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ABSTRACT Switched reluctance machines (SRMs) have recently attracted more interest in many appli-
cations due to the volatile prices of rare-earth permanent magnets (PMs) used in permanent magnet
synchronous machines (PMSMs). They also have rugged construction and can operate at high speeds and
high temperatures. However, acoustic noise and high torque ripples, in addition to the relatively low torque
density, present significant challenges. Geometry and topology optimization are applied to overcome these
challenges and enable SRMs to compete with PMSMs. Key geometric design parameters are optimized
to minimize various objective functions within geometry optimization. On the other hand, the material
distribution in a particular design space within the machine domain may be optimized using topology
optimization. We discuss how these techniques are applied to optimize the geometries and topologies of
SRMs to enhance machine performance. As optimizing the machine geometry and material distribution at
the design phase is of substantial significance, this work offers a comprehensive literature review on the
current state of the art and the possible trends in the optimization techniques of SRMs. The paper also
reviews different configurations of SRMs and stochastic and deterministic optimization techniques utilized
in optimizing different configurations of the machine.

INDEX TERMS Deterministic optimization, geometry optimization, stochastic optimization, switched
reluctance machines, topology optimization.

I. INTRODUCTION
Switched reluctance machines (SRMs) are now attractive
choices for various applications such as electric vehicles
and hybrid electric vehicles [1], [2], wind power genera-
tion applications [3], and micro-electromechanical systems
(MEMS) [4], [5]. The reason is that they have a simple
and rugged structure without any magnets or windings on
the rotor part [6]. The lack of the PMs and the winding
on the rotor allows the machine to run at high tempera-
tures and high speeds [7]. It also reduces the rotor weight,
which increases the torque-to-inertia ratio of the machine
and improves the dynamic performance as compared to the
induction machines (IMs) and PMSMs [8], [9]. Additionally,
the lack of rare-earth PMs from the machine design makes
SRMs a low-cost substitute to PM-based machines.
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SRMs also use concentrated winding for the coils of
phases, which decreases the assembly and replacement costs.
It also decreases the electromagnetic coupling between the
machine phases, which improves the SRMs fault-tolerance
capability [10]. These advantages improve the machine’s
reliability and make SRMs a reliable option for different
applications [11]–[13].

However, the doubly salient nature of SRMs structure
introduces challenges such as high torque ripples and high
acoustic noise and vibrations [14]. The acoustic noise and
vibrations are mainly due to the high radial and axial forces
for the radial and the axial SRMs configurations, respec-
tively [14]–[19]. Moreover, SRMs are characterized by a
small air gap thickness between rotor and stator, which
requires a precise manufacturing tolerance [20]. The machine
drive requires uncommon converters, which is another weak
point of the machine drive system [15]–[17].

Extensive research was performed to overcome these dis-
advantages and improve the machine’s static and dynamic
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performance [1]. New configurations are developed, and opti-
mization procedures are applied to enhance the machine’s
performance. Geometry and topology optimization are used
to overcome these disadvantages and allow SRMs to compete
with PMSMs. In Geometry optimization, key design param-
eters of the motor geometry are optimized to achieve various
design objectives. On the other hand, the material distribution
in a particular design space within the machine domain is
optimized to improvemachine performance through topology
optimization.

In this work, different SRM configurations are illustrated.
The merits, demerits, and application of each of these con-
figurations are described. Also, an effort is made to present
a comprehensive literature review of the deterministic and
stochastic optimization methods used for improving the dif-
ferent performance indices of SRMs. A comprehensive sur-
vey of the geometry optimization and topology optimization
methods used for SRM design in the literature is presented
through this work. Finally, the convolution neural network
optimization technique used in other electric machines is
illustrated as a trend in the topology optimization of electric
machine design. The latter technique was not used for SRM
optimization yet; however, this technique’s efficiency in sav-
ing optimization time and computational load motivates the
authors to present it in this paper as a potential technique that
could be used for SRM topology optimization to reduce the
computational optimization burden.

The paper is arranged as follows. Section II classifies var-
ious SRMs configurations and illustrates the applications,
advantages, and disadvantages of each configuration. The
different performance measures used in SRMs’ optimization
as objective functions are reviewed in Section III. Section IV
presents the existing deterministic and stochastic optimiza-
tion methods used for the optimization of electric machines.
The geometry optimization of SRMs and the recent stud-
ies in this area to improve the performance of SRMs are
discussed in Section V. In Section VI, the topology opti-
mization methods used for enhancing the performance of
SRMs are discussed. In Section VII, the convolution neural
network (CNN) optimization technique used in other electric
machines is illustrated as a potential trend in the topology
optimization of SRMs. Finally, the trends and opportuni-
ties in the SRMs design and optimization are outlined in
Section VIII.

II. MAIN CONFIGURATIONS OF SRMs
SRMs can be categorized based on the motion type to linear
and rotary configurations and based on the flux-flow orien-
tation to radial and axial flux machines. There are various
stator/rotor pole combinations of SRMs. The number of rotor
and stator teeth, in addition to the number of phases, are
determined to ensure a feasible design of SRMs [21]. Most
of the possible design stator/rotor poles combinations were
illustrated in [22] and [23]. The selection of the machine con-
figuration and stator/rotor poles combination defines the per-
formance and depends significantly on the application [23].

A classification of SRMs based on the configuration is shown
in Fig. 1.

The number of poles and the flux direction determine the
configuration of the SRM. The classical and well-known
designs of the SRMs adopt the radial flux machine with a
rotor number of poles less than the stator number of poles.
These configurations are characterized by high torque ripples
and high acoustic noise and vibrations [24]. This issue is
solved by increasing the number of rotor poles to be higher
than the number of stator poles. The torque density and the
noise-causing radial/axial forces can be improved by select-
ing the number of the rotor poles to be higher than that
of the stator poles [24]–[26]. However, the high number of
rotor poles increases the operating frequency, which increases
the machine core loss [27]. It also decreases the conduction
period per phase, which results in more switching losses and
requires high-cost position sensors [28], [29]. SRMs with
a higher number of rotor poles are therefore more suitable
for low-power and low-speed applications [23]. On the other
hand, machines with a lower ratio of the rotor to stator poles
are selected for better utilization of the volt-ampere converter
rating [23].

In axial-flux SRMs (AFSRMs), the flux travels axially
between the stator and rotor. Due to the relatively shorter
flux path, AFSRMs have a higher power density than radial-
flux SRMs [30]. AFSRMs can be classified into three main
categories. These categories include single-stator single-rotor
(single-sided) machine, two-airgap (double-sided) machine,
and multi-stack machine. The single-sided is the simplest
AFSRM structure [31], [32]; however, the disadvantage of
this configuration is the imbalance between the axial forces
of the stator and rotor [33], [34], which produces high acous-
tic noise and needs to be accommodated in the bearing
design [18]. The problem of the unbalanced axial force is
solved by Double-sided AFSRMs configuration [35]. The
Double-sided AFSRMs have a higher torque density; how-
ever, the structure is more complex than the single-sided
AFSRMs configurations [35]–[37]. The multi-stack designs
of the AFSRMs are much more complex structures as they
should have at least three rotors or three stators [18]. The
advantage of the multi-stack AFSRMs is the higher power
and torque densities [18]. There are two types of multi-
stack AFSRMs, either having equal or different numbers of
rotors and stators. The equal number of rotors and stators
has the disadvantage of unbalanced axial force; however, this
configuration has a higher torque density than the multi-stack
AFSRMs with different rotors and stators [18].

The linear SRMs configuration has a different function
as it provides a linear motion. Linear SRMs (LSRMs) have
a similar structure to rotary SRMs, except that the sta-
tor and rotor have a linear form. They consist of a stator
(stationary part) and a translator (moving part) [38]. LSRMs
configurations comprise planar and tubular designs. The pla-
nar linear SRMs has two types the unilateral-type and the
Bilateral-type. The unilateral type has the advantage of the
simple structure as it consists of one translator and one stator.
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However, the unilateral-type main disadvantage is the high
unbalanced axial forces between the stator and the translator,
causing immense friction between both parts. The friction
potentially reduces the machine lifetime [39]. This disadvan-
tage is solved by the Bilateral-type but with a more complex
structure consisting of two stators and a single translator [40].
All the planar Linear SRMs have a common disadvantage
of having transversal cuts and uniform magnetic field dis-
tribution in the transversal direction. This problem is solved
by the tuber-type Linear SRMs that a tuber shape stator
with no transversal cuts [41], [42]. However, A precise shaft
installation is needed to prevent unbalanced radial magnetic
forces [43].

In this section, the construction, advantages, disadvan-
tages, and applications of the different SRM configura-
tions are presented. The rotary SRMs are discussed in
subsection A, while the linear SRMs are illustrated in
subsection B.

FIGURE 1. Main configurations of SRMs.

A. ROTARY SRMs
As illustrated in Fig. 1, rotary SRMs are divided into two
configurations: radial-flux SRMs and axial-flux SRMs. The
radial-flux SRMs are divided into three types: long-flux-
path SRMs, short- flux-path SRMs, and PM-assisted SRMs.
On the other hand, the axial flux SRMs are divided into
single-stack SRMs and multi-stack SRMs. In this subsection,
the different configurations of the rotary SRMs are presented.

1) RADIAL-FLUX ROTARY SRMs
Radial-flux rotary SRMs configurations comprise conven-
tional long-flux-path, mutually coupled short-flux-path and
PM-assisted SRMs. Conventionally, the flux flows through
the entire stator back iron. In short-flux-path configurations,
the flux flows in short loops containing the rotor and stator
yokes and the adjacent poles [44]. The latter configuration
has a relatively lower iron loss. However, it has higher mutual
inductance between phases, which reduces the machine’s
fault tolerance capability [45]. Permanent Magnets (PMs)
could be added to the stator in PM-assisted machines to
increase the machine co-energy, which increases the torque
density and efficiency [46], [47].

Radial-fluxmachines can have either an in-runner structure
or out-runner structure, as shown in Fig. 2 and Fig. 3, respec-
tively. The out-runner motors are more preferred for in-wheel
drive applications as they can reduce the transmission losses

significantly [27], [29], [48]–[50]. It also has higher torque
density due to the extended lever arm, where the torque
density may reach 2.4 times that of an in-runner counterpart
for the same spatial constraints [51].

FIGURE 2. In-runner radial-flux SRMs; a) A five-phase 10/6 in-runner
radial-flux SRM, and b) A three-phase 12/8 radial-flux segmented-rotor
SRM [52].

FIGURE 3. Out-runner radial-flux SRMs; a) short flux path
12/8 segmented-rotor SRM, and b) 6/8 non-segmented-rotor SRM.

The rotor can be non-segmented or segmented, as shown
in Fig. 2 for in-runner configuration and Fig. 3 for out-
runner configuration. The non-segmented design has a simple
structure and provides higher average torque and lower torque
ripple [49], [52]. On the other hand, the segmented design
reduces the rotor weight and has higher torque density and
lower rotor inertia [27]. The small rotor inertia also improves
the machine’s dynamic performance [27].

2) AXIAL-FLUX SRMs
In axial-flux SRMs (AFSRMs), the flux travels axially
between the stator and rotor. Due to the relatively shorter
flux path, AFSRMs have a higher power density than radial-
flux SRMs [30]. Based on the machine structure and num-
ber of stators and rotors used in the machine, AFSRMs
can be classified into three main categories, as illustrated
in Fig. 4. These categories include single-stator single-rotor
(single-sided) machine, two-airgap (double-sided) machine,
and multi-stack machine.

The single-sided type has the simplest structure as it
consists of a single stator, a single rotor, and one air-
gap [31], [32]. A crucial problem of this configuration is
the imbalance between the axial forces of the stator and
rotor [33], [34], which produces high acoustic noise and
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FIGURE 4. Main topologies of AFSRMs.

needs to be accommodated in the bearing design [18]. There
are two types of single-sided AFSRMs: the toothed-rotor
and segmented-rotor types, as shown in Fig. 5 and Fig. 6,
respectively [30].

The toothed-rotor type stator consists of a yoke, teeth,
and coils, whereas the rotor comprises a yoke and teeth.
Alternatively, the stator of the segmented-rotor type consists
of coil-wound teeth, auxiliary teeth, and a yoke [30]. The
rotor consists of separate segments held together by a non-
magnetic material such as aluminum or plastic. This SRM
configuration has lower copper losses. It also has lower iron
loss due to the auxiliary stator poles that provide a shorter
flux path. Plastic or aluminum usage in the rotor to hold the
rotor segments reduces the motor inertia, which improves the
dynamic performance of the machine [53].

FIGURE 5. A single-sided toothed-rotor AFSRM.

Double-sided AFSRMs have a balanced axial force, and
the available volume of this machine is more effectively
used for torque production [35]–[37]. This configuration
may have two outer rotors (dual-rotor configuration) or two
outer stators (inner-rotor configuration). The dual-rotor con-
figuration has either toothed [54] or segmented [55] rotors,
as shown in Fig. 7 and Fig. 8, respectively. The segmented-
rotor topology provides higher torque and efficiency than
the toothed-rotor one [56]. The increase of the torque of
the segmented-rotor type is due to the short flux path that
provides higher flux linkage compared to the toothed-rotor
type [56].

The dual-stator inner-rotor AFSRM, shown in Fig. 9,
is typically utilized as an in-wheel actuator of electric vehi-
cles [35], [57]. The rotor is segmented and sandwiched by two
identical external stators [58]. This topology has a small axial
length due to the absence of rotor yoke [57]. A non-magnetic
carrier accommodates the rotor segments [59].

FIGURE 6. A single-sided segmented-rotor AFSRM.

FIGURE 7. A 12/16 dual-rotor single-stator toothed-rotor AFSRM.

FIGURE 8. A 12/16 dual-rotor single-stator segmented-rotor AFSRM.

B. LINEAR SRM
Linear SRMs (LSRMs) have a similar structure to rotary
SRMs, except that the stator and rotor have a linear form.
They consist of a stator (stationary part) and a translator
(moving part) [38]. LSRMs configurations comprise pla-
nar and tubular configurations. Fig. 10 shows a three-phase
unilateral-type planar LSRM with a four-pole translator.

The unilateral-type main disadvantage is the high unbal-
anced axial forces between the stator and the translator,
causing immense friction between both parts. The friction
potentially reduces the machine lifetime [39]. Bilateral-type
(double-sided) LSRMs, with two equal airgaps, could solve
this issue [40].

The tuber-type LSRM, shown in Fig. 11, consists of a
tuber stator sleeve and a cylindrical translator [43]. A precise
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FIGURE 9. A 12/8 three-phase dual-stator inner-rotor axial-flux SRM.

FIGURE 10. A three-phase unilateral-type planar LSRM with a four-pole
translator.

shaft installation prevents unbalanced radial magnetic forces.
Unlike unilateral- and bilateral-type LSRMs, the tuber-type
LSRM does not have a transversal cut and has a uniform
magnetic field distribution in the circumferential direction.

The tuber-type LSRM comprises transversal-flux
[41]–[60], and longitudinal-flux [42] types according to the
flux direction to the translator. Fig. 11 shows a double-
excited-winding, where both stator and translator are excited,
tubular longitudinal-flux LSRM [62].

FIGURE 11. A double-excited-winding tubular longitudinal-flux
LSRM [62].

III. OBJECTIVE FUNCTIONS FOR PERFORMANCE
IMPROVEMENT OF SRMs
This section reviews the different measures of the SRMs’
performance, which are used as objective functions for
performance improvement. These objectives include the
maximization of torque, reduction of torque ripple, maximiz-
ing the efficiency, and mitigation of radial force for min-
imization of acoustic noise and vibration of the machine.
In sections V and VI, more details about the use of these
performance indices are presented.

A. TORQUE RIPPLES
The SRM drives have more torque pulsation than other
machine types due to the discrete nonlinear torque of each
phase and the doubly salient structure of the machine. There
are different definitions for torque ripples used in the litera-
ture as objective functions, for instance:

1T = Tmax − Tmin (1)

TRn =
Tmax − Tmin

Tav
(2)

TRp =
Tmax − Tmin

Tav
× 100% (3)

1Trms =

√
1

t2 − t1

∫ t2

t1
(T (t)− Tav)2dt, (4)

where Tmax and Tmin are the maximum and the minimum
values of the torque profile over one electric cycle, Tav is
the average torque, and T (t) is the instantaneous torque as
a function of time. The duration t2 − t1 is the time of one
complete electric cycle, 1T is the peak-to-peak torque rip-
ple, TRn and TRp are the normalized and percentage torque
ripple respectively, and 1Trms is the RMS torque ripple.
Fig. 12 shows the average torque and the peak-to-peak torque
ripple in a typical torque waveform of 6/14 radial flux SRM
over one electric cycle operating at 1500 rpm.

The peak-to-peak torque ripple, the normalized torque
ripple, and the percentage torque ripple, shown in (1), (2),
and (3) respectively, are simple, but only the maximum and
the minimum values of the torque waveform are used to
calculate the torque ripple. However, the RMS torque ripple
expression, shown in (4), is a function of all the torque
waveform data points and measures these points’ deviation
from the average torque line. The RMS torque ripple formula
is often used for optimization to minimize the SRMs torque
ripples and improve the machine torque quality [6].

Reducing the torque ripple of SRMs is one of the hot
research topics. Geometry and topology optimization are
common approaches to minimize the machine torque ripples.
In literature, arc angles of rotor and stator poles, the height
of rotor and stator poles, stator/rotor back iron thickness,
number of phases, and stack length were used to minimize the
machine torque ripple. Also, the material distribution inside
the rotor and stator cores was optimized to reduce the torque
ripple of SRMs [63], [64].

Moreover, drive control variables such as converter firing
angle for each phase, conduction angle for each phase, ref-
erence current, and the current waveform shape were used
for torque ripple minimization of SRMs. This research area
is out of the paper scope, but the reader can find more
in [6] and [65].

B. AVERAGE TORQUE AND TORQUE DENSITY
PMSMs have the highest torque density among othermachine
types due to the permanent magnet excitation. For the SRMs,
the average torque and the torque density can be enhanced
through the selection of the rotor and stator core materials
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FIGURE 12. Typical torque waveform over one electric cycle of 6/14 SRM
at 1500 rpm speed.

and optimizing the machine structure through geometry or
topology optimization [66]. The cobalt iron and 6.5% silicon
iron are usually used in SRMs to increase the torque density
due to the higher saturation limit that boosts the machine’s
magnetic loading [66], [67].

Fig. 12 shows the average torque (black dotted line) of a
6/14 SRM torque profile operating at 1500 rpm speed. The
average torque can be calculated using the following equation
over one complete electric cycle:

Tav =
1

t2 − t1

∫ t2

t1
T (t)dt, (5)

The torque density (in N.m/L) of themotor is defined as the
motor average torque to the motor volume. Also, the specific
torque (in N.m/kg) can be used as an optimization function
which is the ratio between the average torque and the motor
weight. Geometry and topology optimizations of SRMs were
extensively applied in the literature to enhance the average
torque and torque density.

C. EFFICIENCY IMPROVEMENT
The SRM efficiency is commonly used as an objective func-
tion in literature to improve machine performance. The core
losses (Pcore), the rotor windage loss (Pwin), and the copper
losses (Pcu) are the primary loss sources in SRMs. Minimiz-
ing these losses can improve the SRMs efficiency, as illus-
trated in the following equation:

η =
Pmech
Pelec

=
Pmech

Pmech + Pcu + Pcore + Pwin + Pother
, (6)

where η is the SRM efficiency, Pmech is the output mechan-
ical power, Pelec is the input electrical power, and Pother is
the other losses that are not related to the electromagnetic
design as the bearing friction loss. The rotor windage loss
is included as an electromagnetically dependent parameter in
this equation since it depends on the rotor design due to the
salient nature of the rotor structure.

The selection of the machine material can improve the
machine’s efficiency. Copper magnet wires are usually used
for the coils due to the high thermal conductivity, high current
carrying capacity, and low electric resistivity compared to
Aluminum counterparts [6]. The core loss can be reduced
by using low-loss magnetic steel, such as 6.5% high silicon

steel, low-loss silicon steel, laminated amorphous alloy, high-
resistivity soft magnetic composites [68]–[70]. In addition to
the materials’ selection, the SRMs key design parameters and
the material distribution in the design space are optimized
to improve the machine efficiency. This will be discussed in
more detail in sections V and VI.

D. RADIAL FORCE AND ACOUSTIC NOISE
The high radial force components of SRMs are considered
one of the big challenges. Radial forces are the main sources
of SRM vibration and acoustic noise [6], [71]. As mentioned
in [71], the acoustic noise radiated from SRMs is relatively
harsher compared to induction machines and PMSMs, which
limits utilizing the SRMs in noise- and vibration-sensitive
applications like white goods [71]. Consequently, analyzing
and reducing SRMs acoustic noise receives much attention
between researchers [72]–[74].

In SRMs and electric machines in general, there are three
primary sources of acoustic noise and vibration: mechanical
sources, aerodynamic sources, and electromagnetic sources.
In this paper, the review is focused on the electromagnetic
source of acoustic noise. The electromagnetic cause of acous-
tic noise and vibration of SRMs is related to the machine
excitation, which generates radial pressure on the machine
structure that can excite its natural frequency at different
mode shapes [75]. Fig. 13 shows a typical radial pressure on
the stator structure of three-phase inner rotor 6/4 SRM for one
electric cycle. The radial force shown in the figure represents
the magnetic attraction between stator teeth and rotor teeth in
the radial direction, which deforms the machine stator struc-
ture. This deformation appears in different mode shapes [76].
The radial force density acting on the machine’s different
structures can be decomposed into different axial, circum-
ferential, and temporal harmonic orders (ax, υ, u). In some
cases, only the first axial mode is considered (ax = 1), and
the force density is decomposed to (υ, u) harmonic orders.
The forcing frequency of each of these harmonics depends
on the harmonic temporal order and themechanical frequency
and can be calculated as follows:

ff (u) = |u|Nr fmech = |u|Nr
n
60

[Hz], (7)

where ff is the forcing frequency of a radial force harmonic
with electric temporal order u, fmech is the rotor mechanical
frequency, Nr is the number of rotor poles, and n is the rotor
speed in rpm. Fig. 14 shows the 2-D FFT of the radial pressure
acting on the stator structure that is illustrated in Fig. 13 as an
example of the radial pressure harmonic spectrum.

Generally, the stator vibration in radial-flux SRMs is mod-
elled as the vibration of an equivalent cylindrical shell. The
vibration modes of SRMs stator are identified in circum-
ferential and axial directions. Fig. 15 shows examples of
different circumferential mode shapes of a cylindrical shell.
Each of these modes has a natural frequency depending on
the structure dimensions and material properties, such as
Young’smodulus and Poisson’s ratio. The radial force density
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FIGURE 13. A typical radial force density acting on the stator of 6/4 SRM
operating at 1103 rpm, and the rotor rotates at the counterclockwise
direction.

FIGURE 14. 2-D FFT of the radial force density wave shown in Figure 13
(the temporal order shown in this figure is the electrical temporal order).

harmonics excite the stator structure, and the acoustic noise
occurs when the forcing frequency of a certain spatial har-
monic order becomes close to the natural frequency of the
corresponding circumferential mode shape.

Fig. 16 shows the intersection between the natural fre-
quency of six circumferential mode shapes of a stator struc-
ture (Circ = {0, 2, 4, 6, 8, 10}) with the forcing frequency
of five temporal order (u = {1, 2, 3, 4, 5}) of an inner rotor
6/4 SRMs. In the figure, the rays represent the change of
the harmonic pressure frequency with rotor speed. It can
be concluded from Fig. 14 and Fig. 16 that the motor at
the base speed will excite the circumferential mode shapes
Circ = {2}with the harmonics (υ, u) = {(2,−1)},Circ = {4}
with the harmonics (υ, u) = {(4,−2)}, and Circ = {6}
with the harmonics (υ, u) = {(6,−3), (6, 3)}. The acoustic
noise can be mitigated by either reducing the amplitude of
these dominant harmonics or making the machine structure
stiffer. A stiffer structure has a higher natural frequency of
the different mode shapes, making it difficult to be excited
within the motor speed range.

The geometrical design parameters of SRMs can be opti-
mized to minimize the amplitude of the most dominant har-
monics that contribute to the acoustic noise [77]. The natural
frequency of the different circumferential mode shapes of the
machine structure can be controlled by the mechanical design
and the used materials as illustrated in [72], which can be
used to mitigate the acoustic noise as illustrated in [78]. The
drive control variables such as the phase firing angle, the turn-
off-angle, the reference current, and the current profile were

used in the literature to eliminate or reduce the amplitude
of selective spatial harmonic orders to minimize the acoustic
noise as discussed in [79]–[82].

IV. OPTIMIZATION METHODS
Several optimization methods have been applied to the design
of SRMs. These optimization methods are generally divided
into deterministic and stochastic optimization techniques.
Deterministic optimization techniques require gradient infor-
mation, whereas stochastic optimization techniques search
for an optimal solution in a randomized way that does not
require the objective function’s gradient information. Deter-
ministic optimization techniques reach an optimal solution
faster and provide a unique and precise solution [83]. How-
ever, the achieved solution is not guaranteed to be the global
optimal solution for nonconvex functions [83]. The machine
design is usually a nonconvex problem with many local
solutions. This makes it challenging for deterministic opti-
mization techniques to reach a global solution. The opti-
mization process can also be divided based on the number
of objective functions to single-objective optimization and
multi-objective optimization.

FIGURE 15. Circumferential vibration modes of radial-flux SRMs stator. a)
Mode 0, b) Mode 1, c) Mode 2, d) Mode 3, e) Mode 4, f) Mode 5.

This section reviews some of the deterministic and stochas-
tic optimization techniques used in electrical machine design.
The deterministic optimization techniques and the different
ways to obtain the objective function gradient with respect to
the design parameters are discussed first. Then, the stochas-
tic optimization techniques are reviewed. At the end of
this section, the multi-objective optimization problem is dis-
cussed, and the multi-objective optimization techniques used
for SRMs design are reviewed.

A. DETERMINISTIC OPTIMIZATION METHODS
Deterministic optimization methods use objective function
gradients with respect to the design parameters to guide the
optimization iterates to the optimal solution [84]. The conver-
gence of a gradient-based optimizer depends on the accuracy
of the obtained gradients [85].
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FIGURE 16. An illustration of the forcing frequency versus rotor speed
and the excitation of different circumferential vibration modes of a
6/4 SRM.

In this subsection, the objective function gradient esti-
mation methods are covered first. Then, the deterministic
optimization algorithms used for SRMs are reviewed.

1) OBJECTIVE GRADIENT CALCULATION METHODS
The gradients (the objective function sensitivity to the design
parameters) can be estimated through numerical methods,
adjoint variable methods, or using automatic differentiation,
as categorized in Fig. 17. Gradients are routinely computed
numerically using forward finite difference (FFD) [86], back-
ward finite difference (BFD) [86], central finite differences
(CFD) [87]–[89], and complex-step methods [89]. The FFD
and BFD methods require one additional simulation for each
design parameter, whereas the more accurate CFD requires
two extra simulations for each design parameter. This means
that the FFD and BFD require n+1 simulations, whereas the
CFD requires 2n + 1 simulations for each iteration, where n
is the number of the design parameters.

FIGURE 17. Methods of Sensitivity calculation.

The approximations of these three methods when calcu-
lating the gradient of the objective function f with respect
to x at xi are illustrated in Fig. 18. A perturbation h is
utilized in this figure. All three methods are computationally
expensive and may require a convergence study to define the
appropriate perturbation size h [89]. On the other hand, the
obtained gradients using the complex-step method (CSM)
are more accurate than those obtained with finite difference

methods [85]. The CSM is not subject to roundoff errors,
and it can be generalized to any objective function [90].
However, it deals with a complex number variables, which
is not applicable to the SRMs design as all the parameters are
real.

FIGURE 18. A clarification of the finite difference methods.

The discrete adjoint variable method [91]–[93] and con-
tinuum adjoint variable method [94]–[97] outperform the
finite difference methods in the number of required objective
function evaluations at each step [85]. Unlike finite differ-
ence methods, they obtain the objective function gradient
with respect to all design parameters using one additional
simulation for each iteration [88], [91], [98].

The discrete approach is typical as its equations are appli-
cable to almost all FEA-based problems. However, the sen-
sitivity calculation requires information like the FE system
matrix and vector, which are not usually accessible. This
limitation has been solved in [77] as the authors were able
to use the available data to reconstruct the FE system matrix
and vector and use it for discrete adjoint variable sensitivity
calculation of SRM radial force with respect to the different
design parameters.

On the other hand, the continuum approach does not
require extensive access to the FE internal data structures.
This method obtains sensitivity by differentiating the govern-
ing variational equation before discretization. The sensitivity
formulas are formed using the material derivative concept
of the continuum mechanics and based on the analytical
equations of the state and the adjoint variables as described
in [94] and [95].

Lastly, the automatic differentiation (AD) method calcu-
lates the derivatives of a computer program output with
respect to the inputs. It repeatedly applies the chain rule
to the program sequence of elementary arithmetic opera-
tions and functions. The AD method has two operating
modes, namely forward accumulation and reverse accumu-
lation [99]. The two modes compute the gradient of the
function with a seed vector that has the same number of
the function inputs or outputs for forward accumulation and
reverse accumulation, respectively [99]. The AD method
was used to find the sensitivity of the electromagnetic
force to different geometric parameters of a linear actuator
in [100].

The optimal solutions determined by deterministic opti-
mization methods are based on the accuracy of gradient
calculations. There is a trade-off between the method accu-
racy and optimization time, so the most suitable method
to be used depends mainly on the application and project
timeline.
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2) DETERMINISTIC OPTIMIZATION ALGORITHMS USED FOR
SRMs
Deterministic optimization methods usually utilize a single-
objective function. Multiple objectives can be weighted
together using aggregation methods such as arithmetic
mean operator, harmonic mean operator, and Bonferroni
mean [101]. Deterministic optimization methods can also
be classified as unconstrained and constrained methods. The
constrained methods are considered here since there are usu-
ally spatial constraints on the different design parameters of
SRMs and electric machines design in general [102].

There are many constrained optimization methods that
were applied to electric machines design. These include
sequential quadratic programming, Lagrangian method, and
interior point method, as shown in Fig. 19 [83].

FIGURE 19. Methods of constrained deterministic optimization [83].

Ageneral optimization problem (given in (8), (9), and (10))
is used to describe and illustrate the different deterministic
optimization methods throughout this section.

minimize: f (x) (8)

Subject to: gi(x) ≤ 0, i = 1, 2, . . .m, (9)

Subject to: hj(x) = 0, j = 1, 2, . . . l, (10)

where f (x) is the objective function, x is the vector of the
design variables, The design space is also subject to m num-
bers of inequality constraints and l numbers of equality con-
straints as described in (9) and (10), respectively. The upper
and the lower values of the design variables are considered
here a part of the inequality constraints in (9). We consider in
what follows some of the key optimization methods used in
the optimization problem solution given by (8)-(10).

3) LAGRANGIAN METHOD
The Lagrangian method [84] creates and solves a subproblem
obtained by linearizing the constraints and applying Lagrange
function approximation at each step. In the algorithm, the
objective function and all the equality and inequality con-
straints are combined in a single function as shown in (11).
m slack variables, y = [y1, y2, . . . , ym], are added to the
inequality constraints to create the Lagrange function:

(x, y,λ,µ) = f (x)+
m∑
i=1

λi

(
gi(x)+ y2i

)
+

l∑
j=1

µj
(
hj(x)

)
,

(11)

where λ = [λ1, λ2, . . . , λm] are the Lagrange multipliers for
the inequality constraints and µ = [µ1, µ2, . . . , µl] are the
Lagrange multipliers for the equality constraints. The prob-
lem described in (11) has (n+ 2m+ l) unknown variables,

where n is the number of the design variables. A system of
equations can be formed to solve all of these unknowns by
forming the gradient of the Lagrange function with respect to
all unknowns, as illustrated in [84].

The sequential quadratic programming, NLPQLP, and the
interior point methods are based on the Lagrangian function
to solve the optimization problem.

4) SEQUENTIAL QUADRATIC PROGRAMMING (SQP)
This is an iterative method that uses the objective function’s
gradient for nonlinearly constrained problems [103]. This
method is considered one of the most effective methods for
solving constrained nonlinear optimization problems. The
method solves subproblems in which the cost function is
approximated as a quadratic function with linearized con-
straints [83]. The SQP is a time-efficient method if the
number of design parameters is not too large, the objective
function and its gradients can be obtained with high accuracy,
the problem is smooth, and the design parameters are well-
scaled [104].

The basic idea of this method is to form a quadratic
programming subproblem at each step based on a quadratic
approximation of the Lagrange function, (11). Then the
quadratic programming can be formed as follows:

min
d
∇f (xk )T d +

1
2
dTHkd, (12)

Subject to: ∇gi(xk )Td + gi(xk ) ≤ 0,

i = 1, 2, . . .m. (13)

Subject to: ∇hi(xk )Td + hi(xk ) = 0,

i = m+ 1, . . .m+ l., (14)

where d is the search direction of the design parameters,
∇f (xk ) and Hk are the objective function gradient and the
Hessianmatrix of the Lagrangian function at iteration number
k , respectively, and ∇gi(xk ) and ∇hi(xk ) are the gradient of
the inequality and equality constraints at iteration number k ,
respectively.

At each iteration, the Hessian matrix of the Lagrange
function is approximated. The Hessian matrix can be approx-
imated by the Broydon Fletcher Goldfarbo Shanno (BFGS)
approximation as follows [105]:

Hk+1
= Hk

+

[
V k]T V k[
V k]T Uk

−
HkUk [Uk]T [Hk]T[

Uk]T HkUk
, (15)

V k
= ∇Lk+1 −∇Lk , (16)

Uk
= xk+1 − xk , (17)

where ∇L is the gradient of the Lagrange function.
After solving the quadratic programming subproblem for

the search direction d , a linear search algorithm can be used
to minimize the objective function along the search direction
and update the variable vector as follows:

xk+1 = xk + αd, (18)

where α is the optimal change of the design variable.
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After determining the new design variable, the pro-
cess is repeated till it reaches the termination conditions.
Fig. 20 shows a flowchart of the sequential quadratic pro-
gramming method.

The SQP is considered one of the powerful deterministic
optimization techniques. The only problem related to this
technique is the high computational cost for each optimiza-
tion step [106].

5) INTERIOR-POINT METHOD
The interior-point method (IPM) is a constrained optimiza-
tion method used for SRMs and electrical machines design
optimization. The IPM is a linear optimization technique
based on the logarithmic barrier method to solve the linear
and nonlinear optimization problem as discussed in [107].

FIGURE 20. A flow chart of the sequential quadratic programming
algorithm.

By using a barrier function in IPM, consider a nonlinear
optimization problem such as in (8) and (9), the con-
strained optimization problem is transformed into an uncon-
strained optimization problem as follows [108]:

R(x, µ) = f (x)− µ
m∑
i=1

log(gi(x)) (19)

where µ is a positive scalar variable and called the barrier
coefficient. As µ converges to zero, the minimum of (19)
converges to the solution of (8). The gradient of the barrier
function given in (19) is given as follows:

∇R = ∇f (x)− µ
m∑
i=1

1
gi(x)
∇gi(x) (20)

In addition to the function variable x, the Lagrange multi-
plier λ is introduced as follows:

gi(x)λi = µ, ∀i = 1, . . . ..,m. (21)

From (20) and (21), the gradient of the barrier function
becomes:

∇f (x)− ATλ = 0, (22)

where A is the Jacobian vector of the constraints. The New-
ton’s method is then applied to (21) and (22) as follows:(

H −AT

3A G

)(
Sx
Sλ

)
=

(
−∇f (x)+ ATλ

µ− Gλ

)
(23)

whereH is the Hessian matrix of the barrier function, (19),G
is a diagonal matrix withGii = gi(x). The system of equations
in (23) is solved for the design variable search direction, and
the Lagrange coefficients search direction, then the design
variables and the Lagrange coefficients are updated for the
next step as follows:

xk+1 = xk + αSx
λk+1 = λk + αSλ (24)

The best value of α can be found by the linear search along
the search direction of the design variables and the Lagrange
coefficients. The Hessian matrix in (23) can be estimated
for the next step by the BFGS approximation, as illustrated
in (15). The algorithm keeps iterating till the termination
condition of the algorithm occurs [109].

In summary, this subsection reviewed the deterministic
optimization technique used in the literature for electric
machine design. The reader can find a detailed review of
the various constrained deterministic optimization methods
in terms of simplicity, reliability, and efficiency in [83].

B. STOCHASTIC OPTIMIZATION METHODS
Stochastic optimization techniques search for an optimal
solution with randomness. They can deal with either single-
objective or multi-objective optimization problems. Different
stochastic algorithms considered in this review include:

1) Swarm Optimization (SO) [110]–[113]: The algorithm
mimics natural creatures’ social behavior, such as birds
and wolves, in searching for food.

2) Simulated Annealing (SA) [114], [115]: The algorithm
simulates the heat treatment annealing process to reach
the best value of the design objectives.

3) Genetic Algorithm (GA) [116]: The algorithm imitates
the evolution process of species.

4) Evolutionary Algorithms (EAs) [117]: These algo-
rithms mimic the evolution process of species based on
the concept of natural selection. GA can be considered
as a subdivision of the EAs. The main difference is that
the parent selection in EAs is based on an equal prob-
ability of each individual, whereas the parent selection
in GA is based on the likelihood of success and the
parents’ fitness values.
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1) SWARM OPTIMIZATION TECHNIQUES
Many optimization techniques are inspired by the social
behavior of creatures in searching for food such as particle
swarm optimization [110], [111], ant colony [118], artifi-
cial bee colony [119]–[121], glowworm [122], [123], firefly
[124], [125], cuckoo search [126], bat search [127], and
hunting search [128]. The swarm optimization algorithms
are simple, robust, and do not require the implementation of
complex mathematical formulations [129].

Particle swarm optimization (PSO) was introduced by
Kennedy and Eberhart more than 25 years ago [110]. It is
a heuristic optimization technique that mimics the social
behaviour of a group of creatures that search for food and
follow the group’s leader. A flowchart that describes the
particle swarm optimization algorithm is shown in Fig. 21.
In PSO, each particle (individual) location is a point in the
design space. Each individual particle of the swarm is shifted
at each iteration with a velocity that is a function of the best-
achieved self and global locations at the current iteration. This
is represented mathematically as given in (25) and (26).

xki = xk−1i + V k
i (25)

V k
i = wV k−1

i + C1d1(x̄i − xk−1i )+ C2d2(x̃− xk−1i ) (26)

where xki and V k
i are the position and the velocity of the

ith particle at the k th iteration, respectively, x̄i is the best
local solution of the ith particle, and x̃ is the best global
solution of all particles. C1 represents the cognitive learning
factor that connects each particle to its own best value. The
best global value is connected to each particle through the
cognitive learning factor C2. w is an acceleration factor that
should be high at the first few iterations to explore a larger
area in the parameters space. It then gets smaller to make
the algorithm converge faster. d1 and d2 take random values
between 0 and 1.

As shown in Fig. 21, the algorithm starts by evaluating
a random population’s fitness with random positions and
velocities. Then, the local minimum of that population is
stored and compared to that of the next population. The algo-
rithm updates the velocity and the positions of all population
particles based on (25) and (26). The algorithm keeps running
till the termination conditions are satisfied.

2) SIMULATED ANNEALING OPTIMIZATION
Simulated annealing algorithm is one of the stochastic opti-
mization methods used extensively in the literature in elec-
trical machines design optimization [64], [115], [130]. The
algorithm is based on the heat treatment process of steel.
It starts from a condition where the steel particles have high
energy and in high instability andmotion conditions. The par-
ticles cool down and reach a thermal equilibrium where they
are arranged in a structure with lower internal energy through
the optimization process. Through this process, the temper-
atures of the particles gradually decrease, and the objective
function tends to reach the optimal solution. Fig. 22 illustrates
a typical procedure of the simulated annealing optimization

technique. The algorithm starts from an initial feasible point
xk in the design space where the objective function f (xk ) is
evaluated. The equivalent temperature Tk at the k th iteration
is estimated based on (27).

Tk = Tk−1

(
1−

k − 1
kmax − 1

)p
(27)

where Tk−1 and kmax are the temperature of the previous step
and the maximum number of allowable iterations, respec-
tively, with the annealing coefficient p > 1. This is not the
only cooling formula used in simulated annealing optimiza-
tion algorithm and the reader can find other cooling formulas
in [83].

FIGURE 21. A flowchart of the particle swarm optimization algorithm.

The Metropolis rule is a step to accept the solution with a
probability, y, based on the new particle energy, E(xnew), and
the old particle energy E(xold ) as follows [131]:

y =

1 if E(xnew) < E(xold )

exp
(
−
E(xnew)− E(xold )

T

)
if E(xnew) ≥ E(xold )

(28)

Based on the algorithm flowchart in Fig. 22, theMetropolis
algorithm is a very important step in the SA algorithm to find
the optimal solution of the problem.

In [130], a general multi-objective SA algorithm was
utilized in a machine-related optimization process. The
algorithm was compared to the classical PSO, attraction-
repulsion-based PSO, Gaussian mutation-based PSO, and
quadratic interpolation-based PSO. The SA algorithm outper-
formed all these algorithms in terms of accuracy, robustness,
stability, and convergence rate.

The SA algorithm could improve the performance of clas-
sical PSO. Classical PSO does not have an effective global
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search, so it may not converge to the global solution and
converge instead to a local one [132]. SA can enhance PSO
robustness and effectiveness through the discrete PSO-SA
algorithm at the expense of longer convergence time since
more computations are required [132].

3) GENETIC ALGORITHM OPTIMIZATION
The genetic algorithm (GA) was first introduced in
the 1960s [83]. It mimics the evolution process of the species
and the concept of natural selection. This is mainly performed
through the processes of parents’ selection, crossover, and
mutation, as illustrated in Fig. 23. The parents (parame-
ters values) are selected first based on their fitness value
(objective function value). The selection is generally based
on a probability function that uses high-fitness individuals
to produce offspring from their chromosomes. This means
that the community fittest elements have the highest chance
to produce the next generation. The algorithm encodes the
values of the parents into binary strings. All the variables’
binary strings are connected to a chromosome. As shown in
Fig. 23, the parents’ strings, blue and red, breed through the
crossover process where the parents share their chromosomes
to generate children. A random bit in each child string is then
selected and inverted through the mutation process.

FIGURE 22. A flowchart of the simulated annealing optimization
algorithm.

Fig. 24 shows a flow chart of the GA procedure [133].
The algorithm begins with an initial population with m
number of individuals. The fitness of each of these design
points (individuals) is calculated. In the k th generation, two
individuals are chosen as two parents. The crossover process
is then applied with a high probability of up to 0.9 to all
the individuals with high fitness. Two children are created
when the crossover happens. The crossover probability, rc,

FIGURE 23. The crossover and mutation processes of the GA optimization
technique.

controls the exploitation of the high fitness individuals to
generate offsprings. In contrast, if there is no crossover, the
two children will be copies of their parents. The mutation is
then applied with a minimal probability of up to 0.01 to each
of the two children. The mutation probability, rm, controls
the exploration process and prevents the early convergence
to a local optimum solution. The new population replaces
the old one, and the fitness of the mth population individual
is evaluated. The crossover and the mutation processes are
repeated until the termination condition is reached [133].

FIGURE 24. A flowchart of GA optimization.

The formulation of the population for a new generation in
the GA is directly influenced by rc and rm. In [134], the author
showed that the fixed values of these two parameters are
less effective than the adapted values, and a better improve-
ment in the problem of global optimal point convergence can
be achieved if these two parameters become adaptive and
dynamic. A fuzzy inference system was proposed in [135]
to adapt the values of rc and rm which improve the GA
performance. This algorithm is called genetic fuzzy algorithm
(GFA) and is used in SRMs design in the literature [136].

In order to deal with the nonlinear constraint, an augmented
Lagrangian genetic algorithm (ALGA) is proposed in [137].
The optimization problem solved by ALGA is defined as
follows:

minimize: f (x) (29)

Subject to: gi(x) ≤ 0, i = 1, 2, . . .m, (30)

and hj(x) = 0, j = 1, 2, . . . l, (31)

and Ax ≤ B, (32)

and xlb ≤ x ≤ xub, (33)
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where xlb and xub are the lower and upper limits of the design,
respectively. The constraints in this method are divided into
two types: the nonlinear constraints, (30) and (31), and linear
constraints, (32) and (33). A subproblem is formulated by
combining the nonlinear equality and inequality constraints
with the objective functions using the Lagrangian and the
penalty functions as follows:

R(x,λ, s, ρ) = f (x)−
m∑
i=1

λisi log(si − gi)

+

l∑
j=1

λ(j+m)hj +
ρ

2

n∑
j=1

h2j , (34)

where λ is the Lagrangian multiplier estimate, s is a nonneg-
ative shift, and ρ is a penalty parameter. The algorithm starts
with an initial value of ρ. The GA algorithm minimizes a
series of subproblems. At each one of the subproblems λ, s
and ρ are constants. When the subproblem is minimized with
the required accuracy, the values of λ, s and ρ are updated
to form the next subproblem. This process is repeated till
reaching the stop criteria [137]. In this way, the GA algorithm
can solve optimization problems with nonlinear equality and
inequality constraints [137].

C. OTHER OPTIMIZATION TECHNIQUES USED IN THE
DESIGN OF SRMs
This subsection reviews the optimization techniques that are
not categorized as stochastic or deterministic techniques and
used for SRMs design. This includes the design of exper-
iments, response surface method, and Taguchi’s method.
This part also discusses the concept of multi-objective
optimization.

1) DESIGN OF EXPERIMENTS METHOD
One of the time-efficient multi-objective optimization meth-
ods used for electrical machine design is the design of
experiments method (DoE). DoE is a statistical optimization
tool that effectively quantifies the effects of changing the
geometrical design variables on the SRMs responses [112].
For a small number of design variables, the one factor at a
time (OFAT) method is used. However, this method becomes
impractical after a certain number of design variables as
the number of FE evaluations increases exponentially with
the number of design variables. As shown in Fig. 25, with
only three variables and two levels for each design variable,
eight FE evaluations are required with the OFAT method.
In general, the number of process evaluations for this method
is Ln, where L is the number of levels and n is the number of
the design parameters.

The central composite design (CCD) and the Latin hyper-
cube design (LHD) methods are used to overcome the OFAT
limitation on the number of parameters. In the CCD, the
sample points are distributed at the center and the corners of
the design space [138]. However, with a wide design space
range, it is difficult for the CCD to gather the global response

information of the electric machine [112]. The LHD covers
the design space by random samples with the advantage of
flexibility and better space-filling [139].

FIGURE 25. An example of the number of FE simulations DoE required
when using the OFAT method for three variables with two levels.

2) RESPONSE SURFACE METHOD
Another method used for multi-objective optimization is
the response surface (RS) method. In the response surface
method, the responses of the different objectives are eval-
uated at different points in space, then the response at any
other point in the design space is evaluated by interpola-
tion. The RS becomes the surrogate model of the SRM for
multi-objective optimization using multi-objective optimiza-
tion methods, such as PSO or GA [140].

3) TAGUCHI’S METHOD
According to this method, the optimization process consists
of four steps: planning, conducting, analyzing, and validat-
ing [141]. The method starts with the planning phase, where
the design parameters are selected and the required sim-
ulations are determined. The method is based on an idea
called orthogonal array to determine the number of simula-
tions required for the optimization. Table 1 presents a typical
orthogonal array used in an optimization process consisting
of four parameters and three levels for each parameter. This
array is called L9(34), whichmeans that nine simulations need
to be conducted to optimize four parameters with three levels.

The second phase of Taguchi’s method is to conduct all
the simulations planned in phase 1. The results are then
analyzed to know the effect of each parameter on the objective
function through a statistical study, and the best performance
is selected [142]. Taguchi’s method was utilized in the design
of SRMs, and more details can be found in [142]–[144].

4) MULTI-OBJECTIVE OPTIMIZATION DESIGN OF SRMs
As discussed in section III, different performance indices
can be used as objective functions when optimizing SRMs.
In multi-objective optimization, more than one performance
index of SRMs are considered, and solution candidates are
processed differently, as discussed in this section.

Most of the research efforts to improve the SRMs per-
formance utilized only one objective function. However,
improving only one performance metric at a time may have

VOLUME 10, 2022 5153



M. Abdalmagid et al.: Geometry and Topology Optimization of Switched Reluctance Machines: A Review

TABLE 1. L9(34) Taguchi’s method orthogonal array for four design
variables: with three design levels for each variable.

adverse effects on the other indices. On the other hand, multi-
objective optimization provides a set of optimal solutions,
which considers the behaviour of more than one perfor-
mance index [145]. Therefore, multi-objective optimization
can provide better SRM designs from different perspectives
compared to the single-objective optimization to fit the needs
of the different applications [112], [146].

The multi-objective optimization problems of SRMs can
be described as follows:

minimize: f (x) (35)

Subject to: gk (x) ≤ 0, k = 1, 2, . . .m. (36)

Subject to: hj(x) = 0, j = 1, 2, . . . l. (37)

xlow ≤ x ≤ xup (38)

where f (x) = [f1, f2, . . . . . . . . . .fh] : x→ Rh is the objective
functions vector, h is the number of objective functions, x is
the design variable vector defined in the design space Rn, n
is the number of the design parameters, whereas xup, xlow are
the upper and lower boundary vectors of the design variables,
respectively. The design space is subject to m inequality con-
straints and l equality constraints, as shown in (36) and (37),
respectively.

In multi-objective optimization, the notation of ‘‘opti-
mum’’ is called a ‘‘Pareto optimal solution’’. A multi-
objective optimization solution is called a Pareto optimal
solution or non-dominant solution if there is no way to
improve one objective without adversely affecting one or
more of the other objectives. The group of Pareto optimal
solutions of the optimization problem is called the Pareto
front set of solutions. A graphical representation of a multi-
objective optimization solution of a two-objective function
problem is shown in Fig. 26. The solutions A and B are non-
dominant, whereas solution C is dominant. C is not an ele-
ment of the set of the optimal solutions as other solutions can
improve both objective functions simultaneously compared
to the objective functions’ values of solution C.

After defining the set of Pareto front solutions, a decision-
making method should be used to select one of the Pareto
front set elements as an optimal solution based on the design
requirements. The decision-making process is based on the

FIGURE 26. A graphical representation of the solutions of a two-objective
optimization problem and the Pareto front set of solutions.

tradeoff between the different objectives to satisfy the design
requirements [147].

Stochastic optimization techniques such GA [115], [136],
[148]–[150], PSO [151], [152], and SA [64], [115], were used
for multi-objective optimization of SRMs in the literature.
A more detailed literature review of the single-objective and
the multi-objective optimization of SRMs is discussed in
sections V and VI.

V. GEOMETRY OPTIMIZATION OF SRMs
After reviewing the different deterministic and stochastic
optimization methods used in literature for electric machines
design, this section illustrates how these techniques were
applied to enhance the performance of SRMs.

The geometry of electric machines is usually optimized to
enhance performance. Fig. 27 shows the geometrical optimiz-
able design parameters of SRMs. The parameters hs and hr
are the length of the stator and rotor teeth, respectively. The
parameter ys is the stator yoke thickness, whereas yr is the
rotor yoke thickness. The parameters βs and βr are the arc
angles of the stator and rotor teeth, respectively. The param-
eter θs represents the taper angle of stator teeth, whereas θr
is the rotor teeth taper angle. The parameter g is the airgap
length and Rsh is the shaft radius. The stator outer diameter
and stack length are not commonly optimized since they are
constrained by the application [153].

In [115], GA and SA were used to optimize the stator and
rotor teeth arc angles, rotor diameter, and stack length of a
1 kW four-phase 8/6 radial-flux SRM to maximize the motor
power density. The SA algorithm was able to achieve more
than twice the power density increase achieved by GA [115].
However, SA required ten times longer time compared to GA.

The same geometric parameters were optimized in [64] to
improve the power density of a two-phase 4/2 unidirectional
radial-flux SRMbyGA and SA. The SA algorithmwas found
to be more effective as it increased the machine power density
by ∼27 % as compared to an 11.7 % increase using GA.
The results show the fast convergence of the SA algorithm
as compared to GA. Despite its superior performance, there
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is no much-reported research on using SA in the geometry
optimization of SRMs.

FIGURE 27. Main optimizable design parameters of SRMs.

In [154], a classic multi-objective PSO algorithm was
applied to minimize the torque ripple and maximize the aver-
age torque of a four-phase 8/6 1.1-kW radial-flux SRM by
optimizing the machine geometry. The considered geometric
parameters are stator outer diameter, outer rotor diameter,
stack length, air gap length, and stator and rotor teeth arc
angles. The achieved results were compared to those of GA.
The PSO increased the average torque by 5 % and reduced
the torque ripple by 7 % as compared to the average torque
and the torque ripple achieved by using GA.

A hybrid PSO-GA algorithm was applied to maximize the
average torque and minimize the magnetic loss of a four-
phase 8/6 radial-flux SRM [148]. The arc angles of the stator
and rotor teeth and the thickness of the stator and rotor yokes
were used in the optimization process. It was found that
a proper selection of the weighting factors (C1 and C2 in
equation (26)) and the acceleration factor w, increases the
convergence rate of the PSO algorithm [148].

To decrease the computation time of FEA-based SRM
optimization, the authors in [155] used an artificial neural
network ANN-based model to predict and optimize the per-
formance of a four-phase 8/6 3.7-kW radial-flux SRM. The
rotor and stator teeth arc angles were optimized to increase
the average torque and reduce the torque dip. The PSO and
GA algorithms were used for the optimization problem. The
GA algorithm increased the average torque by 27.9 % and
reduced the torque dip by 34.4% as compared to the ini-
tial design. On the other hand, the proposed PSO algorithm
increased the average torque by 29.1 % and reduced the
torque dip by 34.7 % as compared to the initial design. The
PSO algorithm also showed a faster convergence than the GA
algorithm in this study.

In [156], the objective was to maximize both the average
torque and the inductance ratio (to minimize the torque rip-
ple) of a four-phase 8/6 3.7-kW SRM using PSO and GA.
The inductance ratio is the ratio between the unaligned and
aligned inductances. The PSO and GA increased the induc-
tance ratio by 88.9 % and 85.9 % and the average torque by

29.1 % and 27.9 % as compared to the initial design, respec-
tively. The PSO outperformed the GA in terms of design
space exploration, speed of convergence, and robustness.

In [153], a multi-objective PSO (MOPSO) algorithm was
used to simultaneously maximize the average torque, torque
to copper loss ratio, and torque to motor active volume ratio
(torque density). The considered optimization parameters are
the stator and rotor pole arc angles. Weighting factors were
used to provide a single objective out of the required three
objectives. A prototype of the optimized motor was imple-
mented, and a goodmatch was found between the experimen-
tal and simulation results.

A novel multi-objective genetic particle swarm opti-
mization algorithm (MOGPSO) was proposed in [151] to
increase the torque density and efficiency of a three-phase
12/8 1.5-kW bearingless SRM (BSRM). The rotor yoke
thickness, rotor pole height, and stator pole height and width
were considered for the optimization process. The torque den-
sity increased by 287.6%, and the efficiency of the machine
increased by 1.54% compared to the initial design. The pro-
cess was based on an analytical model of the BSRM. The
results were validated by FEA, where the analytical model
showed a maximum error of 12.12 % as compared to the
FEA model. The results showed that the proposed MOGPSO
could search for more accurate non-dominated solutions in
the Pareto front than the MOPSO [151].

The ant colony, artificial bee colony, and firefly algorithms
are not commonly utilized to optimize the geometries of
SRMs. Instead, they are used to optimize the control parame-
ters of the machine drive circuit to increase the average torque
and reduce the torque ripple [157]–[161]. A metaheuristic
ant colony algorithm was used in [162] to maximize the
average torque and efficiency of a three-phase 18/12 out-
runner radial-flux SRM based on the motor analytical model.
The optimization process considered five geometric param-
eters: the arc angles of stator and rotor teeth, the thickness
of stator and rotor yokes, and rotor bore diameter. The aver-
age torque increased to 426.4 Nm, and the motor efficiency
increased to 95.66% at the operating speed. A maximum
error of 6.5 % was found between the analytical and FEA
model results.

GA is prevalent in the geometry optimization of SRMs.
It is very suitable for such an application due to the exis-
tence of many local minima that arise from the machine’s
nonlinearity [163], [164]. GA was used in [165] to maxi-
mize the torque of a three-phase 6/4 radial-flux SRM. The
considered geometric parameters were the thickness of the
stator and rotor yokes, shaft radius, height and arc angles of
the stator and rotor teeth, air gap length, and stack length.
The GA algorithm increased the average torque by 3.75 %
higher than the heuristically optimized machine. In [164],
GA was utilized to maximize the torque density of a 10-kW
48/50 low-speed slotted SRM (SSRM) for direct-drive wind
energy generation. The optimization process was based on a
2D-FEA motor model to increase the accuracy at the expense
of a longer optimization time. The thickness of the stator
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and rotor yokes, in addition to the stator and rotor teeth
parameters, were optimized.

The GA algorithm and the SQP algorithm were used to
optimize three-phase 6/4 60 kW SRM to maximize the torque
per ampere ratio of the machine in [181]. The GA optimiza-
tion results showed that it is independent of the initial design.
However, the SQP final design was changed by changing the
initial design.

In [166], the Augmented Lagrangian Genetic Algorithm
(ALGA) was compared to the parametric solution selection
(PSS) method in optimizing a four-phase 8/14 radial-flux
SRM based on a 2D FEM model of the machine. The objec-
tive is to maximize the average torque, torque factor (product
of peak and average static torques of half electric cycle),
loss factor (ratio of average torque to motor copper losses),
torque density, and torque quality factor (ratio of average to
peak static torques) and to minimize the torque ripple. The
objective function was formed by the weighted sum of the
different mentioned objectives. In the ALGA optimization,
the considered parameters are the arc angles and taper angles
of stator and rotor teeth, the thickness of stator and rotor
yokes, and stator pole teeth height. Only stator and rotor teeth
arc angles were considered in the case of the PSS optimiza-
tion. The peak steady-state torque increased by 4.65 %, the
average steady-state torque increased by 4.8 %, the torque
factor increased by 7.02%, the torque quality factor increased
by 2.73 %, the torque density increased by 1 %, the loss
factor increased by 38.59 %, and the torque ripple decreased
by 2.34 % in the case of using ALGA compared to PSS.
However, the comparison does not seem reasonable as the
considered parameters are different in both cases.

Multi-objective GA optimization was used in [149] to
optimize the geometry of a four-phase 24/18 18.6-kW SRM
for an aerospace application. The stator and rotor teeth arc
angles, outer rotor diameter, and stack length were optimized
to increase the flux linkage to maximize the torque and the
power per unit volume. The GA optimization results were
compared to those resulting from a heuristic approach. The
power density and maximum torque of the GA-optimized
design are 13.97 % and 12.1 % higher than the heuristically
optimized one.

The authors in [136] used the genetic fuzzy algorithm
optimization method to maximize the efficiency and min-
imize the torque ripple of a four-phase 8/6 4-kW radial-
flux SRM. As previously explained, the conventional GA
algorithm selects the parents based on a probability function
that gives the fittest individuals more chance to produce
offspring from their chromosomes. The objective functions
are combined with fuzzy weights in [136] to ensure that
the fittest individuals for all objective functions have the
highest probability of being selected. Nine different geo-
metric parameters and the number of turns per phase were
considered in the optimization process. Themethod improved
motor performance as the efficiency increased by 4 %,
and the torque ripple decreased by 18 % compared to the
initial design.

In [167], a kriging-method-based surrogate model of a
two-phase unidirectional 4/2 SRM was used to reduce the
optimization time of the Pareto archived evolution strategy
algorithm by reducing the number of the FEA simulations.
The objective was to minimize the torque ripple and max-
imize the starting torque per phase. Each rotor tooth was
divided into two parts of different heights in this design,
as shown in Fig. 28. The considered optimization parameters
are β0, Ig1 and Ig2. This procedure increased the starting
torque by 25% and reduced the torque ripple by 57.6 %
compared to the initial design.

FIGURE 28. The optimizable geometric parameters in [167].

The complexity of multi-variable geometry optimization
of a 12/8 low-speed SRM, used in micro electric vehicles,
was minimized in [168] using a subset quasi-orthogonal algo-
rithm. The algorithm optimizes the outer rotor diameter, arc
angles of stator and rotor teeth, and stator and rotor yoke
thicknesses to minimize the torque ripple and maximize the
average torque. The proposed optimization technique com-
prises four steps. The constraints were first determined. Then,
the sensitivities of the torque and torque ripple to the con-
sidered parameters were obtained. Thirdly, the multi-variable
optimization problem was divided into three subsystems
according to the sensitivity with respect to the parameters.
Finally, subsystem optimization was sequentially performed.
A significant drawback of this procedure is that the sensitiv-
ities were calculated once based on the initial design. The
change in the sensitivities, as the design changes, was not
considered. The torque ripple decreased by more than 40 %,
and the average torque increased by more than 8 % compared
to the initial design.

The concept of reducing the number of design variables
based on their sensitivities was also presented in [112].
Based on the sensitivity analysis of the torque density, effi-
ciency, and torque ripples to the different design parameters,
the number of design parameters decreased from 13 to 6.
The 6 design parameters are selected based on their objective
function sensitivity.

The authors of [169] utilized a Pareto-based multi-
objective differential evaluation method to maximize the
static torque, efficiency, and torque per volume of a
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TABLE 2. Summary of the reviewed studies and some other studies about geometry optimization of SRMs.

three-phase 18/12 outer-rotor radial-flux SRM for in-wheel
EV application. The considered parameters are stator outer
diameter, stator and rotor teeth arc angles, and stator and rotor
yokes’ thicknesses. In the Pareto-based optimization, the
algorithm provides a set of nondominant solutions and level
the selection process to the decision-maker [169]. An ana-
lytical model of the SRM was used in the optimization pro-
cess to reduce the computational time. The optimized design
was validated numerically, using 3D FEA simulations, and
experimentally.

The average torque and the inductance ratio coefficient of
an 8/6 SRM were maximized in [152] using a PSO method
with an adaptive accelerating factor. The stator and rotor outer

diameters, stack length, airgap thickness, and the arc angles of
stator and rotor teeth were considered. The PSO optimization
method was able to increase the average torque by 32.5% and
decrease the torque ripple by 34.97 % compared to the initial
design.

The GA algorithm was used to maximize efficiency
and minimize the torque ripple of a four-phase 8/6 4-kW
SRM [136]. The stator and rotor outer diameters, number
of phase turns, air gap length, the thickness of stator and
rotor yokes, and the height and arc angles of the stator
and rotor teeth were considered in the optimization process.
A magnetic equivalent circuit model of the machine was
used to reduce the optimization time. The objective functions
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were joint with fuzzy membership functions such that the
fittest chromosomes for all objective functions have a higher
probability of continuing to the next generation [136]. How-
ever, the other chromosomes could be considered in the next
generation according to their fuzzy weights [136]. The fuzzy
expert performance predictor is designed based on a sensitiv-
ity analysis of the motor parameters [136].

In [170], an interior-point optimization algorithm used
the adjoint-based sensitivities to optimize the geometry of a
6/14 radial-flux SRM to maximize the machine static torque
characteristics. The considered parameters were rotor teeth
height, stator yoke thickness, rotor yoke thickness, stator
pole arc angle, rotor pole arc angle, stator teeth taper angle,
and rotor teeth taper angle. The average value of the static
torque half-cycle increased by 33.52% compared to the initial
design.

The average torque and torque per inertia of a four-
phase 8/6 SRM for high-acceleration applications were max-
imized in [171] using one factor at a time (OFAT) design of
experiments optimization. OFAT is a method of designing
experiments that simulates one parameter change at each
step instead of multiple factors. It does not require previous
knowledge about the optimization problem. However, the
number of simulations needed increases exponentially with
the number of design parameters [113].

In [172], Taguchi methodwas used to decrease the required
number of simulations and the simulation time. Eight geo-
metric parameters were considered in the optimization pro-
cess [171]. After 2189 simulations, the peak static torque
increased by 5 %, and the average static torque increased by
∼ 2 % compared to the initial design.

The influence of different stator and translator geometric
parameters of planar and tuber LSRMs on the electromag-
netic force and electromagnetic force ripples were studied
in [183] and [184]. In [183], the number of phases, pole
stroke (distance covered by the translator’s teeth from two
consecutive aligned positions when two successive phases are
excited), and the current density were optimized to maximize
the force per copper mass and the force density of a longitu-
dinal flux double-sided LSRM. The force density increased
by 132%, and the force per copper mass increased by 78%
compared to the initial design.

The study in [184] shows that increasing the translator pole
width of single-sided LSRM, Fig. 10, increases the trust force
but decreases the specific force of the machine at the same
time. The study also shows that increasing the translator pole
pitch increasing the trust force but increases the cogging force
at the same time. The stator pole width has to be carefully
selected to maximize the average trust force and minimize
the force ripples of that machine [184]. The effect of the stator
pole shoe shape of the single-sided LSRM is also discussed
in [184]. One way to maximize the thrust force and minimize
the force ripple is to optimize the skew and taper angles
of stator poles [184]. One of the critical parameters of the
LSRM is the airgap length, the length of the gap between
the translator and the stator. The length reduction increases

the trust force but increases the force ripple at the same time,
so this parameter should be carefully optimized based on the
application needs [184].

In [176], an EA-based optimization algorithm was used
to optimize the stator and translator pole width and height
and stator yoke thickness of a double-sided longitudinal-
flux LSRM. The optimization objective was to achieve a low
mass to force ratio and improve the force quality for vertical-
motion applications. The mass-to-force ratio was decreased
by 8.15%, and the force ripple decreased by 76.5% compared
to the initial design.

The authors of [177] used the different geometrical
parameters sensitivities to minimize the force dip ratio and
to maximize the active payload ratio of a segmented-stator
single-sided planar LSRM.A high payload ratio means a high
on-load capacity, which indicates a high conveyance effi-
ciency. The distance between two stator segments, translator
pole width, translator pole tip width and height, and the stator
segment slop angle are the parameters used for optimization.
The payload ratio increased by 43.8 %, and the force dip
ratio decreased by 21.3 % compared to the machine’s initial
design.

In [153], the one factor at a time DoE was used to optimize
the stator and the rotor pole arc angles of an inner-stator outer-
rotor 8/6 SRM with four-level for each variable to maximize
the mean torque, mean torque per copper loss ratio, and
torque density. The weighted average method was used to
select the solution that satisfies the design requirements.

In [140], the central composite design (CCD) method was
used to build the response surface models of the torque ripple
and efficiency of a four-phase 8/6 inner-rotor SRM. The
design variables were stator and rotor pole arc angles and
phase turn-off angles. A multi-objective GA method was
used to minimize the torque ripple and maximize the motor
efficiency. Finally, the Pareto front was drawn to select the
optimal solution. The torque ripple decreased by 33.25%, and
the motor efficiency increased by 3.43 % compared to the
initial design.

Geometry optimization was used in the literature for SRMs
core losses reduction. In [173], the tooth width to pole arc
angle ratio, the rotor diameter to the machine outer diameter
ratio, and the pole arc angle to the airgap length ratio were
used to minimize the torque per ohmic loss and maximize
the efficiency of a three-phase 6/4 SRM. The stack length,
the airgap thickness, and the number of turns were optimized
in [174] to maximize the machine efficiency of an SRM. The
efficiency of the considered machine increased to 86%.

These studies and more are summarized in Table 2 to give
the reader an overview of the methods and the objective
functions that were used in the literature for SRMs geometry
optimization.

VI. TOPOLOGY OPTIMIZATION OF SRMs
In geometry optimization, geometric parameters, such as
those shown in Fig. 27, are optimized to enhance the machine
performance. The number of design parameters is fixed in
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geometry optimization, and the geometry follows a predeter-
mined template. Another type of optimization, topology opti-
mization (TO), allows the topology of the structure to evolve
to a new topology in an iterative way. For example, flux barri-
ers inside the rotor or the stator design spaces could be added
and optimized for performance improvement [185], [186],
[187]. These barriers increase the number of optimizable
parameters if geometry optimization is used, which increases
computation time and complexity [188]. Also, geometric
parameterization and optimization of flux barriers are not
flexible to reach the best shape [188]. Topology optimization
provides more smooth barrier designs as it allows a flexible
material distribution in the considered domain to achieve the
objective functions [189]. An example of the flux barrier
design in SRM is shown in Fig. 29.

Several published articles use topology optimization to
improve SRMs performance. Topology optimization was first
applied to SRMs in [190] to maximize the machine magnetic
energy profile. It was then used in [191] to reduce the vibra-
tion caused by the magnetic forces. In [192], it was applied to
the rotor and stator poles of a 6/4 SRM to reduce the torque
ripples.

This optimization type could lead to novel SRM geome-
tries [192], [193]. Manufacturability constraints could be
added to the optimization problem to ensure the feasibility
of the design. Additive manufacturing (AM) could also help
to manufacture resulting complex shapes [194].

FIGURE 29. A rotor flux barrier design for 6/14 radial flux SRM.

Fig. 30 shows various topology optimizationmethods were
used for the performance improvement of electric machines
in the literature. TO methods are classified into two main
categories: gradient-based and non-gradient-based methods.

The level set method is a gradient-based TO method.
It gives a more feasible solution but with a slower
convergence as compared to the material-density-based
method [195]. The design space and boundaries are repre-
sented with a level set continuous function [196]. For a given
design space S with a boundary B, as shown in Fig. 31, the
level set function is given as follows:

ϕ(x, y) > 0, Magnetic material
ϕ(x, y) = 0, Boundary edge
ϕ(x, y) < 0, Air.

(39)

FIGURE 30. Main topology optimization methods of SRMs.

The objective of the level set topology optimization is to
find the value of ϕ(x, y) at each location (x, y) and to effec-
tively distribute the material on the design space to satisfy the
design objectives. The method usually falls into local optima
as it relies on the sensitivity of the different design space
elements [197].

The level set method was used in [195] to increase the
torque to mass ratio of an 8/6 SRM. The TO applied to the
rotor region in this study was able to increase the torque
density of the motor by 7.75 %. This was, however, coupled
with a reduction of the mean torque by 1.2% as compared to
the reference design.

Another topology optimization technique called
Material-density-based methods or method of moving
asymptotes was used for SRMs design [198]. Material-
density-based methods have faster convergence than the level
set method [195], [199]. The objective function is minimized
by defining the material type (air or ferromagnetic material)
based on the value of the density function ρi of the ith element
as follows:

ρi

{
1, i ∈ �m

0, i ∈ �a
(40)

where �m and �a are the ferromagnetic and air regions,
respectively. Although the material status should be either
0 or 1, the method allows the density function to be continu-
ous between 0 and 1 by replacing the density function in (40)
with a smooth Heaviside function ρ(ψ), defined by an auxil-
iary optimization variable, ψ [199]. This procedure helps to
make the density function continuous and prevent discontinu-
ity [194]. However, as shown in Fig. 32, it leads to gray ele-
ments whose material does not exist in reality. In the auxiliary
optimization variable method [199], the density is described
by a smoothed Heaviside function with a switch level:

ρ(ψ) =
3
16

(
ψ

h

)5

−
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8

(
ψ

h
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+
15
16

(
ψ

h

)
+

1
2
,

(−h ≤ ψ ≤ h), (41)

where h is the half of the switch width between ρ(h) = 1 and
ρ(−h) = 0.

The magnetic reluctivity of the ith element is then defined
as follows [195], [200]:

υi(ψi, |B2|) = (1− ρ(ψi))p ∗ υair + (ρ(ψi))p ∗ υF (|B2|),

(42)
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where υi, υair , and υF are the reluctivity of the ith element, the
reluctivity of air, and the reluctivity of ferromagnetic mate-
rial, respectively. υF is a function of the square of the flux
density B at that element. The variable p is the penalization
coefficient. The proper selection of p prevents the presence
of gray elements with 0 < ρi < 1. p was suggested to be
equal to 3 in [200] to ensure good convergence to the white
and black elements with a small number of gray elements.

In [195], material-density-based TO resulted in thin parts
that need to be structurally evaluated. A material-density-
based TO exploiting sequential linear programming was used
in [192] to minimize the torque ripple of a three-phase 6/4
radial-flux SRM. The considered design space included the
rotor and part of the stator teeth. The torque ripple decreased
to 27% compared to a torque ripple of 245% for the initial
design.

The authors of [194] used the method of moving asymp-
totes to optimize the rotor teeth topology of a four-phase
8/6 radial-flux SRM to maximize the average torque and
reach the target torque for two different applications. After
optimizing the two motors, the torque of the final designs
reached target torque of 0.12 and 0.16 N.m.

FIGURE 31. A level set function and the corresponding material
distribution in the design space.

FIGURE 32. The design space after material-density-based TO
optimization.

The authors of [201] used a gradient-based ON/OFF TO
method in designing electromagnetic devices for the first
time. The method is based on the objective function sensi-
tivity with respect to the reluctivity of each element in the
design space [201], [202].

Fig. 33 shows a flowchart of the method. The algorithm
starts by evaluating the objective function value of the initial
SRM topology. Then, the objective function sensitivities are
computed with respect to the reluctivity of the elements of
the design space [63]. Ferromagnetic material and air are
assigned to elements with positive and negative sensitivities,
respectively. This applies to the highest-sensitivity elements
until the allowable number of designable elements N is
attained. Designable elements are those elements inside the
design space allowed to change their material. If the objective
function value decreases, the topology changes and the new
topology sensitivities are calculated. However, if the objec-
tive function value increases, N decreases in the annealing
process. The overall process continues until N reaches zero.
The gradient-based ON/OFF topology optimization deals

with a large number of design variables and has faster
convergence characteristics than the material-density-based
method [201]. This topology optimization has less computa-
tional time than GA-based ON/OFF topology optimization,
but it may terminate at a local optimum solution, unlike GA.

A gradient-basedON/OFF topology optimizationwas used
to minimize the torque ripple of a 6/14 SRM for Heat-
ing, Ventilation, and Air Conditioning (HVAC) application
in [63]. A part of the stator tooth was considered as the
design space. The torque ripple gradients to all the design
space elements were computed using the discrete adjoint
variable method [202]. The motor torque ripple was reduced
by∼14%, but the average torque also slightly decreased since
the introduced flux barriers reduced the machine flux linkage.

FIGURE 33. A flowchart of gradient-based ON/OFF TO optimization
method.

The main disadvantage of gradient-based topology opti-
mization is the difficulty of evaluating non-differentiable
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objective functions such as iron losses [188]. A non-
gradient-based ON/OFF topology optimization, also known
as stochastic topology optimization, can be applied in this
case [197], [203]. This approach does not require any gradient
information [204], but it may result in unacceptable and
complex shapes with isolated magnetic regions, as shown
in Fig. 34 [205], [206]. In [157], the authors proposed the
immune algorithm that overcame this issue and produced a
TO-based manufacturable design. Fig. 35 shows a flowchart
of the ON/OFF TO with the immune algorithm. The algo-
rithm is based on the mammalian immune system [197].
It starts with evaluating anN number of initial solutions called
antibodies. If any solution satisfies the termination condition,
it will be selected as the final solution. If this is not the case,
P % of the low-ranked antibodies will be eliminated. Several
clones are created for each survived antibody based on its
rank; more clones are developed as the rank increases. The
affinity maturation process is then applied to the different
clones. Different clones are modified by changing the mate-
rial in the surrounding elements of some random nodes to air
or steel, as shown in Fig. 36. P % of antibodies is randomly
generated, and the process repeats. This algorithm was used
to optimize the topology of the rotor of an SRM to maximize
the average torque in [207].

FIGURE 34. An example of an islanded region during topology
optimization.

Another non-gradient-based TO method is the Normalized
Gaussian Network (NGnet) [206]. This method avoids iso-
lated elements and leads to smooth manufacturable struc-
tures [188]. The design space is divided into Ncells number of
cells (elements). Each cell’s state is defined by the NGENT
function’s output that is determined based on the weighted
sum of the normalized Gaussian function. The output of the
NGnet is obtained from:

y(x) =
N∑
i=1

wibi(x), (43)

bi(x) =
Gi(x)
N∑
j=1

Gj(x)
, (44)

where Gi(x) is a Gaussian function at the location x. The
variables i and j represent cell indices, andwi is the weighting
coefficient of the normalized function bi(x). The state Sc of

FIGURE 35. A flowchart of the ON/OFF TO method with the immune
algorithm.

FIGURE 36. Changing the elements’ states in the affinity maturation
process.

cells is determined from:

Sc =

{
on y(xc) ≥ 0,
off y(xc) < 0.

(45)

where xc is the center of cell c. When the state of the cell is
on, its material is set to iron, whereas the material is set to air
when the state is off.

Fig. 37 shows the process of determining the state of each
cell’s based on the weighted sum of the associated normal-
ized Gaussian function. The NGnet topology optimization
requires substantial computational cost as FEA-based com-
putation is needed at each generation [208].

To the authors’ best knowledge NGnet was not used
for SRM topology optimization. However, this method
showed a significant performance improvement for other
types of electrical machines such as Synchronous reluctance
motor [188] and interior permanent magnet motor [208]. This
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is considered a potential opportunity to enhance the perfor-
mance of SRMs by using the NGnet topology optimization
method in the future. The drawback of this method is the high
computational cost, as indicated in [208].

Recently, topology optimization gained more attention
thanks to the additive manufacturing technologies that allow
manufacturing more complex shapes than traditional manu-
facturing [194], [195], [209]. Topology optimization results
in a honeycomb structure of the rotor and stator. This structure
is complicated to be realized by traditional manufacturing
methods [194]. The complete process, including design opti-
mization, 3D printing of the SMC parts, and assembly, was
investigated in [194], [210]. In [211], additive manufactur-
ing was used to manufacture a complex rib structure rotor
for a three-phase 6/4 SRM with a novel rotor structure to
minimize the torque ripple and the windage loss. The torque
ripple of that motor decreased by 35.8 % compared to the
original design without the complex structure rib. Besides,
the windage loss decreased by introducing a thin rib on the
outer part of the rotor.

On the other hand, the change in thematerial properties due
to the additive manufacturing process should be considered.
Additive manufacturing and 3D printing of the optimized
parts change the material magnetic, electric, and mechanical
characteristics [212]. Eddy-current loss in the 3D printed
solid cores is higher than that of the laminated cores [194].
In [194], the author depends on selecting an SMC material
that has the highest possible resistivity to limit the eddy
current loss of the optimized part.

Topology optimization is sensitive to mesh density and
material B-H characteristics [195]. Representing the material
with a linear reluctivity model and decreasing the mesh den-
sity decreases the optimization time; however, the optimized
machine performance accuracy decreases, and the optimized
shape becomes coarse [195]. [213], it was concluded that
different material reluctivity models, linear and nonlinear,
lead to different results. This can be addressed by using a
section of the machine with symmetrical boundaries.

A summary of the studies that used topology optimization
for improving the performance of SRMs in the literature is
organized in Table 3.

VII. TOPOLOGY OPTIMIZATION BASED ON DEEP
LEARNING
Machine learning is used for electrical machines optimiza-
tion through automating surrogate model building within the
optimization loop [214]. Using surrogate models reduces the
ON\OFF or GA-based topology optimization time. Different
surrogate models can be used based on different methods
such as the response surface method [215], [216], kriging
method [217], space mapping method [218], artificial neu-
ral network method [219], and convolutional neural net-
work [208]. In that way, the optimization method time can
be reduced significantly.

Many machine learning methods were used in literature
for electric machine design. These methods include deep

FIGURE 37. The output of the NGnet weighted sum function in the case
of nine Gaussian functions for nine cells.

learning, random forest technique, extreme learning, sup-
port vector machines, and artificial neural network. The
deep-learning-based convolutional neural network (CNN)
was used in literature for the topology optimization of elec-
tric machines. However, to the authors’ best knowledge,
no machine learning method was used for SRM topol-
ogy optimization. This section reviews the effectiveness
of machine learning on optimizing other types of electric
machines to show that it could be a potential opportunity for
enhancing the topology optimization of SRMs.

In [208], deep learning was used to reduce the NGnet
topology optimization computational burden and time of inte-
rior permanent magnet motor (IPM motor) design optimiza-
tion. The algorithm is divided into learning and optimization
phases. In the learning phase, the training data was devel-
oped by performing a preliminary topology optimization
using a small number of individuals (design elements). The
motor 2D images were used to train a convolutional neural
network (CNN).

In the optimization phase, the convolutional neural net-
work was used to replace the FEA. The CNN was trained
to classify different motor models based on the model per-
formance index, such as motor efficiency, average torque and
torque ripple. If the performance index is low, such as low
average torque or high torque ripple, the CNN is used for
motor performance evaluation; However, if the motor perfor-
mance is predicted to be high, FEA of the motor topology
is performed for motor performance evaluation. With this
technique, the number of FEA execution for NGnet reduced
by around 30% [208].

There are two feasible deep learning techniques for topol-
ogy optimization computational acceleration: online and
offline techniques [209], [213]. The former technique per-
forms the training process during the optimization phase,
whereas the latter performs the learning phase first. The
method used in [208] is illustrated in Fig. 38. The red path
in the figure represents the preliminary process for the ini-
tial CNN training. The green path represents the evalua-
tion of the design performance within the optimization loop
based on CNN. The yellow path represents categorizing the
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TABLE 3. Summary of the studies used topology optimization for improving the performance of SRMs in the literature.

performance evaluated by CNN to check the probability of
FEA evaluation requirement. The blue path represents the
FEA of the design and the possibility of using this evaluation
on the online training of CNN.

The main problem of CNN is that it requires a large
number of data points for the training process prior to the
optimization process [223]. The authors in [223] proposed a
method for CNN training based on transfer learning which
required a small number of data for the training process.
In this method, a single VGG-16 CNN, which is CNN trained
with 1.2million learning data and composed of 1000 different
classes [224], was used as a surrogate model for two different
IPMmotors. The preliminary training data was obtained from
a GA topology optimization with a small population size
of two different IPM motors with variations in the rotor
structure. The motor performance is shown to be correctly
inferred by the transfer learning with small data used for
learning. In the optimization stage, the CNN was used to
evaluate all the individuals of the GA optimization except
the Pareto front individuals evaluated by FEA. The method
was used to optimize two different IPMmotors with different
rotor structures. The computational cost of the GA-based
topology optimization was reduced to 15% using CNN with
transfer learning concept compared to the conventional GA
method where FEA is used for fitness evaluation for all
individuals.

In [225], the number of the required finite element electro-
magnetic evaluations of the target machine was reduced by
50% compared to the number required byGA-based topology
optimization. An initial topology was optimized first by GA
with a small population size to train the CNN. The CNN is
then used as a surrogate model in the main topology opti-
mization with large population size. This technique reduced

FIGURE 38. A flowchart of topology optimization based on offline trained
CNN for electric machine design.

the number of finite element simulations by 50% compared
to GA-based topology optimization.

VIII. TRENDS AND OPPORTUNITIES
There is currently increasing interest in the geometry and
the topology optimization of SRMs to address the machine
limitations such as high torque ripple, low average torque,
and high acoustic noise. That will help widen the application
areas of SRMs. Design optimization of SRMs configurations
like the axial flux SRMs and LSRMs were not covered well
in the literature, and the number of publications that covered
this area is around 10% of the total publications of SRMs
optimization (covered in this research). The authors expect
an increase in these percentages in the future due to the
advantages of these configurations.

In general, according to our research, the number of pub-
lications for topology optimization of SRMs is around 20%
of the total publications of the SRMs design optimization.
The authors of this review study believe that this percentage
will increase in the future due to the effectiveness of the
topology optimization and the significant advance in additive
manufacturing.
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On the other hand, CNN deep learning shows a signifi-
cant reduction in the topology optimization time of electrical
machines; however, it was not used for SRMs design yet.
It is currently trending as a non-gradient-based topology
optimization method and could be a research opportunity to
use such a technique in SRM performance improvement.

There are abundant opportunities for topology optimiza-
tion techniques like NGnet and non-gradient-based ON/OFF
methods for SRMs topology optimization. These methods
show a significant performance improvement for other types
of electric machines, and according to our best knowledge,
these methods have not been used yet for SRMs design
optimization. These techniques are considered an excellent
opportunity to improve the performance of the SRMs.

IX. CONCLUSION
The paper provides a comprehensive review of different
optimization techniques used to enhance SRMs performance
metrics. The paper starts with a brief discussion about various
configurations of SRMs. Radial and axial, rotating and linear,
and other categories are reviewed.

Then, the paper investigates deterministic and stochas-
tic optimization procedures. The main techniques under
each category used for SRMs optimization are explained.
Although deterministic optimization techniques are faster
than stochastic techniques, the latter guarantee achieving a
globally optimum solution. Unlike stochastic optimization,
deterministic optimization requires the gradients of the objec-
tive functions with respect to the design parameters. Finite
difference and adjoint variable methods could be used to cal-
culate these gradients. Although the finite difference methods
are accurate with acceptable error, they are computationally
expensive compared to the less accurate adjoint variable
methods.

After reviewing the performance metrics of SRMs that
were used as objective functions in literature, the paper then
reviews the geometry optimization of SRMs to improve these
objective functions.

Finally, the topology optimization of SRMs is reviewed,
and most of the topology optimization methods used for
SRMs performance optimization are reported. Topology opti-
mization could result in complex shapes. Different techniques
that solve this issue were reported. Besides, additive manu-
facturing makes achieving TO-based intricate designs easier.

Topology optimization techniques are very time-
consuming processes. There is abundant opportunity to
decrease its time by using CNN deep learning, which is not
covered in the literature. The CNN deep learning showed a
significant reduction in the topology optimization of elec-
trical machines such as PMSM, and it is recommended to
investigate its performance with SRMs.
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