evidence for creating secure software applications. Software security issues, on the other hand, have not
been adequately addressed, and integrating security procedures into the SDLC remains a challenge. The
major purpose of this paper is to learn about software security risks and practices so that secure software
development methods can be better designed. A systematic literature review (SLR) was performed to classify
important studies to achieve this goal. Based on the inclusion, exclusion, and quality assessment criteria, a
total of 121 studies were chosen. This study identified 145 security risks and 424 best practices that help
software development organizations to manage the security in each phase of the SDLC. To pursue secure
SDLC, this study prescribed different security activities, which should be followed in each phase of the
SDLC. Successful integration of these activities minimizing effort, time, and budget while delivering secure
software applications. The findings of this study assist software development organizations in improving
the security level of their software products and also enhancing their security efficiency. This will raise the
developer’s awareness of secure development practices as well.

INDEX TERMS Software security, SDLC, security risks and practices, secure software development, secure

software engineering, systematic literature review.

I. INTRODUCTION

Secure Software Engineering (SSE) has become a signif-
icant paradigm in the development of secure software for
the software industry in recent years as security problems in
the SDLC are difficult to address. Information and Commu-
nication Technology (ICT) has undeniably changed human
lives, communications, the digital economy, socialization,
and entertainment. Similarly, the market for internet-enabled
applications is increasingly increasing. Therefore, there is an
ever-growing demand for trusted software applications. Soft-
ware security is the key to the software’s success, especially in

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Cassano.

5456 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

today’s fast-paced and technology-oriented world. Software
and technology have become such an inseparable part of
our lives that it’s virtually impossible to imagine a sector
that doesn’t employ them in its day-to-day operations. The
world in every aspect has been modernized by an immense
use of software systems. Software security ensures that the
CIA (Confidentiality, Integrity, and Availability) of data and
services are not compromised [1], [2]. This can only be done
if the security is considered during all SDLC phases [1], [2].

To incorporate security into the software engineering
paradigm, it should be considered from the start of the
SDLC [3], [4]. Secure software engineering (SSE) is the
process of designing, building, and testing software so that
it becomes secure, this includes secure SDLC processes

VOLUME 10, 2022

https://orcid.org/0000-0002-5983-9981
https://orcid.org/0000-0003-0339-7915
https://orcid.org/0000-0001-8373-2781
https://orcid.org/0000-0003-2531-6485

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

and secure software development (SSD) methods [5]-[7].
Most businesses view security as a post-development pro-
cess [8]. Security isn’t considered at some point in the pre-
development phase [9]. A simple error sometimes can end
up causing millions of dollars of losses in today’s business
process. But unfortunately, many software development com-
panies do not follow best practices to incorporate in SDLC
[10], [11]. This negligence includes lack of awareness, fear
of time and cost overrun, teams, are always in a hurry, use
of third-party components and, lack of qualified profession-
als, etc. Rapid developments in information and commu-
nication technologies (ICTs) have made software security
a key concern, such as the Internet of Things (IOT) and
the Internet of Every Things, the advancement of Internet-
based software systems, cloud computing, social network-
ing, and location-based services; also besides, new business
paradigms, versatile customers’ requirements, rapid advance-
ment in ICTs, and new regulations are constantly making a
software application evolve accordingly [12], [13]. As soft-
ware development becomes more complex, distributed, and
concurrent, security issues have an ever-greater influence on
software quality [14]. Insecure software harms an organi-
zation’s reputations with customers, partners, and investors;
it increases costs, as companies are forced to repair unre-
liable applications; and it delays other development efforts
as limited resources are assigned to address current soft-
ware deficiencies [14]. The majority of software programs
are designed and deployed without attention to protection
desires [15], [16]. Hidden attacking risks within or outside
the organization are emerging day-by-day, results in huge
financial loss, as well as confidentiality and credibility losses
by putting the availability and integrity of organizational data
at risk [17], [18]. Various approaches to software quality
have been developed, such as CMMI, “Microsoft Software
Development Life Cycle (MS-SDL),” “Misuse case model-
ing,” “Abuse case modeling,” “Knowledge Acquisition for
Automated Specification,” “System Security Engineering-
Capability Maturity Model (SSE-CMM),” “OWASP,” and
“Secure Tropos Methodology” [19]. However, there exists
no explicit solution for incorporating security into all phases
of SDLC.

One of the critical reasons for widespread vulnerabili-
ties is not making security a key priority [2]. Even diligent
businesses use the “fix and penetrate technique in which
security is accessed after completing the project [2]. The
drawback of this is that the application users do not apply
these patches. Further, attackers might plan and penetrate new
vulnerabilities [20]. Traditional security mechanisms mainly
focus on network systems, and they spent a huge amount
of money to make their network secure. These mechanisms
include IDS (Intrusion detection system), firewalls, encryp-
tion, antivirus, and antispyware [5], [21]. Building secure
software means building software that functions properly
even under malicious attacks [22]. This requires addressing
the security challenges through the whole SDLC, especially

VOLUME 10, 2022

in the early stages during the design phase [23]. This reduces
the risk of overlooking critical security requirements or intro-
ducing security flaws throughout the implementation process.

SDLC is a process for producing high-quality, low-cost
applications in the shortest amount of time. It offers a well-
structured step flow that assists enterprises in easily produce
high-quality, well-tested, and ready-to-use production of soft-
ware. The common phases of SDLC include requirement,
design, coding, testing, deployment, and maintenance [24].
All these phases are dependent on each other are of equal
importance. If security is not incorporated during all phases
of SDLC then the resultant product will not be vulnerable to
security threats. This is only possible if a secure SDLC pro-
cess is followed, secure SDLC ensures that security-related
activities are an integral part of the overall development
effort [20], [22], [25].

Researchers in the literature [26]-[30] have introduced and
practitioners in the software industry have adopted a wide
variety of software security practices, approaches, and meth-
ods. In addition, several companies have created maturity
models and frameworks to assess the degree of maturity of
their software security practices. On the other hand, none
of these models or structures are specifically committed to
recognizing security risks/threats and their practices in the
SDLC. As a result, they fall short of covering all aspects and
activities of a secure SDLC. Because of the importance of
a secure SDLC, it’s critical to recognize the security threats
that vendor organizations face while developing secure appli-
cations, as well as risk mitigation strategies. This will enable
software development vendors to assess their maturity and
assurance levels, as well as improve their secure SDLC per-
formance. It will also raise the level of awareness among
software engineers.

Therefore, to assess and find out security threats and their
practices in SDLC phases, we have studied the existing liter-
ature on finding software security threats/risks in SDLC and
highlighted the security practices that need to be incorporated
in SDLC phases to strengthen the security of the software
development process.

The remainder of this paper is structured as follows:
Section II provides context information and related work.
Research methodology is presented in Section III. The results
of this study are presented in Section IV. A conclusion and
future studies are presented in Section V. Finally, Section VI
discusses the study limitations.

Il. BACKGROUND

Software security is a hot subject both in academia and
industry, as it has made an important contribution to this
research field over the last two decades. Secure software is
software that cannot be accessed, updated, or targeted by
an unauthorized user. Software that has no vulnerabilities is
considered highly stable, whereas software that has at least
one vulnerability is considered vulnerable [20], [31].

5457

IEEE Access

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

A. SOFTWARE SECURITY BASIC CONCEPTS
This section describes some of the security terminolo-
gies [26], [31], [32] used in this paper:

o “Software security is the idea of engineering software
that continues to function correctly under malicious
attack [4], [33].”

o “Software security is the process of discussing an
application to discover risks and vulnerabilities of the
application and its data [34].”

o Asset: ‘““is anything that has value to the organization,
its business operations and their continuity, including
information resources that support the organization’s
mission.”

o Vulnerability: “A weakness in the design, operation,
implementation or any process in the system which
expose the system to a threat defined it as a weakness
of an asset or group of assets that can be exploited by
one or more attacker.”

o Threat: “A possible danger that may result in harm to
systems and organization.”

o Attack: “An actual event done by a person; attacker to
harm as an asset of the software through exploiting a
vulnerability.”

« Risk: “A potential for loss, damage, or destruction of an
asset as a result of a threat exploiting a vulnerability.”

o Software Security Requirement: ““is a non-functional
requirement that elicits a control, constraint, safeguard
or countermeasure to avoid or remove security vulnera-
bilities from requirements, design or code.”

« Confidentiality: “‘means to disclose information to peo-
ple or programs that are authorized to have access to that
information.”

« Integrity: “assures that a system performs its intended
function in an unimpaired manner, free from delib-
erate or inadvertent unauthorized manipulation of the
system.”

o Availability: “assures that systems work promptly, and
service is not denied to authorized users.”

o Process: “is an instance of a computer program that is
being executed.”

o Secure Software Process: ““is a set of activities used to
develop and deliver a secure software solution.”

B. SECURE SDLC PROCESSES

Software security is threatened at different points during
SDLC phases, both through inadvertent and malicious acts
by insiders and outsiders with no association with the com-
pany. The most efficient technique to eliminate software
bugs/vulnerabilities is to incorporate security and other non-
functional standards into all phases of the SDLC. Over the
years, there has been a lot of research into “high integrity,”
and researchers and practitioners have worked hard to con-
struct secure software systems. Despite all of the efforts,
software that offers high standards of security integrity is
uncommon. Even when security is a specified, requirement

5458

and security design is given to the implementation team as
input, there is no assurance that the result will be safe [35].

This section discusses the different methodologies for
incorporating security into the SDLC phases, as well as
the security practices that are commonly used in these
methodologies:

McGraw [36], [37] recommends seven touchpoint oper-
ations (““Abuse cases, Security requirements, Architectural
risk analysis, code review and repair, Penetration testing,
and security operations’’) for creating secure software, all
of which are connected to software development artifacts.
Microsoft developed the Microsoft Trustworthy Computing
Security Development Lifecycle [38] adds a set of security
practices to each step of its software development process,
as follows: during requirement phase, the security feature
requirements are defined based on the customer demands,
in the design phase the MS SDL suggests a set of activities to
be performed such as threat modeling for security risk identi-
fication, identifying components that are critical to security or
needs special attention during testing, in the implementation
phase, use of static analysis code-scanning tools and code
reviews, after completing implementation, the complete soft-
ware is tested focusing on the security-critical components
of the software during the testing phase, a final code review
of new as well as legacy code is used during the verification
phase, and finally, during the release phase, a Final Security
Review is conducted by the Central Microsoft Security team.

TSP Secure (Team Software Process for Secure Software
Development) [39] is developed specifically for software
teams to help them create a high-performance team and
prepare their work to produce the best results. The TSP
Secure focuses directly on the security of software in three
ways: planning, development and management, and training
for developers about security-related aspects and other team
members. In the initial phase; planning, the team identifies
security risks, security requirements, secure design, code
review, use of static analysis tools, unit tests, and Fuzz testing,
and produces a detailed plan to be used in the develop-
ment phase during a series of meetings. Next, the plan is
executed, and the team ensures that all the security activ-
ities are taken place. Secure Software Development Pro-
cess Model (S2D-ProM) [40] is a strategy-oriented process
model that offers guidance and support to developers and
software engineers at all level, from beginners to experts,
to build secure software. Niazi et al. [2], conducted a system-
atic literature review (SLR) to pinpoint the required practices
for developing secure software. This paper also amended
Somerville’s requirement engineering practices. After iden-
tifying best requirement practices, a framework for secure
requirement engineering named Requirements Engineering
Security Maturity Model (RESMM) was developed. Ques-
tionnaires and case studies were used to test the suggested
framework. The findings demonstrate that the proposed
framework is practical and adaptable.

Comprehensive, Lightweight Application Security Pro-
cess (CLASP) [41] is a straightforward process that

VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

consists of 24 high-level security activities that can be com-
pletely or partially integrated into software during the SDLC.
In CLASP threat modeling and risk analysis is performed
during requirement and design phase. In the design and
implementation phase, it suggests secure design guidelines
and secure coding standards [42]. Inspections, static code
analysis, and security testing are performed in the assurance
phase [43]. Correctness by Construction is a technique for
developing high integrity software [44]. The following are the
seven main principles of Correctness by Construction [44]:
expect requirements to change, know why you are testing,
eliminate errors before testing, write software that is easy
to verify, develop incrementally, some aspects of software
development are just plain hard, the software is not use-
ful by itself. AEGIS (Appropriate and Effective Guidance
for Information Security) first evaluating device assets and
their relationships, then moves on to risk analysis, which
defines weaknesses, threats, and risks [45]. According to
Subedi et al. [46], security protection is not considered in
the overall system development lifecycle due to which a
lot of security breaches occur. This paper presents a secure
paradigm that is an extension of security development prac-
tices in agile methodology to overcome this problem in web
application development.

The Secure Software Development Model (SSDM) secu-
rity training provides stakeholders in software development
with adequate security education [47]. During the require-
ments process of SSDM, a threat model is used to iden-
tify and their capabilities. The security specification must
be specialized by specifying the guidelines for achieving
security. Penetration monitoring is the only SSD operation
in the security assurance process that checks the software’s
ability to avoid the attack. Security Quality Requirements
Engineering (SQUARE) methodology allows for elicitation,
classification, and prioritization of security specifications
for information technology systems and applications [48].
Al-Matougq et al. [20], conducted a Multi-vocal literature
review to identify the best practices for designing secure soft-
ware. Based on identified best practices, a framework Secure
Software Design Maturity Model (SSDMM) was developed.
The framework was evaluated using case studies, and the
results show that SSDMM helps measure the maturity level
of software development organizations.

o It is obvious from the above discussion that incorporat-
ing security in different phases of SDLC is inevitable
for quality software. There exist various studies that
discuss the importance of incorporating security in
SDLC, however, still there exists space for further
research in this area. To address the security risks at
all stages of SDLC, there is a dire need to identify
security risks and introduce secure specialized practices
in SDLC. Therefore, to assess and measure security
threats and vulnerabilities in SDLC phases, we have
conducted a systematic literature review in this paper
to identify security risks in SDLC and highlighted the
security best practices that need to be incorporated in

VOLUME 10, 2022

SDLC phases to make the development process more
secure.

Ill. RESEARCH METHODOLOGY

A systematic literature review (SLR) was selected as the
research method for this study. “An SLR is a type of
secondary study in which primary studies are examined
impartially and iteratively to define, interpret, and discuss
evidence relevant to the research questions” [49]. According
to Kitchenham [49], [50], an SLR has three main phases:
planning, conducting and reviewing the review, as shown in
Table 1. Researchers have used the SLR process in several
domains [2], [S1]-[55].

The authors of this work completed all three phases of the
SLR. Inter-rate reliability analyses were undertaken during
the initial and final selection phases of the SLR to reduce
inter-person bias. The findings of the inter-rater reliability
review are discussed in Section 3.2. We followed all of the
processes in the three phases of the SLR, as stated in Table 1.

TABLE 1. SLR phases.

Phases Steps

Planning Research Questions

Data Sources

Inclusion and Exclusion Criteria
Search Strings

Quality Criteria for Study Selection
Primary Study Selection

Data Extraction

Data Synthesis

Documenting the extracted results

Conducting

Reporting

A. PHASE 1: PLANNING THE REVIEW
1) RESEARCH QUESTIONS
The current study conducted an SLR to identify security
threats/risks in SDLC and highlighted the security best prac-
tices that need to be incorporated in SDLC phases to make
the development process more secure. The following research
questions were answered in this study:
RQ1: What are the security risks that vendor firms should
avoid while designing secure software applications, accord-
ing to the literature?
RQ2: What are the best practices for vendor firms to follow
when designing secure software applications, as identified
in the literature?

2) DATA SOURCES
In this study, the data is gathered by an automated search.
The automated search technique uses an optimized search
string to find the most relevant literature [56]. As a result
of our research experience and the recommendations of
Chen et al. [57], atotal of six digital repositories were chosen.
The following are the digital sources that were chosen:

« IEEE Xplore

« ACM Digital Library

« Sciencedirect

5459

IEEE Access

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

o Springer Link
o Wiley Online Library
« Google Scholar (Search Engine)

3) SEARCH STRING

We generate an efficient search string based on the submitted
study questions for retrieving relevant literature from the
selected digital sources. Zhang et al. [56] following the crite-
ria of the search strings were developed using the main search
words used in the research questions and their alternatives.
To concatenate the keywords into search strings, we used
the Boolean “OR” and “AND” operators. The following
string was used to scan the digital repositories: ((‘“Risk”” OR
“Threat” OR “Issue”” OR “Challenge” OR “‘Practice” OR
“Solution” OR “Mitigation””) AND (‘“‘Software Security”
OR ““Secure Software” OR ““Secure Software Engineering”’
OR “Software Privacy” OR “Software Development Life
cycle” OR “SDLC” OR ““Global Software Development’)).

4) INCLUSION CRITERIA

For data inclusion, we adopted the following guidelines
based on parameters used by other researchers [11], [32], [55],
[58]-[61]:

o Articles related to the domain of Secure Software
Engineering.

« Papers were published between 2000 and 2020.

« Papers must provide at least one risk or practice relevant
to software development process security specifications,
design, code, testing, and maintenance security.

« Papers were peer-reviewed in conferences and journals.

TABLE 2. Study quality assessment criteria.

QA Questions Checklist Questions

QAl Does the study discuss any security risk/threat of
software development?

QA2 Does the study address the use of any secure software
development practice?

QA3 Are the aims of the research clearly stated without
ambiguity in the paper?

QA4 Are the data collection methods adequately defined?

QAS Is the research useful for the software industry and
research community?

QA6 Are the limitations of the study mentioned?

5) EXCLUSION CRITERIA
For data exclusion, we followed the guidelines based on
parameters used by other researchers [11], [32], [55],
[58]-[61]:
o Papers that don’t deal with secure software development
and aren’t related to the research questions.
« Papers that do not describe software security risks and
practices in detail.
« Publications are not peer-reviewed and do not conform
to a complete book’s abstract, an editorial, or a letter.
o Paper that is not in English.
« Duplicate papers were not considered.

5460

6) STUDY QUALITY ASSESSMENT
The final selected publications’ data extraction and quality
assessment (QA) were done at the same time. We established
a checklist to objectively and subjectively assess the primary
studies that were chosen. The checklist was generated using
the guidelines given in [61] (Table 2). We have designed
seven questions on the QA checklist (QA1-QA7). For each
question, the following assessment was made:
o We gave an article a score of 1 if it answered the checklist
question fully.
« For a partial answer, we gave it a score of 0.5.
« If it did not cover the question on the defined checklist,
we gave it a score of 0.
The quality evaluation aims to see how well selected primary
studies can be used to answer study research questions. As a
result, Appendix contains the score assigned to each primary
study. The credibility, integrity, and relevance to answering
the study questions were used to evaluate the quality of the
studies.

B. PHASE 2: CONDUCTION THE REVIEW
1) PRIMARY STUDY SELECTION
The tollgate method suggested by Afzal et al. [62] was used
to refine the research articles found during primary study
collection. There are five steps to this method (see Table 3):

Phase 1: Using search terms to find related articles.

Phase 2: Inclusion and exclusion of articles based on titles
and abstracts.

Phase 3: Inclusion and exclusion of articles based on
introduction and conclusion section.

Phase 4: Inclusion and exclusion of articles based on the
full-text reading.

Phase 5: Final collection of primary studies for inclusion
in the SLR based on study quality assessment criteria.

Initially, the developed search string and on the
base of inclusion and exclusion criteria was used to
retrieve 12114 papers from the selected online databases.
The tollgate method [62] yielded a shortlist of 121 papers for
consideration in the primary study. Finally, the quality assess-
ment requirements were applied to the shortlisted papers.
Appendix contains a list of the primary studies that were
chosen.

2) DATA EXTRACTION AND SYNTHESIS

The primary (first) author extracted all of the data in this
publication by using the inclusion and exclusion criteria as
well as the study quality assessment research questions. The
other authors, on the other hand, evaluated the categories
and subcategories of security risks, as well as their meth-
ods, by dispersing them throughout the SDLC phases. Inter-
rater reliability analyses were used to eliminate inter-person
bias. Three external reviewers from the Software Engineering
Research Group (SERG UOM) randomly selected fifteen
papers from the first phase of the tollgate process and
applied the tollgate process selection phases (phases 2-5)
as well as the quality assessment criteria. We calculated

VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

TABLE 3. Selection of articles using tollgate approach.

TABLE 4. Software security risks in requirement engineering phase.

S. Electronic ~ Phase- Phase- Phase- Phase- Phase-
No Databases 1 2 3 4 5
1 1IEEE 1227 80 47 38 37
Xplore
2 Science 1726 101 31 25 22
Direct
3 Springer 3873 72 37 19 17
Link
4 ACM 3928 175 29 14 13
Digital
Library
5 Wiley 426 64 14 8 8
Online
Library
6 Google 934 244 53 26 24
Scholar
(Search
Engine)
Total 12114 737 211 130 121

the nonparametric Kendall’s coefficient of concordance to
examine inter-rater agreement among the reviewers (W) [63]
values. The reviewer’s rate W on a scale of 0 to 1, with 0
indicating complete disagreement and 1 indicating perfect
agreement. W = 0.78 for fifteen publications chosen at ran-
dom, showing a high level of agreement between the authors
and the external reviewers. To acquire the results against the
research questions, all of the collected data was arranged by
rephrasing the security threats and practices according to the
study questions.

C. PHASE 3: REPORTING THE REVIEW

1) QUALITY ASSURANCE OF PRIMARY SELECTED STUDIES
The overall score for each QA question was determined and
is presented in Appendix. The QA score for each primary
sample was determined using the seven QA questions in
Appendix. According to the data, about 88 percent of the
primary studies received a score of >57 percent on the QA
questions, implying that the primary studies chosen are rele-
vant to the study research questions.

IV. RESULTS
In this section, the results of the SLR study are discussed:

A. SOFTWARE SECURITY RISKS (ANSWER RQ1)

This section aims to present security risks/threats to assist
software development organizations to avoid these risks when
designing secure software development. We have obtained a
list of 156 software security risks using the SLR methodol-
ogy. The identified security risks, along with the frequencies
are discussed in the following subsections:

1) LACK OF PROPER ATTENTION TO SECURITY ISSUES
DURING THE REQUIREMENT ENGINEERING (RE) PHASE

The findings of this study show that security risks in the
RE phase of the SDLC are a highly rated factor, in the
development of secure software. It stands on the top (97.5%)

VOLUME 10, 2022

S.No | Security Risks in Requirement Engineering Phase (NF:: ;11)
i Security requirements are often neglected or 91
considered as a non-functional requirement
ii. Lack of security requirements negotiation and 56
management
iii. Lack of security requirements validation 49
iv. Improper risk assessment 34
v. | Lack of security risk analysis 33
vi. Lack of experience, knowledge, guidance, and
security training during security requirement 26
documentation
Vii. Lack of developing threat modeling 25
viii. Lack of security requirements elicitation activity 21
iX. Improper security requirement identification and 20
inception
X. Lack of secure requirement documentation 15
Xi. Lack of security requirements prioritization, 15
management and categorization
xii. | Lack of security document checklist 13
xiii. Lack of shared understanding of requirement 10
definitions
Xiv. Improper plan for secure requirement authentication, 9
authorization and privacy
XV. Lack of development of corresponding security 6
requirements artifacts
XVi. Lack of security requirements awareness in 5
customers/users
XVii. Improper security requriements mapping 3
Xviii. Insecure deserialization 3
Xix. Improper identification of security requirements 2
dependencies
XX. The software development company has little ability 2
to implement security features in small increment
XXI. Improper identification of critical and vulnerable 2
assets
XXii. Change of requirement breaks 1
xxiii. | Lack of security requirements repository updating 1
XXiv. Requirement adjustments make it impossible to 1
connect requirement specifications to security goals
XXV. Lack of security prototype 1

amongst all the identified security risks. Existing literature on
requirement security has highlighted different security risks
that might occur if security is not incorporated from the begin-
ning. Some common security risks that might occur during
the requirement phase of SDLC are listed [2], [24], [64]-[67]
in Table 4.

2) LACK OF PROPER ATTENTION TO SECURITY ISSUES
DURING THE DESIGN PHASE

The stages of the SDLC where the security aspect is con-
sidered, according to our findings, can differ from study to
study. Design flaws are one of the most common sources
of security threats in software systems [20], [68]. It has
been observed, that in most cases, software bugs are found
during the design process of the SDLC [69]. The design
process of the SDLC serves as the foundation for designing
a secure software system [70]. Reducing risks in this step
can reduce the effort needed in subsequent phases [19], [32].
As it can be observed from the findings of this study, security
risks are reported more frequently in the design phase of

5461

IEEE Access

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

SDLC. Table 5, presents some of the most common security
problems that occur during software design [6], [20], [68],

TABLE 6. Software security risks in coding phase.

[71]-[73]: S. No Software Security Risks in Coding Phase (;ngl)
i. | Tampering: is the unauthorized modification of | 54
TABLE 5. Software security risks in design phase. data
ii. | SQL Injection 37
S.) . . Freq iii. | Cross Site Scripting, cross-site request forgery 35
Risk D Ph
No Security Risks in Design Phase (N=121) iv. | Denial of Services: is the process of making a | 32
i Lack of developing threat modeling during the 57 system or application unavailable
" | design phase v. | Repudiation: is the ability of users (legitimate or | 29
i Lack of attention to follow security design 29 otherwise) to deny that they performed specific
" | principles actions or transactions
Lack of security design awareness, guidance, and 27 vi. Information Disclosure: is the unwanted exposure | 29
1. training of private data
iv. | Improper secure design documentation 23 vii. | Elevation of privilege: occurs when a user with | 28
Lack of building and maintaining abuse case limited privileges assumes the identity of a
V. 23 privileged user
models and attack patterns - -
Improner seourity desien review and its viii. | Spoofing: An attempt to gain access to a system | 26
vi. Pf_ pt' Y & 23 by using a fake identity
- {erlklca; :ion loning data flow di 20 ix. | Password Conjecture: Lack of password | 26
vii. ack of developing data flow diagram complexity enforcement
Vi Improper conduction of design and architecture 20 x. | Buffer and Array Overflow 25
- ;ecurity revii\y oo sh Xi. Weak encryption, insecure communication 14
X Tproper Te8 1,~1C 1on' oS are'resm.lrce accfess 19 xii. | Messy code, code bad smells, dead code 13
x. | Lack of security design specification review 17 Code. C T Iniecti o
. oae, Command Injection
xi. | Lack of establishing security design requirements 16 X!” F i b]J 5
Lack of implementation of security design XV Om,la STINg problems .
xii. | decisions: (Cryptographic protocols, standards, 13 xv. | Session-Id Vulnerable, Session-Id Theft 6
services, frameworks, and mechanisms) xvi. | Hacking 5
xiii. | Lack of defense in depth 12 xvii. | Man in the middle: Man-In-The-Middle Attack: | 5
xiv. | Lack of access control and traceability 10 This attack intercepts communications between
xv. | Lack of use of security design patterns 8 t]\vlwi 101(:“,11):)“%“& F I
. u ointer perererence
.| Lack of design data encryption and validation v - .
XVl features 7 xix. | Insecure application programming, lack of | 4
xvii. | Improper design audit logging features 5 ;e:ulralty i;(;(g;f(agi:lv:;g language 7
XX.
xviii. | Failure to handle error 5 - pay - - -
- - - XXi. Software security, often, fail because their | 3
Xix. Improper evaluation of risks from third-party 4 development is generally based on ad-hoc
components foundations or follow traditional development
XX The software appears to have more bugs as it 4 processes
i becomes more complex xxii. | Sensitive information in source code 3
xxi. | Race conditions _ 3 xxiii. | Unsafe threading 2
Xxil. Usage 9f Vulnferable components and sensitive) xxiv. | Bandwidth Usage 3
application details - -
xxiil. | Refactoring practices breaks security constraints 1 xxv. | Failure to Restrict URL Access 2
xiv. | Lack of diversification and obfuscation 1 xxvi. | Lack of difference between the developer's roles | 2
- Usi S with K I ol and security reviewer role to have objective
XXV. sing components with known vulnerable 1 results
xxvii. | Invalidated Redirects and Forwards 2
xxviii. | Accessible Database 2
XXiX. HTTP application instead of HTTPS 2
3) LACK OF SECURE DEVELOPMENT OR CODING xxx. | Phishing through framework 2
The selection of appropriate coding language and classifica- xxxi. | TCP response timestamp 2
tion of modules is a challenging task. Each phase of the SDLC o e - v
. XXXii. ontinuous code changes make completing the
must include a variety of appropriate SE.‘,Clll"lty protections, assuring activities difficult
analyses, and countermeasures that result in more secure code xxxiii. | Insecure Direct Object References 1
being released [74], [75]. Table 6 presents, software security xxxiv. | DNS Hijacking 1
issues during the coding phase of SDLC [11], [74], [76]-[78]: xxxv. | Send fake seismic parameters 1
Improper authentication and authorization mechanisms XXXV Commuous(t Changlfr‘tgl of t{le dg)"elopg{elt“ 1
. . .. processes (to support lesson learned) conflicts
refer to the erroneous implementation of authentication func- with audit need to uniform stable processes
tions and access-control policies [79]. Authentication and xxxvii. | Autocomplete attribute not enabled 1
authorization are critical components of basic security pro- xxxviii. | POST change requests for GET 1
cesses, and they are particularly important in the production xxxix. | POST directives with invalidated parameters !
of secure software [80]. Microsoft uses STRIDE to model .| Default Server Page !
threats to their systems; threats are defined by looking into di._| Links Injections !

5462

VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

TABLE 6. (Continued.) Software security risks in coding phase.

TABLE 8. Software security risks in deployment phase.

dii. | SSL weak cemﬁ.cafes . ! S- Software Security Risks in Deployement Phase F_req
xliii. | BPEL State Deviation and Flooding Attacks 1 No (N=121)
v Slicing attacks 1 i. | Lack of default software configuration 9
Y Cookie poisoning 1 ii. | Logout incorrectly implemented 5
: iii. | Improperly enabled services and ports 3
iv. | Ignoring security breaks 3
TABLE 7. Software security risks in testing phase. v. | Lack of output validation 3
vi. | Improper use of secure APIs 2
S Freq vii. | Lack of security feed back 2
No Software Security Risks in Testing Phase (N=121) viii. | Lack of response in planning and execution 2
i. | Lack of Penetration Analysis Security Testing 32 ix. | Concurrent connections from different IPS 1
i Lack of Static and Dynamic Analysis Security 30 X. | SMB signature (Server Message Block) Not | 1
" | Testing required
iii. | Lack of final security review 26 xi. | Lack of certification in final release and archive 1
iv. | Lack of Fuzz Testing 16 xii. | Lack of ensures to specify customer expectations | 1
v. | Brute Force Attack 7 and requirement.s
vi Lack of developing threat models: as it helps to 7 xiii. | Improper code sign-off 1
" | develop test cases or test plans xiv. | Improper data sanitization and safe disposal 1
vii. | Lack of Functional and Non Functional Testing 6 xv. | Lack of threat models updating 1
viii. | Lack of manually reviewing the code 6
ix. | Lack of Automatic Patch Generation 5
X. | Lack of Unit Testing 5 TABLE 9. Software security risks in maintenance phase.
Various kinds of Attacks (viruses,) malware,
xi. | Trojan Virus: A type of virus that is well kngwn 5 S. Software Security Risks in Maintenance Phase F_req
for causing issues and destruction to computers is a No N=121)
Trojan virus. i. | Lack of security trust 18
xii Lack of developing test plan to describe software 3 ;i | Lack of proper methods to find out new threats in 15
" | testing scope and activities " | the system
Xiii Illegal seismic parameters, incomplete/inconsistent 3 ;i | Lack of finding the attack surface area for the new 13
" | parameter validation threats
xiv. | Invalid correct use of Security Testing Tools 3 iv. | Not developing security patches for the threats 12
«. | Tests are, in general, insufficient to ensure the 1 v. | Improper configuration, vulnerability management 3
" | implementation of security requirements and change control
. | Tests do not cover in general, all vulnerabilities) vi. | Security activities increase the cost of the software 7
XVi.
cases vii. | Timing attacks 5
xvil. | Security tests are in general difficult to automate 1 viii Inability to run software updates or change 5
xviii. | Lack of Redundancy Analysis 1 " | usernames and passwords
ix. | Lack of Log Optimization 4
X Lack of educate the users in using the software 4
" | application in a secure manner
the possibilities of spoofing identity, tampering with data, Xi. | Need to verify vulnerability correction 4
P xii. | Lack of Maintenance of Software Security 2
repudiation, information leakage, denial of services, and ele- — - i
. xiii. | Lack of relationship management in bug reporting 1
vation in the given situation [71]. The present study identi- - — -
. K N o L . Lack of continuous monitoring and improvement 1
fied 63 articles to discuss authentication and authorization XV | of security assessment
are essential parts of security in the development of secure «v. | Lack of collaboration with external organizations)
software. Spoofing, tampering, repudiation, information dis- In promoting system security i
1 denial of .) . £ privil d fail xvi Lack of piloting innovative ideas, technologies and 1
C OSUI‘C., enial of services, elevation o privilege and 1ai1 gre " | security tools to improve organizational security
to restrict URL access are some of the most common security i | L-ack of government assistance for proper rules for)
issues that hamper the process of secure authorization and "| cybercrime

authentication [31], [64], [71], [72], [81].

Incorrect input validation refers to the lack of or incorrect
validation of input provided by a user via the application’s
user interface. Injection attacks take advantage of the lack
of input validation controls to allow malicious inputs to be
passed in, which can be used to obtain elevated rights, alter
data, or crash a system [82]. Code injection attacks can breach
data security, cause a loss of services, and harm thousands of
users’ systems [83]. This study identified; Cross-site script-
ing, Cross-site request forgery, format string problems, code
and command injection, autocomplete attribute not enabled,

VOLUME 10, 2022

POST change requests for GET, POST directives with inval-
idated parameters, and accessible database are injection vul-
nerabilities from the literature [5], [11], [79], [83], [84].

The vulnerabilities in software systems include outdated
software/firmware, default usernames and password, pass-
word conjuncture, and the inability to run software updates
or change usernames and passwords, are leveraged to gain
initial access to systems of corporate targets which then can
be further exploited [6], [85], [86].

5463

IEEEACC@SS R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

TABLE 10. Secure requirement engineering practices (SREP).

SREP1 Develop Threat Modeling (Freq: 25)
SREPI1.1 Identify threat origin with the help of threat modeling in the requirement phase
SREP1.2 Follow STRIDE Threat Model

SREP1.3 Follow DREAD Threat Model

SREP1.4 Analyze the threats faced at the time of requirement development

SREP2 Security Requirement Elicitation Practices (Freq: 31)

SREP2.1 Elicit and categorize safety and security requirements

SREP2.2 Take into consideration organizational and political issues

SREP2.3 Use scenarios to elicit sensitive data and communication in terms of authentication, authorization, privacy, system maintenance

security requirement
SREP2.4 Identify stakeholders

SREP2.5 Identify the operating environment of the system

SREP2.6 Use concerns related to business to motivate security requirement elicitation
SREP2.7 Identify information assets

SREP2.8 Identify functional and non-functional security requirements

SREP2.9 Search for domain constraints

SREP2.10 Record rationale for security requirement

SREP2.11 Gather security requirements from different and various views

SREP2.12 Use hypothetical cases to elicit security requirements

SREP2.13 Identify operational process
SREP2.14 Remove any ambiguous requirements

SREP2.15 Reuse security requirements

SREP2.16 Determine and consult stakeholders of the system

SREP2.17 Record security requirements sources

SREP2.18 Assess system security feasibility

SREP3 Perform Secure Requirement Identification and Inception (Freq: 20)

SREP3.1 All stakeholders, customers, clients need to be agreed on the requirement definition

SREP3.2 Illustrate the security needs with different perspectives, analyze them, priorities and then specify

SREP3.3 Identification of security goals

SREP3.4 Identify high-level functional security objectives, requirements

SREP3.5 Identification of potential attackers of the software

SREP3.6 Utilize brainstorming technique to aggregate identification security requirement

SREP3.7 Identify system stakeholders to improve identification security requirement

SREP3.8 Check that identification security requirement meets your standard

SREP3.9 Set forth the security objectives to address the needs identified

SREP3.10 For each security objective, security requirements are identified along with the functional and non-functional requirements

SREP3.11 Capture and define non-functional security requirements as attributes of the software

SREP4 Perform Security Requir t Analysis and Negotiation (Freq: 28)

SREP4.1 The main responsibility is to conduct product security risk analysis to ensure early identification of potential security requirements and
constraints.

SREP4.2 Attack trees modeling is one of the techniques suggested to be used for analyzing security risks

SREP4.3 Analyze tradeoffs between cost and protection provided by security controls

SREP4.4 Security Risk Assessment: use DREAD model

SREP4.5 Identify security issues with STRIDE by classifying attacker goals
SREP4.6 Perform threat landscaping

SREP4.7 Data comprehensiveness
SREP4.8 Grouping of Requirements
SREP4.9 Write down the misuse cases for each secure requirement identified

SREP4.10 Define security of system boundaries
SREP4.11 Verify the misuse case strength in understanding possible attacks

SREP4.12 Make use of checklists to analyze security requirements

SREP4.13 Conflicts Resolution: Consider conflicts and how to resolve them

SREP4.14 Sort out security requirements through a multi-dimensional approach

SREP4.15 Identify priorities in security requirements

SREP4.16 Provide software to support negotiations

SREP4.17 Perform risk analysis to address the security issues in requirement development
SREP5 Perform Secure Requirement Mapping (Freq: 3)
SREPS.1 Map all the non-functional security requirements identified with functional requirement
SREP5.2 Make the mapping explicit, identify the use cases adapted to misuse cases

SREP5.3 Translate all the negative and non-actionable requirements to positive and actionable requirements
SREP6 Security Requirement Documentation Practices (Freq: 15)
SREP6.1 Incorporate security needs, objectives, and requirements in the final documentation
SREP6.2 Specify security policies, standards, and reference guidelines for security requirements
SREP6.3 Explain how to use the security document

SREP6.4 Make a business case for the system concerning security

SREP6.5 Define specialized security terms

SREP6.6 Help readers find information

SREP6.7 Make the document easy to change

SREP6.8 Include a summary of the security requirement

SREP6.9 Illustrate threat landscaping, risk likelihood, and mitigation strategy

5464 VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

TABLE 10. (Continued.) Secure requirement engineering practices (SREP).

SREP7 Perform Secure Requirement Review, Verification & Validation (Freq: 25)

SREP7.1 Review documentation against the objectives and needs

SREP7.2 Check the documentation against the security requirement documentation acceptance test parameters

SREP7.3 Perform Secure Requirements Review

SREP7.4 Software products should be certified according to security requirements

SREP7.5 Validate that software artifacts and processes no longer bear the unacceptable risk

SREP7.6 Identification of attackers interest and capabilities in the resources/assets of a piece of software

SREP7.7 A threshold of acceptable security can be defined by using, security index.

SREP7.8 Identify validation checklists

SREP7.9 Specify low-level security requirements to remove security errors

SREP7.10 Use multi-disciplinary teams to assess security requirements

SREP7.11 Use prototype to animate security requirements

SREP8 Perform Secure Requirement Prioritization and Management (Freq: 21)

SREPS.1 Perform Requirement Specification

SREPS.2 Identify policies for management of security requirements

SREP8.3 Specifically, define each security requirement

SREP8.4 Risk mitigation should be conducted in a coherent and a cost-effective manner

SREP8.5 Governance: Practice that helps organize, manage, and measure a software security initiative

SREPS8.6 Evaluate and manage product security risks throughout the project

SREP8.7 Risk ranking to prioritize and determine the risks that should be avoided

SREP8.8 Preservation of confidentiality, Integrity, Availability, Usability, should be specified to mitigate identified threats

SREP8.9 Establish and manage the project secure development process

SREPS.10 Define and maintain traceability manual

SREPS.11 Identify view point

SREPS.12 Define policies for change management

SREPS.13 Identify global system security requirement

SREPS.14 Asset Rating

SREP8.15 Risk estimation

SREP8.16 Identify volatile security requirement

SREP8.17 Record rejected security requirement

SREPS.18 Vulnerability measurement

SREPS.19 Perform Requirement Elaboration

SREP8.20 Threat evaluation & prioritization

SREP9 Plan for Secure Requirement Authentication, Authorization, and Privacy (Freq: 9)

SREP9.1 Plan for conflicts and conflict resolution for authentication, authorization, immunity security, non-repudiation, and system maintenance
requirement in terms of multiple accounts

SREP9.2 Define standard templates for describing authentication, authorization, immunity, privacy, integrity, non-repudiation, intrusion
detection, and system maintenance security requirement

SREP9.3 Use simple and concise language to explain authentication, authorization, immunity, privacy, integrity, non-repudiation, intrusion
detection, and system maintenance security requirement

SREP9.4 Check that authentication, authorization, immunity, privacy, integrity, non-repudiation, intrusion detection, and system maintenance
security requirement meets your standard

SREP9.5 Define change management policies for authentication, authorization, immunity, privacy, integrity, non-repudiation security, and
system maintenance requirement

SREP9.6 Use interaction matrices to find conflicts and overlaps in terms of intrusion detection security requirement

SREP9.7 Define the system boundaries in terms of privacy and system maintenance security requirements such as sensitive data and
communication.

SREP9.8 Define operational processes to gain non-repudiation, integrity, immunity, intrusion detection, and security requirement

SREP10 Assess Physical Protection, Survivability and Secure Auditing Requirement Risks (Freq: 8)

SREP10.1 Assess physical protection, survivability, and secure auditing requirement risks

SREP10.2 Be sensitive to organizational and political considerations in gaining physical protection of security requirement

SREP10.3 Use checklists for secure auditing requirements

SREP10.4 Define the system's operation environment to gain survivability security requirement

SREP10.5 Institute accountability for security issues

SREP10.6 Assess system feasibility in terms of survivability security requirement

SREP11 Methods used in security RE (Freq: 42)

SREPI11.1 UMLsec, SecureUML

SREP11.2 Secure Tropos

SREP11.3 Abuse Cases

SREP11.4 Structure Object-Oriented Formal Languages

SREP11.5 Machine learning Techniques

SREP11.6 Fuzz-Analytic Hierarchy Process

SREP11.7 Security Requirement Engineering Approach

SREP11.8 Problem Frames

SREP11.9 Tropos (i* framework)

SREP11.10 | Create and describe Misuse Cases

SREP12 Others (Freq: 52)

SREP12.1 Assess Security and Privacy Risk

SREP12.2 Institute Security awareness program

SREP12.3 All security team members have adequate security training

SREP12.4 Establish an organization policy for security

SREP12.5 Proactive approaches or top-down approaches are also qualified as preventive, as they deal with security concerns since the

VOLUME 10, 2022

5465

IEEE Access

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

TABLE 10. (Continued.) Secure requirement engineering practices (SREP).

requirement phase will drive the next development steps.
SREP12.6 It may be possible that more than one security mechanism can fulfill a security requirement.
SREP12.7 Update Requirement Repository
SREP12.8 Adopt international standards that fit your organization
SREP12.9 Identify security packages
SREP12.10 | Identify user roles and resource capabilities
SREP12.11 | Assess immunity security requirements in terms of undesirable programs
SREP12.12 | Analyze and minimize the attack surface
SREP12.13 | Identify requirement dependencies
SREP12.14 | Develop correspond artifacts analysis which examines the possible risk
SREP12.15 | Create quality gates/Bug bars
SREP12.16 | Develop security guidelines (collection of practices, checklists, code style, security specification, security function, etc)

The majority of security attacks are possible due to imple-
mentation flaws such as improper input validation, improper
authentication, and authorization mechanisms, improper ses-
sion management, and other vulnerabilities (Session-Id vul-
nerable or theft, logout incorrectly implemented, lock failed
attempts per browser session, peer-user session restriction,
and log replay feature) that compromise the application’s
intended functionality [5], [79], [87].

In MITRE’s Common Vulnerabilities Exposures database,
the latest classification of common defects by type is provided
in Common Vulnerability Enumeration [88], a list of regis-
tered vulnerabilities. As a consequence, the most common
forms of security vulnerabilities are weak encryption, explicit
password storage, insecure communication, and synchroniza-
tion errors [88]. Invalidated redirects and forwards, improper
use of secure APIs, weak encryption, insecure communica-
tion, man in the middle, and bandwidth usage are some of the
most common security issues that hamper the communication
and encryption processes [85], [88], [89].

Software security is concerned with protecting data, facil-
ities, and applications from harm caused by various types of
malware attacks (e.g., password sniffing, viruses, hijacking)
that may be mounted by various types of attackers (e.g., hack-
ers, crackers, domestic cyber-terrorists, industrial spies, inter-
national military, and so on) [87], [89]. This study identified
some of the most common malware attacks (various kinds of
viruses, malware, trojan virus, brute force attack, DNS hijack-
ing, replay attack flaws, attacker denies services to the appli-
cation by opening thousands of connections but does nothing
with them, BPEL state deviation and flooding attacks, send
fake seismic parameters, the bulleting is modified before and
during sending, the bulletin is not delivered or delivered to
the fake place, blocking of E-mail notification by a mali-
cious user, the attacker shuts down the user’s process, slicing
attacks, and cookie poisoning) which affect the processes of
secure software development [87], [89]-[91].

4) LACK OF PROPER ATTENTION TO SECURITY TESTING
ANALYSIS

The testing phase of the SDLC aims to make sure that all
the system components provide their required functionality
alone and as part of the whole system. Software testing is the

5466

most time-consuming, complicated, and costly process of the
SDLC [92]. This phase is an important component of improv-
ing the efficiency of software development projects [32].
While it is an essential part of software development, rigorous
testing is not always a focus of software engineering educa-
tion [93]. As aresult of this shortcoming, software developers
often regard software testing as a liability, lowering overall
software quality. Threat modeling is a systematic method for
identifying threats that may compromise security, and it is
considered a well-known accepted practice by the software
testing industry [94]. This phase aims to find possible bugs
and errors in the system and remove them. The present study
identified 64 papers to discuss software security risks during
software testing phase of SDLC. Some common security risks
involved in this phase are as follows [5], [22], [95]-[98]:

5) SOFTWARE SECURITY RISKS IN DEPLOYMENT PHASE
Developing secure software systems involves many chal-
lenging problems, e.g., designing authentication proto-
cols, improper configuration management, building strong
cryptosystems, devising effective trust models and secu-
rity policies [99]. Configuration management is an impor-
tant component in the secure maintenance and operation
phase [100]. This study identified (see Table 8), some of
the common software security risks which affect deploy-
ment phase of the SDLC in the development of secure
software [5], [78], [99]-[102].

6) SOFTWARE SECURITY RISKS IN THE MAINTENANCE
PHASE
Vulnerability-oriented architectural research provides a sys-
tematic and thorough approach to evaluating a wide vari-
ety of possible vulnerabilities, but it is time-consuming and
costly [91]. For estimating the severity and cost of security
threats, Table 9 presents, some maintenance and stakeholder
considerations may be considered [78], [91], [103].
Software development iterations are of limited time, often
few weeks, which makes fitting security activities (e.g., secu-
rity requirement elicitation) challenging because they are
often time-consuming” [65]. Furthermore, defining secu-
rity policies takes time and raises the cost of software
development [65]. Some of the common issues due to

VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

TABLE 11. Secure design practices (SDP).

SDP1 Develop Threat Modeling (Freq:57)
SDP1.1 Enumerate threats and prioritize the threat based on the potential impact

SDP1.2 Analyze and Minimize Attack Surface

SDP1.3 Verify whether the threat is mitigated with a security control

SDP1.4 Identify areas that could be of interest to attackers

SDP1.5 There could be multiple design decisions to mitigate any threat

SDP1.6 Secure design decisions to remove threats can be prioritized based on a cost/benefit analysis

SDP1.7 Secure design decisions must be identified for threats that violate any of the high-level security requirements.
SDP1.8 Risk analysis should be performed on the identified threats to calculate the potential damage

SDP1.9 Use threat weighting or ranking during threat modeling

SDP2 Secure Design Documentations (Freq:23)
SDP2.1 Develop Test plan

SDP2.2 Document each identified threat along with its description, risk, defensive technique, and risk management strategy
SDP2.3 Document secure design

SDP2.4 Remove unimportant features

SDP2.5 Identify design attributes

SDP2.6 Use security diagram classes

SDP2.7 Remember that hiding secrets are hard

SDP2.8 Avoiding logs from external data

SDP2.9 Map security requirements with cryptographic services (Authentication, Confidentiality, Integrity, and Non-Repudiation)
SDP2.10 Identify environmental and device security constraints

SDP2.11 A threshold of acceptable security can be defined by using, security index.

SDP2.12 Perform cost/benefit analysis (CBA) & Security planning (based on risks & CBA)

SDP3 Follow Security Design Principles for Secure Software Development (Freq:29)

SDP3.1 Least Privilege

SDP3.2 Implement defense-in-depth policy which includes multilevel security

SDP3.3 Keep your design as simple as you can by applying economy of mechanism policy

SDP3.4 Correctness by Construction (CbyC)

SDP3.5 Fail Securely: The system does not disclose any data that should not be disclosed ordinarily at system failure
SDP3.6 Apply false-safe default principles to make sure that the failure of any activity will prevent unsafe operation
SDP3.7 Separation of Privilege

SDP3.8 Reluctance to Trust

SDP3.9 Use a Positive Security

SDP3.10 Establish Secure Defaults

SDP3.11 Never assumes that your secrets are safe

SDP3.12 Securing the Weakest Link

SDP3.13 Proactive not Reactive

SDP3.14 Privacy as the Default

SDP3.15 Privacy Embedded into Design

SDP3.16 Full Functionality

SDP3.17 End-to-End Security

SDP3.18 Visibility, Usability and Transparency

SDP3.19 Detect Intrusion

SDP3.20 Implement Sandboxing

SDP3.21 Follow psychological acceptability principle of design to automatically incorporate basic security
SDP3.22 Follow the least common mechanism to restrict shared resource access

SDP3.23 Respect for User Privacy

SDP4 Secure Design Review and Verification (Freq:23)

SDP4.1 Revise or review design implementation

SDP4.2 External review of the design

SDP4.3 Establish secure design requirements

SDP4.4 Plan and implement secure supplier and third-party component selection

SDP4.5 The design must be inspected (multiple times if required) for identifying and removing software errors
SDP4.6 Remember that backward compatibility will always give your grief

SDP4.7 The expert also needs to verify the interface and mediator between product management and development
SDP4.8 Create a team to identify new attacks

SDP4.9 Identify potential attackers and develop attacker profiles

SDP4.10 Perform comparative security assessments of different integrating options

SDP4.11 Use automation to stimulate attacks

SDP4.12 Establish a process for architectural analysis

SDPS Others (Freq:24)

SDP5.1 Implement security design decisions: (Security Cryptographic protocols, standards, services, and mechanisms)
SDP5.2 Use of security patterns

SDP5.3 Apply access control mechanism to make sure for authorization

SDP5.4 Do not mix code and data

SDP5.5 Secure data transition by invoking secure data transfer protocols

VOLUME 10, 2022

5467

IEEE Access

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

TABLE 11. (Continued.) Secure design practices (SDP).

SDP5.6 Interface with third parties who feed the software supply chain
SDP5.7 Identify time-consuming factors in the secure development process,
SDP5.8 Learn from mistake

SDP5.9 Security design awareness and knowledge training

time pressure in the secure software development process
are [65], [83], [101]:
i. Organizations compromise security activities to accom-
modate the accelerated releasing schedule
ii. Timing attacks
iii. Insufficient time for the teams to get used to the security
activities
iv. The pressure to deliver to tight deadlines.

B. PRACTICES FOR DEVELOPING SECURE SOFTWARE
(ANSWER RQ2)

In all phases of the Software Development Life Cycle
(SDLC), the focus on secure software development has grad-
ually grown over the last two decades. To produce secure
software, security awareness, guidelines, principles, and
practices are very important during all the stages of SDLC.
The purpose of this section is to describe software security
practices to help software development firms better specify
the criteria for secure software development. To answer RQ?2,
we must go through the following subsections:

1) BEST PRACTICES FOR SECURE REQUIREMENT
ENGINEERING (SRE)

The requirement stage in the SDLC is the primary stage
where the initial plan for software is made. It necessi-
tates a set of initial specifications, which are collected
from a variety of sources. Various methods such as brain-
storming, group sessions, and interviews are used to gather
requirements. Secure requirement engineering (SRE) is dif-
ferent; the aim is to provide complete security by implement-
ing basic security functions, such as confidentiality, integrity,
and availability [25]. SRE is usually done during the first
stage of the SDLC, and the success of this phase leads
towards a better software product. Further, handling security
in this phase assists software development organizations to
save rework and additional costs. SRE has proved to be
a difficult task over time. The main activities involved in
this stage are security requirements identification and incep-
tion, documentation, elicitation, analysis and negotiation,
mapping, verification and validation, prioritization and man-
agement, authentication, and authorization [2], [64], [104].
Various researchers and industry practitioners have empha-
sized the importance of considering SRE from the start
of the secure software development process. We list down
(See Table 10) the commonly used best practices for han-
dling security issues during the requirement stage of SDLC
[2], [22], [24], [59], [64], [67], [90], [104]-[106].

5468

2) BEST PRACTICES FOR DESIGNING SECURE SOFTWARE
The design phase is one of the most creative stages of
the SDLC, which is one of the reasons it is impor-
tant from the viewpoint of security [32], [69]. 50%, soft-
ware defects are identified and detected during the design
stage of the SDLC [32], [69]. The security design archi-
tecture specifies design methods such a strongly typed
programming, least privilege, develop threat modeling, ana-
lyze and minimize attack surface [14]. The software devel-
oper must consider security best practices during design to
complete this phase in a manner that is appropriate and
secure. Table 11 presents some of the most widely used
design security practices, these should be followed when
designing secure software [14], [22], [31], [32], [68], [69],
[71]-[73], [105], [107].

3) BEST PRACTICES FOR IMPLEMENTING SECURE CODE

80 percent of system penetration is due to coding errors in
commercial software. This is surely a matter of national secu-
rity. Increased bugs, security issues, and costs are all associ-
ated with bad code. Good code pays off in the long run [14].
Due to time-to-market pressures, software developers are
passed to meet the deadline, lack security expertise, and fail
to follow secure code guidelines. Furthermore, they make
the mistake of assuming that perimeter security is sufficient
to protect applications. Security code reviews, which can
be conducted while the code is being checked for function-
ality, whether manual or automated, are required to verify
the fundamental tenets of software security [22], [108]. The
programmer must be aware of implementation-level vulnera-
bilities when writing secure code [14]. Programmers can use
the documentation and guidelines created in earlier stages
to help them write secure code. Table 12 shows prescriptive
actions to increase security during the coding phase of SDLC
[51, [14], [22], [98], [105], [109]-[111].

4) BEST PRACTICES FOR SECURE SOFTWARE TESTING

Software testing is the most time-consuming, complex, and
costly phase of the SDLC [92]. This phase aims to identify
and fix any bugs or errors in the system. ‘“To detect potential
attacks and the consequences of successful attacks, security
testers typically use misuse cases, threat models, and design
documents” [14]. Following the completion of security test-
ing, test documents containing security test cases and a pri-
oritized list of vulnerabilities resulting from automated and
manual dynamic analysis are created [14]. Table 13 shows

VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

TABLE 12. Secure coding practices (SCP).

S. No Security Practices in Coding/Implementation Phase Freq
SCP1 Perform Code Review 28
SCP2 Provide Security Knowledge and Training to Software Developers 24
SCP3 Implement static code analysis 18
SCP4 Apply secure coding standards such as CERT, MISRA, and AUTOSAR 15
SCP5 Use approved Security tools for Implementation 11
SCP6 Conduct source code assessment process 9
SCP7 Expert need to ensure that secure coding practices are followed and conducts code analysis to identify security | 6
vulnerabilities
SCP8 Validate input and output to mitigate common vulnerabilities 5
SCP9 Deprecate unsafe functions 5
SCP10 Develop complex Encryption methods 5
SCP11 Implement dynamic code analysis 5
SCP12 Using secure programming language that is safe to increase security in the development 4
SCP13 Refactoring can improve the security of an application by removing code bad smell 3
SCP14 Code-level hardening is a way that prevents vulnerabilities 3
SCP15 Secure code writing 3
SCP16 Secure the weakest link 3
SCP17 Perform security certification and accreditation of target system 3
SCP18 Eliminate weak cryptography 3
SCP19 Develop proper error/exception handling along with respective error message 3
SCP20 Develop threat modeling: It helps to do threat analysis into secure code review 2
SCP21 All temporary files of the cookies folder should be deleted 2
SCP22 All legitimate users must have the privileges and minimum access needed 2
SCP23 Avoid race conditions 2
SCP24 Code must be inspected to identify software and security errors 2
SCP25 Implement Diversification and Obfuscation 2
SCP26 Use of established security algorithms 2
SCP27 Choose a proper and hard to guess location for temporary files and applying an access control mechanism 2
SCP28 Define the acceptance level of vulnerabilities within the coding 2
SCP29 Review of complex functions 1
SCP30 Provide data protection services 1
SCP31 Handle data and errors safely 1
SCP32 Find security issues early 1
SCP33 Identify and Access Management 1
SCP34 Integrate security analysis into the source management process 1
SCP35 Minimize use of unsafe string and buffer functions 1
SCP36 Use robust integer operations for dynamic memory allocations and arrays offsets 1
SCP37 Maintain legacy code 1
SCP38 Heed compiler warnings 1
SCP39 Mask the problem, by applying filters to either block or modify user input 1
SCP40 Determine and execute remediation strategies 1
SCP41 Use Logging and Tracing 1
SCP42 Avoid weak or ambiguous variables 1
SCP43 Prevent execution of illegitimates code 1
SCP44 Remove debugging code and flags in code 1
SCP45 Do not make any rigid boundaries in the development; make sure to keep it flexible to be able to face any security | 1
challenges in the present and future
SCP46 Perform sanity check before invoking any pointer 1
SCP47 Practices for Spoofing 5
SCP47.1 Restriction of access
SCP47.2 Customers must use a strong password or use a multi-login mechanism
SCP47.3 Declaration of accessible IP addresses by using .htaccess file
SCP47.4 Do not store secrets in plain text
SCP47.5 Protect secret data
SCP47.6 Acquisition of log
SCP47.7 Recording of user ID, Date, type of operation, name of AP at time of operation execution
SCP48 Security Practices for Tampering 7
SCP48.1 Acquisition of log
SCP48.2 Appropriate authorization
SCP48.3 Apply Hashes, message authentication codes
SCP48.4 Incorporate Digital Signatures
SCP48.5 Communication connections between system components must be ensured using protocols that provide
confidentially
SCP48.6 Recording of user ID, Date, type of operation, name of AP at time of operation execution
SCP49 Security Practices Non Repudiation 5
SCP49.1 Every activity related to important and sensitive data must be recorded
SCP49.2 Incorporate Digital Signatures, timestamps, audit trails

VOLUME 10, 2022

5469

IEEEACC@SS R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

TABLE 12. (Continued.) Secure coding practices (SCP).

SCP49.3 Ensure that the sender of a message does not deny having sent the message and the receiver does not deny receiving
the message
SCP50 Security Practices for Information Disclosure 2
SCP50.1 Ensure that only selected accounts can access important data
SCP50.2 Implement encryption mechanism and protect secrets
SCP51 Security Practices for Denial of Services 4
SCP51.1 Restrict the number of accesses per hour
SCP51.2 Appropriate authentication and authorization
SCP51.3 Appropriate filtering, throttling, quality of service
SCP52 Security Practices for Man-in-the-middle 4
SCP52.1 Encryption of communication using cryptography (Mozilla guideline-secure transmission)
SCP52.2 Acquisition of public key signed by Certificate Authority
SCP52.3 Intrusion detection system
SCP52.4 Exchange of public keys using a secure channel
SCP53 Security Practices for Illegal OR Unauthorized Access 27
SCP53.1 Physical security techniques, such as lock doors, alarms, and monitoring of targets, should be implemented
SCP53.2 Hashing of passwords (OWASP password storage cheat sheet)
SCP53.3 Confidentiality: Protect data or services from unauthorized access
SCP53.4 Integrity: Avoid unauthorized manipulation of data or services
SCP53.5 Availability: Assure that the system work promptly, and services are not denied to an authorized user
SCP53.6 Authentication: Identify the actors involved in a transaction and verify that they are who claims to be

SCP53.7 Use a firewall, VPN, and SSL techniques
SCP53.8 Hashing of password using "Auth" component in CakePHP

SCP54 Security Practices for Password Conjecture 8
SCP54.1 Delete all default account credentials that may be put in by-product vendor

SCP54.2 Strengthen the password

SCP55 Security Practices for SQL Injection 5
SCP55.1 Use of parameterized queries or stored procedures (OWASP SQL injection prevention cheat sheet)

SCP55.2 Input sanitization: User inputs are sanitized to ensure that they contain no dangerous code.

SCP55.3 Security privileges. Setting security privileges on the database to the least required. For example, the delete rights to

a database for end-users are seldom required.

SCP55.4 Disabling literals. SQL injection can be avoided if the database engine supports a feature called disabling literals,
where text and number literals are not allowed as part of SQL statements.

SCP55.5 Avoid string concatenation for dynamic SQL statements

SCP55.6 Check the query if they exist in query pool only they are permitted

SCP55.7 You can replace the single quote with double-quotes. This blocks the SQL insertion attack

SCP55.8 Use of Prepared Statement and/or "ORM"

SCP56 Security Practices for Brute for Attack 8

SCP56.1 Implementation of password throttling mechanism (OWASP Authentication Cheat Sheet-prevent brute force attack)

SCP56.2 Implement Account lockout procedure

SCP56.3 Implement count number of login trial and set a flag that shows account lock to "True" if the number exceeds the
threshold

SCP56.4 Establishment of strong password policy and check of its observance (OWASP Authentication Cheat Sheet-password
complexity, use multi-factor authentication)

SCP56.5 Enhancement of specification regarding password

SCP56.6 Checking of input with validation function in CakePHP

SCP56.7 Use of strong input validation (OWASP SQL injection prevention cheat sheet)

SCP56.8 The user of the error handler in CakePHP (core.php)

SCP56.9 Recycle of password

SCP57 Security Practices for Cross Cite Scripting, and CSRF 8
SCP57.1 Design libraries and templates that minimized unfiltered input. (OWASP XSS Prevention Cheat Sheet)

SCP57.2 DNS rebinding

SCP57.3 Using ESAPI safety mechanism can eliminate detected XSS vulnerabilities in web application

SCP57.4 HTMLPurifier eliminates XSS vulnerabilities

SCP57.5 Check input with validation function in CakePHP

SCP57.6 Use a cryptographic token to associate the request with specific action. The token can be regenerated at every
request. (OWASP CSRF Prevention Cheat Sheet; encrypted token)

SCP57.7 Use of optional HTTP Referrer header

SCP57.8 Confirm action every time concerning potentially sensitive data is invoked

SCP57.9 Normalize filtering of all inputs including those not expected to have any scripting content.

SCP57.10 "Sanitizing" is one way to prevent XSS attacks

SCP57.11 Use of h() function and security component in CakePHP

SCP58 Security Practices for Session ID Hijacking 4
SCP58.1 Always invalidate session ID after user logout

SCP58.2 Use of destroy method in CakePHP session component

SCP58.3 Setup of session time out for session IDs

SCP58.4 Protect communication between client and server

SCP58.5 Encrypt session data associated with session ID

5470 VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

TABLE 12. (Continued.) Secure coding practices (SCP).

SCP58.6 Use multifactor authentication (OWASP authentication cheat sheet- use multi-factor authentication)

SCP58.7 Use of session_id() function in CakePHP for creation of session ID

SCP58.8 Regenerate and destruct session identifiers when there is a change in the level of privilege

SCP58.9 After some time server should forcefully terminate the user's session

SCP58.10 Use Secure Socket Layer (SSL) of client and IP address

SCP58.11 Use strict session management mechanism that only accepts locally-generated session identifier

SCP58.12 | Use of safe session management mechanism

SCP58.13 Pass session ID via hidden tag

SCP58.14 | Use of session identifiers that are difficult to guess or conduct brute force

SCP58.15 Do not code to send session ID with GET method

SCP59 Security Practices for Avoiding Buffer Overflow and Format String Vulnerabilities 6

SCP59.1 Choosing a type-safe programming language can avoid many buffer overflow problems.

SCP59.2 Correct use of safe libraries of an unsafe language can prevent most buffer overflow vulnerabilities.

SCP59.3 Stack-smashing protection can detect the most common buffer overflow by checking that the stack has not been
altered when a function returns.

SCP59.4 Executable space protection can prevent the execution of code on the stack or the heap.

SCP59.5 Normalize strings before validating them

SCP59.6 Deep packet inspection attempts to block packets that have the signature of a known attack or have a long series of
no-operation instruction

prescriptive actions to increase security during the testing
phase of SDLC [5], [22], [25], [95]-[98], [105], [112], [113].

5) BEST PRACTICES FOR DEPLOYING SECURE SOFTWARE
After the software is deployed into its operational envi-
ronment, it is important to monitor responses to flaws and
vulnerabilities of the system to check for new evolved secu-
rity patterns [66], [91]. After identifying new security pat-
terns, the same should bed included in the requirement stage
for further security improvements in subsequent releases
[66], [91]. Static analysis and peer review are two use-
ful procedures for mitigating or minimizing newly discov-
ered vulnerabilities [14]. Final security reviews and audits
are performed during the secure deployment phase [14].
At this phase, customer satisfaction is also very important.
Table 14 presents prescriptive actions to increase security
during the deployment phase of SDLC [5], [14], [98], [105],
[114], [115].

6) BEST PRACTICES FOR MAINTAINING SECURE SOFTWARE
Before deploying software, administrators must first under-
stand the software’s security stance. Some of the identified
faults that were not addressed previously will be revisited,
prioritized, and corrected after deployment. New threats are
tracked during this phase. The software can never be 100 per-
cent secure, and new threats emerge regularly phase [14].
As a result, efforts must be made to secure the software.
The maintenance team should keep track of new threats that
the system encounters to address them promptly and prevent
security breaches [83], [116]. Table 15 presents prescriptive
actions to increase security during the maintenance phase of
SDLC [14], [65], [105], [114], [117], [118].

V. CONCLUSION AND FUTURE WORK
The above discussion has highlighted the brief details of
SDLC phases along with the security issues and their

VOLUME 10, 2022

mitigation practices. Software security is now a primary need
for secure software development (SSD) at every phase of
the SDLC. We conclude from the preceding discussion that
securing software systems in the post-development phases is
insufficient, and better ways and means of securing software
systems are urgently required. To summarize, software secu-
rity is an important feature that should be given top priority.
Many software projects have failed in the past due to a lack of
attention on the security factor. Testing software for security
after it has been developed is not only time-consuming and
difficult, but it also adds to the project’s complexity and
more cost. Secure software engineering (SSE) believes that
software security is a critical factor that should be assessed
early in the SDLC process [119]. To build and deploy a secure
software system, we need to integrate security features into
our application development life cycle and adapt the latest
SSE practices [3], [4].

Backward compatibility will be harmed if security is added
after deployment since it will change functionality and/or
application interfaces. Because adding security takes more
time and money than doing it from the beginning, it is less
likely to be done effectively or with care. In view of the
necessity of incorporating security into the development life-
cycle, the authors of this study endeavored to establish a
methodology that addresses security across the SDLC.

The purpose of this article is to identify security issues and
to give a set of development techniques, guidelines, activities,
principles, and rules to help developers create more secure
software. In the light of the importance of software security,
we conducted a thorough systematic literature review and
identified 145 security risks and 424 security practices for
managing security in the SDLC to integrate security into the
overall development cycle. This study is prescriptive and can
provide software developers with simple security guidelines
at each stage of the SDLC. It covers a six-phase SDLC and the
prescriptive activities that must be completed at each stage.

5471

IEEE Access

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

TABLE 13. Secure testing practices (STP).

S. No Secure Testing Practices (STP) Freq
STP1 Perform Penetration Testing 32
STP2 Perform Static Analysis Security Testing 30
STP3 Perform Fuzz Testing 16
STP4 Perform Dynamic Analysis Security Testing 14
STPS Perform Vulnerability Scanning 9
STP6 Develop threat models: It helps to developing test cases or test plans 7
STP7 Perform Functional and Non Functional Testing 6
STP8 Use manually reviewing the code 6
STP9 Perform Unit Testing 5
STP10 | Perform Automatic Patch generation 5
STP11 | Perform Integration Testing 4
STP12 | Develop test plan to describe software testing scope and activities 3
STP13 | Validate correct use of security testing tools 3
STP14 | Conduct Attack Surface Review 3
STP15 | Perform risk based security testing 2
STP16 | Rank the areas of the program where an exploit would be easiest 2
STP17 | Verify security attributes of resources 2
STP18 | Implement reverse engineering and software disassembling 2
STP19 | Test security audit and review 2
STP20 | The experts need to evaluate the security mitigations effectively 2
STP21 | Use advanced Security Testing Tools, such as: Fortify SCA, Checkmarx code analysis, HP Web inspect, Acunetix wen, | 2
IBM AppScan

STP22 | Perform Alpha and Beta Testing 1
STP23 | Perform security regression testing 1
STP24 | Perform run-time verification 1
STP25 | Perform system testing 1
STP26 | Identify the areas closest to the attack surface 1
STP27 | Identify resource-driven security tests 1
STP28 | Design test cases to attack software successfully 1
STP29 | Prioritize the test cases 1
STP30 | Consider all assumptions and business processes 1
STP31 | Load and operate the software in a test environment and test against each of the test cases designed 1
STP32 | Test states and state preservation 1
STP33 | Test cases should be developed based on functional and security requirements 1
STP34 | Document security test cases 1
STP35 | Receive permission to perform security testing 1
STP36 | Extreme testing should be conducted 1
STP37 | Review unfixed security bugs 1
STP38 | Apply secure code documentation 1

The software development stages are Requirement, Design,
Coding, Testing, Deployment, and Maintenance.

The findings of this study show that security risks in the RE
phase of the SDLC are a highly rated factor, in the develop-
ment of secure software. It stands on the top (97.5%) amongst
all the identified security risks. We conclude that many soft-
ware security issues stem from insufficient or incorrect iden-
tification, documentation, analysis, mapping, prioritization,
specification, and availability of security requirements. The
importance of identifying non-functional security require-
ments should be stressed more because it aids in the reduction
or elimination of software vulnerabilities [2], [61], [100].
Misuse cases are similar to use cases in that they specify
what a system should not do, and they are a great way to get
security requirements [97], [100]-[102].

Section I'V-A shows that software security risks were high-
lighted in the design phase of the SDLC in 64 percent of
the studies in our SLR. This is because design-level flaws
are the most common sources of security risks in software

5472

systems [32]. We conclude that “lack of developing threat
modeling,” “improper secure design documentation,” and
“lack of attention to follow security design principles’ are
the three topmost security issues in the design phase. To mit-
igate the risks in the design phase, Table 5 presents that
“enumerate threats and prioritize the threat based on the
potential impact,” “follow least privilege design principle,”
“implement a defense-in-depth policy which includes mul-
tilevel security,” “revise or review design implementation,”
and “implement security design decisions: (security crypto-
graphic protocols, standards, services, and mechanisms)” are
the most highlighted security practices in the design phase.
The antivirus, intrusion detection mechanisms, and fire-
walls are not enough to reduce the risk in the coding phase of
the SDLC. It needs further various suitable security defenses,
practices, analysis, and countermeasures that result in further
secure the released code [74], [75]. The findings of this study
show that “software security often fail because their devel-
opment is generally based on ad-hoc foundations or follow

VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

TABLE 14. Secure deployment practices (SDeP).

S. No Secure Deployment Practices (SDeP) Freq
SDeP1 Perform static analysis 30
SDeP2 Perform final security review to find any remaining security flaws 12
SDeP3 Perform Security Assessment and Secure Configuration 8
SDeP4 Establish a plan to review to reduce the time and resources 6
SDeP6 Analyze the overall state of the software 6
SDeP7 Verify that whether security practices have been followed during the software development 6
SDeP8 Certify release and archive 5
SDeP9 Implement Security release checklists 3
SDeP10 | Configure the monitoring and logging 3
SDeP11 | Identify security breaks 3
SDeP12 | Verify output validation 3
SDeP13 | Ensure that work products meet their specified security requirements 3
SDeP14 | Demonstrate that the product fulfills the security expectations when placed in the intended operational environment 3
SDeP15 | Perform Code Integrating and Handling 2
SDeP16 | Perform Security Feed back 2
SDeP17 | Response Planning & Execution 2
SDeP18 | Upgrade the new version by fixing all identified flaws 2
SDeP19 | Implement global security policy 2
SDeP20 | Perform Data sanitization & Safe Disposal 1
SDeP21 | Perform Code sign-off 1
SDeP22 | Upload debugging symbols to central server 1
SDeP23 | Sign identified targets 1
SDeP24 | Obtain code signing credentials 1
SDeP25 | Perform Threat Models Updating 1
SDeP26 | Release Preparation 1
SDeP27 | Document Technical Stack: Document the components used to build, test, deploy, and operate the software 1

traditional development processes,” “‘lack of using secure
coding practices,” “lack of security awareness, training,”
“messy code, code bad smells, dead code,” and “‘buffer and
array overflow” are the topmost security risks in the coding
phase. To mitigate these risks, software development orga-
nizations need to “perform code review,” “provide security
knowledge and training to software developers,” “implement
static code analysis” and “‘secure code writing”” during the
secure design phase.

Section IV-A portrays that software security was consid-
ered in the testing phase of the SDLC in 53 percent of the
studies. The security testing approach is one of the most
important, efficient, and widely used methods for improving
software security, as it is used to detect vulnerabilities and
ensure security functionality. Threat modeling is a systematic
method for identifying threats that may compromise security,
and it is considered a well-known accepted practice by the
software testing industry [94]. We conclude that “lack of
static, dynamic, penetration, and vulnerability analysis secu-
rity testing,” “‘lack of secure test cases’ and ‘‘lack of security
test documentations” are the topmost security risks in the
testing phase of the SDLC. Table 13 presents that “perform
penetration, static and dynamic analysis, fuzz testing, and
vulnerability scanning testing,” ‘“‘develop threat models: it
helps to develop test cases or test plans” and ‘“‘use manually
reviewing the code’ are the most highlighted security prac-
tices for secure testing.

The deployment stage deals with release and change man-
agement. The software is installed in its real environment at
this stage. It may appear easy, but integrating software into an

VOLUME 10, 2022

existing environment can be difficult. Patches are developed
to address the flaws, but the software remains vulnerable to
a variety of security threats. In this stage, it is important to
monitor responses to flaws and vulnerabilities of the system
to check for newly evolved security threats. “After identify-
ing new security risks, the same should be included in the
requirement stage for further security improvements in sub-
sequent releases” [66], [91]. Static analysis and peer review
are two useful procedures for mitigating or minimizing
newly discovered vulnerabilities [14]. Final security reviews
and audits are performed during the secure deployment
phase [14].

Similarly, we aimed to discover any security-related risks
and their practices in the software maintenance phase of
the SDLC. The maintenance team should keep track of new
threats that the system encounters. We conclude that ‘““per-
form static analysis,” “perform final security review to find
any remaining security flaws,” “perform security assessment
and secure configuration,” “‘establish a plan to review to
reduce the time and resources’ and ‘“‘analyze the overall state
of the software” are the most cited practices for the secure
maintenance of software.

Based on the foregoing discussion, we conclude that
securing software systems in the post-development phases
is insufficient and that better ways and means of securing
software systems in the early stages are urgently required.
To incorporate security in the overall SDLC, we have done
a detailed literature review and identified 145 security risks
and 424 best practices that help software development orga-
nizations to manage the security in each phase of the SDLC.

5473

IEEE Access

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

TABLE 15. Secure maintenance practices (SMP).

S. No Secure Maintenance Practices (SMP) Freq
SMP1 Find out new threats to the system 15
SMP2 Prioritize the new threats and their potential impact 15
SMP3 Prepare the database for similar kinds of threats 14
SMP4 Mitigate the new threats identified 14
SMP5 Identify attack surface area for the new threats 13
SMP6 Review the weakness of all such areas about new threats identified 13
SMP7 Develop security patches for the threats 12
SMP8 Release the patches to protect software from security breaches 12
SMP9 Perform configuration, vulnerability management, and change control 8
SMP10 Create and Execute incident response plan 5
SMP11 Educate users in using the software application in a secure manner 4
SMP12 Verity vulnerability correction 4
SMP13 Use regularly update Anti-virus Software 4
SMP14 Establish and maintain a set of process assets and work environment standards for developing secure products 3
SMP15 Reactive approaches should be adopted in the maintenance phase. They deal with developing patches after attacks have | 3
been made on the product.
SMP16 Address deployment-time security issues (Security response execution) 2
SMP17 Keep software up to date on security patches 2
SMP18 Manage security issue disclosure process 1
SMP19 Operate enablement 1
SMP20 Build a security response center 1
SMP21 Decide on what to skip 1
SMP22 Provide means of communication for security issues 1
SMP23 Manage relationship with the bug reporter 1
SMP24 Create and test the fixation of security threats 1
SMP25 The maintenance of software is made easier and more manageable through the structured approach provided by the | 1
SecSDM.
SMP26 Intelligence: Practice for collecting corporate knowledge used in carrying out software security activities throughout the | 1
organization
SMP27 Create and release security bulletin/advisory (Content creation) 1
SMP28 Improve process based on lessons learned 1
SMP29 Perform continuous monitoring & periodic security assessment 1
SMP30 Establish and maintain a security roadmap for process improvement 1
SMP31 Establish and maintain collaborations with external organizations promoting system security 1
SMP32 Continuously improve the security process by piloting innovative ideas, new technologies, and tools to improve | 1
organizational capability related to security

The important activities to follow during the development
lifecycle to build secure software were specified in this study.
The specified actions are successfully incorporated into each
phase of the SDLC, reducing effort, time, and budget while
delivering secure software. This effort should aid software
development companies in increasing the security level of
their goods and improving their security performance. This
will raise the developer’s understanding of secure develop-
ment methods as well.

In the future, we intend to develop a software secu-
rity assurance model [19] for global software develop-
ment (GSD) vendor organizations. This model will assist
GSD vendors to determine their readiness for secure soft-
ware development. We will develop the model using the
results of this study, industrial survey, case study, super-
visor inputs, and lessons learned from the existing studies
([2], [5], [20], [51], [64], [100]). The model will gener-
ate several assessment reports, including a list of security
risks/threats and their practices that GSD vendor organiza-
tions will use in each phase of the SDLC. In the future, we aim
to answer the following research questions (RQs) to achieve
the above-mentioned objectives:

5474

RQ1: According to the industrial survey, what are the secu-
rity threats to the development of secure software products
that GSD vendor organizations should avoid?

RQ2: What are the mitigation practices that GSD vendor
organizations can use to create secure software products,
as identified during the industrial survey?

RQ3: Is the proposed software security assurance model
capable of assisting GSD vendor organizations in determin-
ing their readiness to develop secure software?

VI. THREATS TO VALIDITY

The study’s validity is concerned with the reliability of its
findings. The following are the limitations for this systematic
literature review:

o Construct Validity

To broaden the scope of the study, we conducted a systematic
search using a wide range of words in the sample. The study’s
keywords were included after thorough discussions and sug-
gestions by the two authors to ensure the validity of the study
and to include as much relevant literature as possible. Another
threat to build validity was the use of digital libraries for the

VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

TABLE 16. Selected studies and quality assessment score.

- Total Score

P-Id | Paper Titles Year QAl | QA2 | QA3 | QA4 | QA5 | QA6 | QA7 (QA1-QA7)

1. Dr1vm.g S'ecure' Software D'evelopment 2012 05 1 05 0 1 I 0 4
Experiences in a Diverse Product Environment
Case Base for Secure Software Development

2 Using Software Security Knowledge Base 2015 ! ! 0.5 0 ! ! 0 4.5
A Preventive Secure Software Development

> Model for a software factory: a case study 2020 ! ! ! ! ! ! 0 6
System Analysis and Design Using Secure
Software Development Life Cycle Based On ISO

4 31000 and STRIDE. Case Study Mutiara Ban 2020 ! ! 0.5 ! ! ! 0 33
Workshop

5 Integrating Static Analysis into a Secure 2008 05 05 05 1 1 1 0 45
Software Development Process

6. Managing the Secure Software Development 2019 0.5 1 0.5 0 1 1 0 4
An integrated security testing framework for

7 Secure Software Development Life Cycle 2016 0.5 ! 0 0.5 ! ! 0 4

3 Secure Software Development through Coding 2007 I 1 0 I 1 I 0 5
Conventions and Frameworks

9. Security in Software Engineering Requirement 2013 1 1 0 0 1 1 0 4

10. S2D-ProM: A Strategy Oriented Process Model 2007 1 1 05 0 1 1 0 45
for Secure Software Development

1. Activity and Artifact Views of a Secure Software 2009 05 1 05 0 1 I 0 4
Development Process

12, Quantifying Security in Secure Software 2008 05 1 0 0 1 1 0 35
Development Phases
Adaption of a Secure Software Development

13 Methodology for Secure Engineering Design 2020 ! ! ! ! ! ! 0 6

14. A Review Paper : Security Requirement Patterns 2019 1 05 0 1 1 1 0 45
for a Secure Software Development

15 A Kpowledge.: Transfer Framework for Secure 2015 05 1 0 05 1 | 0 4
Coding Practices
On Selecting Appropriate Development

16. Processes and Requirements Engineering 2009 1 1 0 0.5 1 1 0 4.5
Methods for Secure Software
The Impact of Software Security Practices on

17. Development Effort: An Initial Survey 2019 ! ! ! ! ! ! ! !

1. A R'eadm'ess Model for Security Requirements 2018 I 1 1 I 1 I I 7
Engineering

19. Secure Software Developing Recommendations 2019 1 1 0 0 1 1 0 4

20. Software Security in Practice 2011 0.5 1 0 0 1 1 0 3.5

1. Security Considerations for the Development of 2019 1 1 05 05 1 1 0 5
Secure Software Systems
A Methodological Approach to Apply Security

22. Tactics in Software Architecture Design 2013 0.5 ! 0.5 ! ! ! 0 3
Static Analysis for Web Service Security — Tools

23. & Techniques for a Secure Development Life 2015 1 0.5 0.5 0 1 1 0 4
Cycle
Literature Review of the Challenges of

24. Developing Secure Software Using the Agile | 2015 1 1 1 1 1 1 1 7
Approach
Rules of Thumb for Developing Secure Software:

25. Analyzing and consolidating two proposed sets 2008 0.5 1 0 0 1 1 0 3.5
of rules

26. Autom'cllted ASoftware Archltjccture Security Risk 2013 1 05 05 05 1 1 0 45
Analysis using Formalized Signatures
Security Guidelines: Requirements Engineering

27. for Verifying Code Quality 2016 0.5 1 0.5 0.5 1 1 0 45
Security-aware Software Development Life

28. Cycle (SaSDLC) — Processes and Tools 2009 ! ! 0 0 ! ! 0 4
A Comprehensive Pattern-Driven Security

29. Methodology for Distributed Systems 2014 05 ! ! ! ! ! 0 33

30, Best APractlces for Software Security: An 2008 1 1 05 0 1 1 0 45
Overview

31 An Integrated Approach tp Security in Software 2008 1 1 05 05 1 I 0 5
Development Methodologies

32 How can the developer benefit from security 2007 05 05 05 1 1 1 0 45
modeling?
Embedding Security in Software Development

33. Life Cycle (SDLC) 2016 0.5 1 1 0 1 1 0 4.5

VOLUME 10, 2022

5475

IEEEACC@SS R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

TABLE 16. (Continued.) Selected studies and quality assessment score.

Software development Life cycle model to

34. : L L 2014 1 1 1 0 1 1 0 5
improve maintainability of software applications

35 A Methodology for Enhancing Software Security 2018 1 1 05 0.5 1 1 0 5
During Development Processes

36, In_teg‘ratlng Risk assessment and Threat modeling 2016 1 1 05 1 1 1 0 55
within SDLC process
Towards a Secure Software Development

37. Lifecycle with SQUARE+R 2012 1 0.5 0.5 0.5 1 1 0 4.5

38. Strong security starts with software development 2020 1 1 0 0 1 1 0 4

39, STQRE: 'Securlty Threat Oriented Requirements 2018 1 1 1 1 1 1 0 6
Engineering Methodology

0. (_Zountermeasure Graph§ for software security 2013 1 1 1 1 1 1 1 7
risk assessment: An Action research
Securing Web Applications from Injection and

41. Logic Vulnerabilities: ~ Approaches and | 2016 1 1 1 1 1 1 0 6
Challenges
On the secure software development process:

42. CLASP, SDL and Touchpoints compared 2009 0.5 ! 0.5 0 ! ! 0 4

43. Securing Web applications 2008 1 1 0 0 1 1 0 4
Diversification and Obfuscation Techniques for

44, Software Security: a Systematic Literature | 2018 1 1 1 1 1 1 1 7
Review
Investigating Security Threats in Architectural

45. Context: Experimental Evaluations of Misuse 2015 0.5 1 1 1 1 1 1 6.5
Case Maps

6. Secure software development: a prescriptive 2011 1 1 0 0 1 1 0 4
framework

47, Cross Slte‘ Sc_rlptmg: Removing Approaches in 2017 05 1 0 0 1 1 0 35
Web Application
Exploring Software Security Approaches in

48. Software Development Lifecycle: A 2016 1 1 1 1 1 1 1 7
Systematic Mapping Study

49, An agpect-orleqted approach for the systematic 2008 1 1 1 0 1 1 0 5
security hardening of code
An empirical study to improve software security

30. through the application of code refactoring 2018 0.5 ! ! ! ! ! ! 6.5

51 Develppmg a Novel Holistic Taxonomy of 2015 05 1 05 0 1 1 0 4
Security Requirements

52 Threat Analysis of Software Systems: A 2018 05 | 1 1 1 1 I 65

Systematic Literature Review

Applying Software Assurance and Cybersecurity
53. NICE Job Tasks through Secure Software | 2019 0.5 1 0 1 1 1 0 4.5
Engineering Labs

Toward effective adoption of secure

54. . 2018 1 1 0.5 1 1 1 1 6.5
software development practices

55 A 'matu'rlty model for secure requirements 2020 1 1 1 1 1 1 1 7
engineering

56. Empirical Analysis of Web Attacks 2016 1 0 0 1 1 1 0 4

57 Sur\{ey apd analysis on Security Requirements 2012 1 1 05 05 1 1 0 5
Engineering

58. A §ystematlc review of security requirements 2010 1 1 1 1 1 1 1 7
engineering

59, Engineering Secure Systems: Models, Patterns 2018 1 05 05 1 1 1 1 6

and Empirical Validation

The Study of the Effectiveness of the Secure
60. Software Development Life-Cycle Models in IT | 2019 0.5 1 0 0 1 1 0 35
Project Management

Towards the Integration of Security Practices in
61. the Software Implementation Process of ISO/IEC | 2017 1 1 1 1 1 1 0 6
29110: A Mapping

Integrating security and privacy in software

62. 2020 1 1 0.5 0 1 1 1 5.5
development
The ISDF Framework: Integrating Security

63. Patterns and Best Practices 2009 0.3 ! 03 0 ! ! 0 4
Time for Addressing Software Security Issues:

64. Prediction Models and Impacting Factors 2016 ! 0.5 ! ! ! ! ! 6.5

65. A framework for development of secure software 2013 1 1 1 1 1 1 0 6
SecSDM: A Model for Integrating Security into

66. the Software Development Life Cycle 2007 0.5 ! 0 0 ! ! 0 3.5

67. Towards Incorporation of Software Security | 2011 0.5 1 1 0.5 1 1 0 5

5476 VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

TABLE 16. (Continued.) Selected studies and quality assessment score.

Testing Framework in Software Development

68. Critical 'Rev1ew on Software Testing: Security 2016 1 1 05 05 1 0 5
Perspective

69. Systematic review of web application security 2013 | 1 I I I 0 6
development model
Software Security Requirements Engineering:

70. State of the Art 2015 1 1 0.5 0.5 1 0 5
Identifying the implied: Findings from three

71. differentiated replications on the use of security | 2016 0.5 0.5 1 1 1 1 5
requirements templates
Effectiveness and performance analysis of
model-oriented security requirements

72. engineering to elicit security requirements: a 2015 1 1 0.5 1 1 0 5.5
systematic solution for developing secure
software systems

7. A de‘scrlptlve‘ study of Microsoft’s threat 2013 1 1 1 1 1 1 7
modeling technique

74, Sharing Lessons Lpamed: Practiced” Practices 2012 05 1 05 0 05 0 35
for Software Security
The risks analysis like a practice of secure

75. software development. A revision of models 2006 1 1 0 0.5 1 0 4.5
and methodologies

76. Knoyvlefige-based . security t_estmg of web 2017 1 05 1 05 1 1 6
applications by logic programming
Mitigating Security Threats Using Tactics and

77 Patterns: A Controlled Experiment 2016 ! ! 0.5 0.5 ! 0 3

78, Research on Software Security Awareness: 2010 1 1 05 1 1 0 55
Problems and Prospects

79. MAC and UML for Secure Software Design 2004 0.5 1 0 0.5 0.5 0 3.5

80. Brmgmg Security Home: A process for 2004 1 1 05 I I 0 55
developing secure and usable systems
Layered Security Architecture for Threat

81. Management using Multi-Agent System 201 ! ! ! ! ! 0 6

32 Human Factors in Software Security Risk 2007 1 05 05 0 05 0 35
Management

33 M1t1gaF10n of SQL Injection Attacks using Threat 2014 1 1 05 05 1 0 5
Modeling

84. Managing Security in Software 2019 0.5 0.5 1 1 1 0 5

85. TAM 2 : Automated Threat Analysis 2012 1 1 1 0.5 1 0 5.5
The State of the Art on Secure Software

86. Engineering: A Systematic Mapping Study 2020 ! ! ! ! ! ! 7
Threading Secure Coding Principles and Risk

87. Analysis into the Undergraduate Computer | 2006 0.5 1 0.5 0.5 1 0 4.5
Science and Information Systems Curriculum
Costing Secure Soft ware Development - A

88. Systematic Mapping Study 2019 0.3 ! ! ! ! 0 33

89, ASIDE: IDE Support for Web Application 2011 1 05 05 05 1 0 45
Security
Interventions for long-term software security

90. creating a lightweight program of assurance 2019 1 1 1 1 1 0 6
techniques for developers

91 Sensel: Enforcing secure qulng guidelines in the 2019 05 1 05 1 1 0 5
integrated development environment

9. Threat—orlentedA security framework in risk 2012 1 1 1 1 1 0 6
management using multiagent system

93. Software Security 2008 0.5 1 0.5 0.5 0.5 0 3.5
The practice of secure software development in

94. SDLC: an investigation through existing model 2016 1 1 1 1 1 0 6
and a case study

95, Unified threat model for analyzing and evaluating 2012 05 1 1 1 1 0 55
software threats

96. A threat model-based approach to security testing 2012 1 1 0.5 0.5 1 1 6
Assessing and improving the quality of security

o7 methodologies for distributed systems 2018 ! ! ! ! ! ! 7

08. A Survey on Design Methods for Secure 2017 1 1 I 1 1 0 6
Software Development

99. Strategies for Secure Software Development 2013 1 1 0 0 0.5 0 3.5

100, A Study of the Evo'lutlon of Secure Software 2018 1 1 05 05 1 0 5
Development Architectures

101. | A security specific knowledge modelling | 2020 1 1 1 1 1 0 6

VOLUME 10, 2022

5477

IEEE Access

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

TABLE 16. (Continued.) Selected studies and quality assessment score.

approach for secure software engineering
A Review of Factors Influencing Implementation

102. of Secure Software Development Practices 2016 0.5 ! ! ! ! ! ! 6.5
Secure Software Development Practice Adoption

103. Model: A Delphi Study 2018 0 1 0.5 0.5 1 0.5 0 3.5
A Comparative Study of Software Requirements

104. | Tools For Secure Software 2010 0.5 1 1 0.5 1 0.5 0 4.5
Development

105. Synthesis of Secure Software Development 2015 0 05 1 05 1 1 0 4
Controls
Evaluation of Engineering Approaches

106. in the Secure Software Development Life Cycle 2014 0.5 ! 0.5 ! ! ! 0 >

107, Essential ~ Activities for Secure Software 2020 | 05 1 1 1 1 0 55
Development
Secure Software Engineering: Learning from the

108. Past to Address Future Challenges 2009 ! ! ! 0.3 ! ! 0 33

109, A Case for the Economics of Secure Software 2016 05 1 05 05 1 1 0 45
Development

110, Teap_hlng Secure Software Engineering: 2011 | 1 05 0 05 05 0 35
Writing Secure Code
Security Requirement Elicitation Phase of Secure

11 Software Development Life Cycle 2013 ! ! ! 0 ! ! 0 >

112, A framewor}(to‘ support alignment .of secure 2011 05 1 1 1 1 1 0 55
software engineering with legal regulations

113. | A New Model for Secure Software Development 2009 1 1 1 1 1 1 0 6
Model Driven Architecture for Secure

114. Software Development Life Cycle 2016 0.5 ! 0.5 0 ! ! 0 4

115. Secure.Software Engineering: Evaluation of 2017 05 1 1 1 1 1 0 55
Emerging Trends

116. A Secure Software Development Supported by 2010 1 1 0.5 0 1 1 0 45
Knowledge Management

117. | Motorola Secure Software Development Model 2008 1 1 0.5 0.5 1 1 0 5

118. | Towards Secure Software Engineering 2020 1 1 0 0 1 1 0 4

119, Significance of Security Metrics in Secure 2017 05 1 0 0 1 I 0 35
Software Development
Costing Secure Soft ware Development - A

120. Systematic Mapping Study 2019 ! ! ! ! ! ! 0 6
Building and Validating a Scale for Secure

121. Software Development Self-Efficacy 2020 0.5 ! ! ! ! ! ! 6.5

studies. This threat was mitigated by identifying six digital APPENDIX
libraries as key sources in such a domain. See Table 16.
« Internal Validity
ACKNOWLEDGMENT

Internal validity threats have been reduced to the point
where all interested readers are encouraged to view the data
extracted from the papers of the studies displayed without
restrictions.

o Conclusion Validity

To minimize the threats, each step of the data collection,
extraction, and analysis was checked through a systematic
process and periodic reviews by the participating authors. The
rationale for this move was that the same method has been
used in the literature for similar studies.

« External Validity

External validity includes how much it is possible to general-
ize the outcomes of this study. To reduce this issue, the ratio
of security risks and their practices have been included in this
work.

5478

The authors appreciate all of the critiques and ideas from the
Software Engineering Research Group at the University of
Malakand (SERG UOM).

REFERENCES

[1] M. Tatam, B. Shanmugam, S. Azam, and K. Kannoorpatti, ‘A review of
threat modelling approaches for APT-style attacks,” Heliyon, vol. 7,no. 1,
Jan. 2021, Art. no. e05969.

M. Niazi, A. M. Saeed, M. Alshayeb, S. Mahmood, and S. Zafar,
‘A maturity model for secure requirements engineering,” Comput. Secur.,
vol. 95, Aug. 2020, Art. no. 101852.

M. Zhang, X. D. C. D. Carnavalet, L. Wang, and A. Ragab, “Large-scale
empirical study of important features indicative of discovered vulnerabil-
ities to assess application security,” IEEE Trans. Inf. Forensics Security,
vol. 14, no. 9, pp. 2315-2330, Sep. 2019.

G. McGraw, “Six tech trends impacting software security,” Computer,
vol. 50, no. 5, pp. 100-102, May 2017.

J. C. S. Nunez, A. C. Lindo, and P. G. Rodriguez, “A preventive secure
software development model for a software factory: A case study,” IEEE
Access, vol. 8, pp. 77653-77665, 2020.

[2]

[4]

[5]

VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S. Von Solms and L. A. Futcher, “Adaption of a secure software develop-
ment methodology for secure engineering design,” IEEE Access, vol. 8,
pp- 125630-125637, 2020.

M. Z. Gunduz and R. Das, “Cyber-security on smart grid: Threats
and potential solutions,” Comput. Netw., vol. 169, Mar. 2020,
Art. no. 107094.

J. Li, Y. Zhang, X. Chen, and Y. Xiang, “Secure attribute-based data
sharing for resource-limited users in cloud computing,” Comput. Secur.,
vol. 72, pp. 1-12, Jan. 2018.

A. Sharma and M. P. Kumar, “Aspects of enhancing security in software
development life cycle,” Adv. Comput. Sci. Technol., vol. 10, no. 2,
pp. 203-210, 2017.

W. Khreich, S. S. Murtaza, A. Hamou-Lhadj, and C. Talhi, “Combining
heterogeneous anomaly detectors for improved software security,” J. Syst.
Softw., vol. 137, pp. 415-429, Mar. 2018.

S. Hosseinzadeh, S. Rauti, S. Laurén, and J.-M. Mikel4, ““Diversification
and obfuscation techniques for software security: A systematic literature
review,” Inf. Softw. Technol., vol. 104, pp. 72-93, Dec. 2018.

E. K. Szczepaniuk, H. Szczepaniuk, T. Rokicki, and B. Klepacki, “Infor-
mation security assessment in public administration,” Comput. Secur.,
vol. 90, Mar. 2020, Art. no. 101709.

M. A. Akbar, A. Alsanad, S. Mahmood, and A. Alothaim, “A multicriteria
decision making taxonomy of IoT security challenging factors,” IEEE
Access, vol. 9, pp. 128841-128861, 2021.

R. Khan, “Secure software development: A prescriptive framework,”
Comput. Fraud Secur., vol. 2011, no. 8, pp. 12-20, Aug. 2011.

A. K. Srivastava and S. Kumar, “An effective computational technique for
taxonomic position of security vulnerability in software development,”
J. Comput. Sci., vol. 25, pp. 388-396, Mar. 2018.

D. Mellado, C. Blanco, L. E. Sanchez, and E. Fernandez-Medina, “A sys-
tematic review of security requirements engineering,” Comput. Standards
Interfaces, vol. 32, no. 4, pp. 153-165, 2010.

I. Veldsquez, A. Caro, and A. Rodriguez, “Authentication schemes and
methods: A systematic literature review,” Inf. Softw. Technol., vol. 94,
pp. 30-37, Feb. 2018.

Y. Lee and G. Lee, “HW-CDI: Hard-wired control data integrity,” IEEE
Access, vol. 7, pp. 10811-10822, 2019.

R. A. Khan and S. U. Khan, “A preliminary structure of software security
assurance model,” in Proc. 13th Int. Conf. Global Softw. Eng., Gothen-
burg, Sweden, May 2018, pp. 137-140.

H. Al-Matouq, S. Mahmood, M. Alshayeb, and M. Niazi, “A maturity
model for secure software design: A multivocal study,” IEEE Access,
vol. 8, pp. 215758-215776, 2020.

S. Moyo and E. Mnkandla, “A novel lightweight solo software devel-
opment methodology with optimum security practices,” IEEE Access,
vol. 8, pp. 33735-33747, 2020.

N. S. A. Karim, A. Albuolayan, T. Saba, and A. Rehman, “The prac-
tice of secure software development in SDLC: An investigation through
existing model and a case study,” Secur. Commun. Netw., vol. 9, no. 18,
pp. 5333-5345, Dec. 2016.

S. R. Ahmed, “Secure software development—Identification of secu-
rity activities and their integration in software development lifecycle,”
M.S. thesis, School Eng., Blekinge Inst. Technol., Ronneby, Sweden,
2007.

S. Z. Hlaing and K. Ochimizu, “An integrated cost-effective security
requirement engineering process in SDLC using FRAM,” in Proc. CSCI,
Dec. 2018, pp. 852-857.

M. Khari and P. Kumar, “Embedding security in software development
life cycle (SDLC),” in Proc. 3rd Int. Conf. Comput. Sustain. Global
Develop., Mar. 2016, pp. 2182-2186.

N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, ““Explor-
ing software security approaches in software development lifecycle:
A systematic mapping study,” Comput. Standards Interface, vol. 50,
pp. 107-115, Feb. 2017.

P. Silva, R. Noél, M. Gallego, S. Matalonga, and H. Astudillo, ““Software
development initiatives to identify and mitigate security threats—A sys-
tematic mapping,” in Proc. CIbSE, 2016, pp. 257-270.

A. S. Guinea, G. Nain, and Y. L. Traon, “A systematic review on the
engineering of software for ubiquitous systems,” J. Syst. Softw., vol. 118,
pp. 251-276, Aug. 2016.

C. Meshram, A. Alsanad, J. V. Tembhurne, S. W. Shende, K. W. Kalare,
S. G. Meshram, M. A. Akbar, and A. Gumaei, “A provably secure
lightweight subtree-based short signature scheme with fuzzy user data
sharing for human-centered I0T,” IEEE Access, vol. 9, pp. 3649-3659,
2021.

VOLUME 10, 2022

[30]

[31]

[32]

[33]

[34]

[35]
[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

S. Rafi, W. Yu, M. A. Akbar, A. Alsanad, and A. Gumaei, ‘“Prioritization
based taxonomy of DevOps security challenges using PROMETHEE,”
IEEE Access, vol. 8, pp. 105426-105446, 2020.

A. Hudaib, M. Alshraideh, O. Surakhi, and M. Alkhanafseh, “A survey
on design methods for secure software development,” Int. J. Comput.
Techol., vol. 16, pp. 7047-7064, Dec. 2017.

R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, *“Systematic mapping
study on security approaches in secure software engineering,” IEEE
Access, vol. 9, pp. 19139-19160, 2021.

G. McGraw, “From the ground up: The DIMACS software security
workshop,” IEEE Secur. Privacy, vol. 1, no. 2, pp. 59-66, Mar. 2003.

R. M. Parizi, K. Qian, H. Shahriar, F. Wu, and L. Tao, “Benchmark
requirements for assessing software security vulnerability testing tools,”
in Proc. 42nd Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jul. 2018,
pp. 825-826.

P. R. Khan, “Secure software development: A prescriptive framework,”
Comput. Fraud Secur., vol. 2011, pp. 12-20, Jan. 2011.

B. Potter and G. McGraw, “Software security testing,” IEEE Security
Privacy, vol. 2, no. 5, pp. 81-85, Sep. 2004.

D. Verdon and G. McGraw, “Risk analysis in software design,” IEEE
Security Privacy, vol. 2, no. 4, pp. 79-84, Jul. 2004.

S. Lipner, “The trustworthy computing security development lifecycle,”
in Proc. 20th Annu. Comput. Secur. Appl. Conf., 2004, pp. 2—13.

S. Gupta, M. Faisal, and M. Husain, “Secure software development
process for embedded systems control,” Int. J. Eng. Sci. Emerg. Technol.,
vol. 4, pp. 133-143, Dec. 2012.

M. Essafi, L. Jilani, and H. Ben Ghezala, “‘S2D-Prom: A strategy oriented
process model for secure software development,” in Proc. Int. Conf.
Softw. Eng. Adv., Aug. 2007, pp. 24-28.

J. Manico, “OWASP,” in Proc. Appl. Secur. Verification Standard, 2016,
pp. 1-70.

W. Li and T. Chiueh, “Automated format string attack prevention for
‘Win32/X86 binaries,” in Proc. 23rd Annu. Comput. Secur. Appl. Conf.,
Dec. 2007, pp. 398-409.

H. Peine, “Rules of thumb for developing secure software: Analyzing
and consolidating two proposed sets of rules,” in Proc. 3rd Int. Conf.
Availability, Rel. Secur., Mar. 2008, pp. 1204-1209.

A. Hall and R. Chapman, “Correctness by construction: Developing
a commercial secure system,” IEEE Softw., vol. 19, no. 1, pp. 18-25,
Jan. 2002.

I. Flechais, C. Mascolo, and M. A. Sasse, “Integrating security
and wusability into the requirements and design process,” Int.
J. Electron. Secur. Digit. Forensic, vol. 1, no. 1, pp.12-26,
2007.

B. Subedi, A. Alsadoon, P. W. C. Prasad, and A. Elchouemi, ““‘Secure
paradigm for web application development,” in Proc. 15th RoEduNet
Conf., Netw. Educ. Res., Sep. 2016, pp. 1-6.

A. S. Sodiya, S. A. Onashoga, and O. B. Ajayi, “Towards building
secure software systems,” Issues Informing Sci. Inf. Technol., vol. 3,
pp. 635-646, 2006.

N. Mead and T. Stehney, “Security quality requirements engineering
(SQUARE) methodology,” ACM SIGSOFT Softw. Eng. Notes, vol. 30,
pp. 1-7, Jul. 2005.

B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering—A
systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7-15,
Jan. 2009.

B. Kitchenham and C. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Keele Univ., Keele, U.K.,
Joint Rep. EBSE 2007-001, 2007.

R. A. Khan, M. Y. Idris, S. U. Khan, M. Ilyas, S. Ali, A. U. Din,
G. Murtaza, and A. W. Wahid, “An evaluation framework for commu-
nication and coordination processes in offshore software development
outsourcing relationship: Using fuzzy methods,” IEEE Access, vol. 7,
pp. 112879-112906, 2019.

F. de F. S. M. Russo and R. Camanho, “Criteria in AHP: A system-
atic review of literature,” Proc. Comput. Sci., vol. 55, pp. 1123-1132,
Jul. 2015.

S. U. Khan, M. Niazi, and R. Ahmad, “Factors influencing clients in the
selection of offshore software outsourcing vendors: An exploratory study
using a systematic literature review,” J. Syst. Softw., vol. 84, pp. 686-699,
Apr. 2011.

M. Staples and M. Niazi, “Systematic review of organizational moti-
vations for adopting CMM-based SPL” Inf. Softw. Technol., vol. 50,
nos. 7-8, pp. 605-620, Jun. 2008.

5479

IEEE Access

R. A. Khan et al.:

SLR on Security Risks and Its Practices in Secure Software Development

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

5480

A. A. Khan, J. Keung, M. Niazi, S. Hussain, and A. Ahmad, “System-
atic literature review and empirical investigation of barriers to process
improvement in global software development: Client-vendor perspec-
tive,” Inf. Softw. Technol., vol. 87, pp. 180-205, Jul. 2017.

H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in soft-
ware engineering,” Inf. Softw. Technol., vol. 53, pp. 625-637, Jun. 2011.
L. Chen, M. A. Babar, and H. N. Zhang, “Towards an evidence-based
understanding of electronic data sources,” in Proc. Electron. Workshops
Comput., Apr. 2010, pp. 135-138.

S. Mahmood, S. Anwer, M. Niazi, M. Alshayeb, and I. Richardson, “Key
factors that influence task allocation in global software development,”
Inf. Softw. Technol., vol. 91, pp. 102-122, Nov. 2017.

I. Keshta, M. Niazi, and M. Alshayeb, “Towards implementation of
requirements management specific practices (SP1.3 and SP1.4) for Saudi
Arabian small and medium sized software development organizations,”
IEEFE Access, vol. 5, pp. 24162-24183, 2017.

B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” Inf. Softw. Technol.,
vol. 55, pp. 2049-2075, Dec. 2013.

M. Sulayman and E. Mendes, ““A systematic literature review of software
process improvement in small and medium web companies,” in Advances
in Software Engineering. Berlin, Germany: Springer, 2009, pp. 1-8.

W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based
testing for non-functional system properties,” Inf. Softw. Technol., vol. 51,
no. 6, pp. 957-976, 2009.

V. Alexander and Y. M. Eun, Analyzing Rater Agreement. Oxfordshire,
U.K.: Taylor & Francis, 2005.

Y. Mufti, M. Niazi, M. Alshayeb, and S. Mahmood, “A readiness
model for security requirements engineering,” IEEE Access, vol. 6,
pp. 2861128631, 2018.

H. Oueslati, M. M. Rahman, and L. B. Othmane, “Literature review of
the challenges of developing secure software using the agile approach,”
in Proc. 10th Int. Conf. Availability, Rel. Secur., Aug. 2015, pp. 540-547.
S. Yahya, M. Kamalrudin, S. Sidek, M. Jaimun, J. Yusof, A. K. Hua,
and P. Gani, “A review paper: Security requirement patterns for a secure
software development,” in Proc. Ist Int. Conf. Artif. Intell. Data Sci.
(AiDAS), Sep. 2019, pp. 146-151.

P. Salini and S. Kanmani, “Survey and analysis on security require-
ments engineering,” Comput. Electr. Eng., vol. 38, no. 6, pp. 1785-1797,
Nov. 2012.

A. Van Den Berghe, R. Scandariato, K. Yskout, and W. Joosen, “Design
notations for secure software: A systematic literature review,” Softw. Syst.
Model., vol. 16, no. 3, pp. 809-831, Jul. 2017.

V. Maheshwari and M. Prasana, “Integrating risk assessment and threat
modeling within SDLC process,” in Proc. ICICT, Aug. 2016, pp. 1-5.
K. Khan, R. Ahmad, and I. Yazid, *“Systematic mapping study protocol
for secure software engineering,” in Proc. AIMC, 2019, pp. 367-374.

L. Y. Banowosari and B. A. Gifari, “System analysis and design using
secure software development life cycle based on ISO 31000 and STRIDE.
Case study mutiara ban workshop,” in Proc. 4th Int. Conf. Informat.
Comput. (ICIC), Oct. 2019, pp. 1-6.

G. Pedraza-Garcia, H. Astudillo, and D. Correal, “A methodological
approach to apply security tactics in software architecture design,” in
Proc. Colombian Conf. Commun. Comput., Jun. 2014, pp. 1-8.

T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl, “MAC and UML for
secure software design,” in Proc. ACM workshop Formal methods Secur.
Eng., Washington DC, USA, 2004, pp. 75-85.

R. C. Seacord, Secure Coding in C and C++. Reading, MA, USA:
Addison-Wesley, 2013.

A. Mousa, M. Karabatak, and T. Mustafa, “Database security threats and
challenges,” in Proc. 8th Int. Symp. Digit. Forensics Secur., Jun. 2020,
pp. 1-5.

D. Kleidermacher, “Integrating static analysis into a secure soft-
ware development process,” in Proc. Conf. Technol. Homeland Secur.,
May 2008, pp. 367-371.

H. Shirazi, “°A new model for secure software development,” Int. J. Intell.
Inf. Technol. Appl., vol. 3, pp. 136—143, Jan. 2009.

D. Hein and H. Saiedian, “Secure software engineering: Learning from
the past to address future challenges,” Inf. Secur. J., Global Perspective,
vol. 18, no. 1, pp. 8-25, Feb. 2009.

G. Deepa and P. S. Thilagam, ““Securing web applications from injection
and logic vulnerabilities: Approaches and challenges,” Inf. Softw. Tech-
nol., vol. 74, pp. 160-180, Jun. 2016.

[80]

[81]

[82]

[83]
[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

J. Li, Y. K. Li, X. Chen, P. P. C. Lee, and W. Lou, “A hybrid cloud
approach for secure authorized deduplication,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 5, pp. 1206-1216, Dec. 2015.

A. Apvrille and M. Pourzandi, ““Secure software development by exam-
ple,” IEEE Security Privacy, vol. 3, no. 4, pp. 10-17, Jul. 2005.

M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software archi-
tecture security risk analysis using formalized signatures,” in Proc. ICSE,
May 2013, pp. 662-671.

R. Cope, “Strong security starts with software development,” Netw.
Secur., vol. 2020, no. 7, pp. 6-9, Jul. 2020.

D. Kaur and P. Kaur, “Empirical analysis of web attacks,” Proc. Comput.
Sci., vol. 78, pp. 298-306, Jan. 2016.

A. Hazeyama, M. Saito, N. Yoshioka, A. Kumagai, T. Kobashi,
H. Washizaki, H. Kaiya, and T. Okubo, “Case base for secure software
development using software security knowledge base,” in Proc. IEEE
39th Annu. Comput. Softw. Appl. Conf., Jul. 2015, pp. 97-103.

M. U. A. Khan and M. Zulkernine, “On selecting appropriate develop-
ment processes and requirements engineering methods for secure soft-
ware,” in Proc. 33rd Annu. Int. Comput. Softw. Appl. Conf., Jul. 2009,
pp. 353-358.

D. Baca and K. Petersen, “Countermeasure graphs for software security
risk assessment: An action research,” J. Syst. Softw., vol. 86, no. 9,
pp. 2411-2428, Sep. 2013.

CWE-Common Weakness Enumeration. Accessed: Mar.
[Online]. Available: https://cwe.mitre.org/

A. Masood and J. Java, “Static analysis for web service security—
Tools & techniques for a secure development life cycle,” in Proc. HST,
Apr. 2015, pp. 1-6.

W. S. Al-Shorafat, “Security in software engineering requirement,”
in Proc. Int. Conf. Internet Technol. Secured Trans., Dec. 2013,
pp. 666—-673.

G. Pedraza-Garcda, R. Noél, S. Matalonga, H. Astudillo, and
E. B. Fernandez, ““Mitigating security threats using tactics and patterns:
A controlled experiment,” in Proc. 10th Eur. Conf. Softw. Archit.
Workshops, Copenhagen, Denmark, 2016, p. 37.

I. Rehman and S. Malik, “The impact of test case reduction and prior-
itization on software testing effectiveness,” in Proc. Int. Conf. Emerg.
Technol., Oct. 2009, pp. 416-421.

H. Mouratidis, P. Giorgini, and G. Manson, ‘“When security meets soft-
ware engineering: A case of modelling secure information systems,” Inf.
Syst., vol. 30, no. 8, pp. 609-629, Dec. 2005.

D. Basin, J. Doser, and T. Lodderstedt, “Model driven security: From
UML models to access control infrastructures,” ACM Trans. Softw. Eng.
Methodol., vol. 15, no. 1, pp. 39-91, 2006.

H. Nina, J. A. Pow-Sang, and M. Villavicencio, “Systematic mapping
of the literature on secure software development,” IEEE Access, vol. 9,
pp. 36852-36867, 2021.

C. Camacho, S. Marczak, and T. Conte, “On the identification of best
practices for improving the efficiency of testing activities in distributed
software projects preliminary findings from an empirical study,” in
Proc. IEEE 8th Int. Conf. Global Softw. Eng. Workshops, Aug. 2013,
pp- 1-4.

A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “A threat model-
based approach to security testing,” Softw., Pract. Exper., vol. 43, no. 2,
pp. 241-258, Feb. 2013.

Y. Tung, S. Lo, J. Shih, and H. Lin, “An integrated security testing
framework for secure software development life cycle,” in Proc. 18th
Asia—Pacific Netw. Oper. Manage. Symp., Oct. 2016, pp. 1-4.

A. R. S. Farhan and G. M. M. Mostafa, “A methodology for enhancing
software security during development processes,” in Proc. 21st Saudi
Comput. Soc. Nat. Comput. Conf., Apr. 208, pp. 1-6.

A. Muhammad and A. Shafique, “Model driven architecture for secure
software development life cycle,” Int. J. Comput. Sci. Inf. Secur., vol. 14,
no. 6, pp. 649-661, 2016.

V. Suburayan, “Software development life cycle model to improve main-
tainability of software applications,” in Proc. 4th Int. Conf. Adv. Comput.
Commun., 2018, pp. 270-273.

L. Catuogno, C. Galdi, and G. Persiano, “Secure dependency enforce-
ment in package management systems,” IEEE Trans. Dependable Secure
Comput., vol. 17, no. 2, pp. 377-390, Oct. 2020.

S. Islam and W. Dong, “Human factors in software security risk man-
agement,” in Proc. Ist Int. workshop Leadership Manage. Softw. Archit.,
Leipzig, Germany, 2008, pp. 13-16.

18, 2021.

VOLUME 10, 2022

R. A. Khan et al.: SLR on Security Risks and Its Practices in Secure Software Development

IEEE Access

[104] M. Younas, M. A. Shah, D. N. A. Jawawi, M. K. Ishfaq, M. Awais,
K. Wakil, and A. Mustafa, “Elicitation of nonfunctional requirements in
agile development using cloud computing environment,” IEEE Access,
vol. 8, pp. 209153-209162, 2020.

[105] A.-U.-H. Yasar, D. Preuveneers, Y. Berbers, and G. Bhatti, “Best prac-
tices for software security: An overview,” in Proc. IEEE Int. Multitopic
Conf., Dec. 2008, pp. 169-173.

[106] R.A.Khan, S. U. Khan, M. Ilyas, and M. Y. Idris, “The state of the art on
secure software engineering: A systematic mapping study,” in Proc. Eval.
Assessment Softw. Eng., Trondheim, Norway, vol. 2020, pp. 487-492.

[107] L. B. Othmane, P. Angin, H. Weffers, and B. Bhargava, “Extending
the agile development process to develop acceptably secure software,”
IEEE Trans. Dependable Secure Comput., vol. 11, no. 6, pp. 497-509,
Nov. 2014.

[108] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, “An empirical
study to improve software security through the application of code refac-
toring,” Inf. Softw. Technol., vol. 96, pp. 112-125, Apr. 2018.

[109] E. Venson, X. Guo, Z. Yan, and B. Boehm, “Costing secure software
development: A systematic mapping study,” in Proc. 14th Int. Conf.
Availability, Rel. Secur., Canterbury, CA, USA, 2019, p. 9.

[110] M. Sodanil, G. Quirchmayr, N. Porrawatpreyakorn, and A. M. Tjoa,
“A knowledge transfer framework for secure coding practices,” in Proc.
Int. Joint Conf. Comput. Sci. Softw. Eng., Jul. 2015, pp. 120-125.

[111] E. Venson, R. Alfayez, M. M. F. Gomes, R. M. C. Figueiredo, and
B. Boehm, “The impact of software security practices on development
effort: An initial survey,” in Proc. ACM/IEEE Int. Symp. Empirical Softw.
Eng. Meas. (ESEM), Sep. 2019, pp. 1-12.

[112] P. Salini and S. Kanmani, “Effectiveness and performance analysis
of model-oriented security requirements engineering to elicit security
requirements: A systematic solution for developing secure software sys-
tems,” Int. J. Inf. Secur., vol. 15, no. 3, pp. 319-334, Jun. 2016.

[113] B. Musa Shuaibu, N. Md Norwawi, M. H. Selamat, and A. Al-Alwani,
“Systematic review of web application security development model,”
Artif. Intell. Rev., vol. 43, no. 2, pp. 259-276, Jan. 2015.

[114] B. De Win, R. Scandariato, K. Buyens, J. Grégoire, and W. Joosen, “On
the secure software development process: CLASP, SDL and touchpoints
compared,” Inf. Softw. Technol., vol. 51, no. 7, pp. 1152-1171, Jul. 2009.

[115] S.T. Siddiqui, “Significance of security metrics in secure software devel-
opment,” Int. J. Appl. Inf. Syst., vol. 12, no. 6, pp. 10-15, Sep. 2017.

[116] R.E.Ahmed, “Software maintenance outsourcing: Issues and strategies,”
Comput. Electr. Eng., vol. 32, no. 6, pp. 449-453, Nov. 2006.

[117] B. Chess and B. Arkin, “Software Security in Practice,” IEEE Security
Privacy, vol. 9, no. 2, pp. 89-92, Mar./Apr. 2011.

[118] S. Al-Amin, N. Ajmeri, H. Du, E. Z. Berglund, and M. P. Singh, “Toward
effective adoption of secure software development practices,” Simul.
Model. Pract. Theory, vol. 85, pp. 33—46, Jun. 2018.

[119] L. Bracciale, P. Loreti, A. Detti, R. Paolillo, and N. B. Melazzi,
“Lightweight named object: An ICN-based abstraction for IoT device
programming and management,” IEEE Internet Things J., vol. 6, no. 3,
pp. 5029-5039, Jun. 2019.

RAFIQ AHMAD KHAN received the M.Phil.
degree in computer science with a specialization
in software engineering from the University of
Malakand, Khyber Pakhtunkhwa, Pakistan, under
the research supervision of Dr. S. U. Khan, where
he is currently pursuing the Ph.D. degree under the
supervision of the same supervisor.

He has authored several articles in well-reputed
international conferences and journals, including
ICGSE and IEEE Access. His research interests
include software security, empirical software engineering, systematic liter-
ature review, requirements engineering, green computing, software testing,
agile software development, and global software engineering.

VOLUME 10, 2022

SIFFAT ULLAH KHAN received the Ph.D. degree
in computer science from Keele University, U.K.,
in 2011.

He was the Head of the Department of Software
Engineering, University of Malakand, Pakistan,
for three years, where he was also the Chair-
person of the Department of Computer Science
and IT and is currently an Associate Professor
in computer science. He is also the Founder and
the Leader of the Software Engineering Research
Group, University of Malakand. He has successfully supervised ten M.Phil.
and four Ph.D. scholars. He has authored over 100 articles, so far,
in well-reputed international conferences and journals. His research interests
include software outsourcing, empirical software engineering, agile software
development, systematic literature review, software metrics, cloud comput-
ing, requirements engineering, and green computing/IT. He received the
Gold Medal (Dr. M. N. Azam Prize 2015) from the Pakistan Academy
of Sciences in recognition of his research achievements in the field of
computer (software).

HABIB ULLAH KHAN received the Ph.D. degree
in management information systems from Leeds
Beckett University, U.K. He is currently work-
ing as a Professor of information systems with
the Department of Accounting and Information
Systems, College of Business and Economics,
Qatar University, Qatar. He has nearly 20 years
of industry, teaching, and research experience.
His research interests include IT adoption, social
media, Internet addiction, mobile commerce, com-
puter mediated communication, IT outsourcing, big data, and IT security.

MUHAMMAD ILYAS received the Ph.D. degree
in computer science from the University of
Malakand, Pakistan, where he is currently an
Assistant Professor with the Department of
Computer Science & IT. His research interests
include software outsourcing, empirical software
engineering, systematic literature review, cloud
computing, requirements engineering, and green
computing/IT.

5481

