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ABSTRACT This paper presents a Behavior Transfer System (BTS) to model the behavior patterns of dogs
and make it possible to implement the behavior patterns on mobile robots. The system relies on an iSpace
based measurement system and a deep learning prediction algorithm. With the help of the measurement
system, ethological measurements can be automatized to eliminate human coding errors and make the data
collection process more robust and consistent. The trained neural networks have a dual purpose. First, the
neural networks can be utilized to analyze ethological measurements and predict different behavior patterns
of the dog. Test results show that the implemented neural networks can effectively predict the attention
of the dog with 88% accuracy, the tail waging with 82% accuracy, and the contact seeking behavior with
88% accuracy. Second, implementing the neural networks previously trained on dogs can serve as a robot
operational behavioral model which mimics the behavior pattern of a dog after an adequate mathematical
abstraction that maps the movements of the dog into a robot movement set. The presented method of this
paper can be applied to automatize the behavior coding work of ethologists and the trained neural network
can be used as an abstract robot behavior control module.

INDEX TERMS Ethology, ethorobotics, intelligent space, deep learning, behavior model, limb-independent

behavior.

I. INTRODUCTION

In recent years automatization and robotics have been used in
more and more areas besides the industrial sector. The rapid
spreading of robots in daily living environments directs the
attention to the field of human-robot interactions (HRI) [1]—
[3], human-robot interaction models (MIHR) [4] and social
behavior of robots [5]-[7]. The so-called service or social
robots are becoming part of everyday life, and this coex-
istence between humans and robots raises some questions.
How should a service robot look like? How should a social
robot behave with humans? Will a robot pass Ainsworth’s
Strange Situation Test? [8] To develop an autonomous robot
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with proper appearance and movement set to be accepted by
humans is a challenging task.

In the field of HRI, recent studies utilize digital twin [9]
technology. A digital twin is a manifestation of a physical
object in a virtual environment. A digital thread provides
the connection between the physical object and twin, which
means the “twin” is dependent on the digital thread to main-
tain accuracy. Digital twins are used for training and test-
ing human-robot collaboration scenarios [10] without putting
humans at risk and helpful tools to collect data and provide
a better understanding of a specified task [11]. A digital
twin-based simulation combined with a deep learning neural
network results in an effective and accurate robot controller
algorithm [12].

According to the uncanny valley theory of Masahiro [13]
a response of a person to a humanlike robot would abruptly
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shift from empathy to revulsion as it approached, but failed
to attain, a lifelike appearance. This descent into eeriness is
known as the uncanny valley. Furthermore, the theory can be
expanded into a more general form. Suppose a robot is shaped
after a previously known living species, but the likeliness
reaches a certain degree associated with the uncanny valley
effect. In that case, it will fail to connect with humans. Thus
a better approach is to treat robots as a unique and new
species and develop their appearance and behavior according
to it. However, the behavioral patterns can be modeled after
well-known creatures like dogs. A wide group of social robots
uses dogs as models [14]-[16] since dogs always have been
reliable companions for humans. A robot design approach
based on the behavior of dogs and other pet-like animals
utilized in several applications [17], [18].

A. ETHOLOGICAL APPROACH

Ethorobotics [19] is a newly emerging interdisciplinary field
of science that aims to combine robotics with ethologically
inspired behavior models [20]. According to the methodology
of ethorobotics instead of taking into account any concept
of human or animal-like appearance the robot design should
be based on the environment and the desired skill set of the
robot [21]. Simple and optimal design with the capability of
minimal social behavior. In the ethorobotic approach, embod-
iment and behavior have a strong functional relationship.
In this way, the sub-assemblies of the robot serve a dual
purpose. For example, a 2 DoF camera moving mechanism
provide a wider observation view for the robot to examine
the environment. Besides the desired functional ability, the
exact mechanism can be used to express attention by focus-
ing or following special items or persons near the robot.
This multi-purpose attitude is essential from the view of
ethorobotics.

Following the principles of ethorobotics numerous robot
agents have been made. Vector [22] is one of the newest
members of social robots. Designed by Anki Vector is an
affordable robot companion and helper for people at home.
The robot has its own personality which means it can perform
various behavioral patterns such as greeting a familiar face or
initiating playing sequences.

A more concrete approach of social robot design to use
dogs as behavior model [14], [23]. A behavioral model of a
pet dog is not so complex as a human psychological model,
hence it is a better match for a smaller robot with limited
computational capacity. The simpler cognitive model can be
mapped to different robots which do not necessarily show
similarities in appearance.

As a matter of functionalities guide dogs inspired some
robots as well [24], [25]. Sunflower [15] is a dog-inspired
robot that can express non-verbal communicative behaviors
like attention-seeking, gaze alternation, and looking back.
Special assistance dogs mean an excellent relief for dis-
abled people. In the future, helper robots, like Sunflower,
can provide a cheaper and reliable option instead of highly
trained dogs. To achieve this goal, first we need to understand
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the behavior of dogs, and in the second phase, we need to
implement the behavior patterns into robots successfully.
MogiRobi [18] is a partially dog alike robot which is
implemented with an ecologically inspired fuzzy rule-based
behavior model [26]. The model was tuned according to dog
behavior experiments supervised by ethologists. A previous
study [27] showed that dogs could be classified into seven
different personality types. The implemented fuzzy model is
capable of distinguishing these categories with the help of the
tune-able parameters. In this case, the robot can be operated
with different personalities. To achieve this level of com-
plexity in the field of behavior models, numerous dogs were
studied. The rules of the implemented fuzzy system were
explicitly predefined according to the result of the studies.

B. DATA COLLECTION AND ANALYSIS

Tuning and evaluating the behavior models in the field of HRI
emerged a need for a specific data set and a measurement
system. To make the models more accurate, proper quality
data is needed. In the field of ethology, using ethograms
is a widespread and well-known method to code behav-
ior data [28]-[30]. Ethograms contain the behavior patterns
of a particular animal in a given time frame. The tech-
nique requires human scientists to decode sequences from
a recorded videotape manually. Hence the method is prone
to human errors and very time-consuming. Guiding princi-
ples are also made on adjusting a traditional ethogram to fit
the need of autonomous robots [31] and how to determine
observable input variables. The process is mainly made man-
ually by a human scientist who analyses the video frame
by frame. To make the data procession task faster and more
reliable, deep learning-based solutions were implemented.
DeepLabCut [32] is a widely-used open-source toolkit that
can estimate the pose of different animals in an image.
Labuguen et al. [33] used the DeepLabCut toolkit to esti-
mate the pose of monkeys successfully. Fujimori ef al. [34]
implemented a cat behavior classification algorithm trained
on images from a fixed camera. The Facial Action Coding
System (FACS) is a system to taxonomize human facial
movements by their appearance on the face [35]. There
are multiple specialized FACS applications for different
species [36]. The key point detection deep learning-based
system also can be a solid base for problem-specific solu-
tions. Andersen et al. [37] implemented a deep recurrent
two-stream network for end-to-end detection of pain in the
case of horses. The test result showed that the algorithm
outperformed human scientists and achieved a 73.5% accu-
racy. However, the before-mentioned algorithms proved to be
efficient. They mostly rely on image processing and focus
on one particular species from the outside. Also, the before
mentioned applications are limb-dependent and concentrate
on a pose or posture of the examined species. A more abstract
behavior model should consider the studied species in a
broader environment instead of focusing on one individual.
A possible solution is to take into account variables that
describe the connection with other agents in the environment.
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Vincze et al. [38] introduced a simulated environment
that is specialized in ethologically inspired HRI observa-
tion and evaluation. The program is capable of exhibiting
pre-programmed behaviors and automatically coding behav-
ior elements. The system is prepared to accept raw environ-
mental data. However, it was used only with simulated data.
To extend the system to be used in a real environment a
new and reliable sensory measurement system is needed. If a
proper measurement system could provide a suitable raw data
set the evaluation of real-life experiments becomes possible.

C. PROPOSED APPROACH

The new aspect in this paper is the limb-independent
approach of a behavior pattern analysis of a natural agent,
like a dog. Limbs are the key elements of animal motions
in general to determine different behavior patterns, but limbs
cannot be utilized effectively in the case of a wheeled robot.
A more reliable way is to observe the spacing of the different
agents in a multi-agent environment.

In our research, we would like to concentrate on such a
complex measurement and analytical coding solution that
can take into account interactions between different agents
and describe basic behaviors—furthermore implementing a
deep learning-based behavior coding algorithm. The input
variables of the deep learning algorithm should be chosen to
match the sensory equipment of a small autonomous robot.
In this way, the algorithm can create a bridge between behav-
ior analysis and real robot applications and can serve a dual
purpose.

To minimize the possibility of human error and make the
data collection process more efficient, we propose a new
measurement system. The system is prepared to observe dogs
and humans simultaneously in a specified room, focusing on
individual behavior patterns and their interactions. Collect
and store data, and based on the observations, the behavior
analysis can be automatized. Using deep learning algorithms
the system can learn how to predict a behavior which can
be used to generate more precise ethograms to describe
the behavior of the dog or the prediction capability can be
used to implement a dog-inspired behavior model into an
autonomous mobile robot in the future.

The paper is organized as follows. Section II summarize
the motivation of the paper and highlights the main chal-
lenges. Section III describes the experimental setup used to
examine dogs and human agents. Detailing the design of
the behavior transfer system, the developed measurement
system, methods, and the neural network-based prediction
approach. Section IV presents the results of the prediction
in the case of three different behavior patterns. Finally,
Section V presents our conclusion and future plan.

Il. PROBLEM STATEMENT

The harmonious cohabitation of humans and autonomous
robots [39] is the ultimate goal of ethorobotics. To achieve
the desired goal, social robots should be accepted by humans.
This means that besides a functional skill set, robots have
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to maintain some behavior engine or model. Previous stud-
ies were made to discover the influencing variables for the
acceptance of social robots [40] and make robots welcomed
in everyday life [41]. Human behavior-based solutions often
suffer from eeriness and indicate discomfort [42]. In this
manner, social robots of the future should not copy human
behavior more and more accurately and thus become a tech-
nical clone of a human, but appear as a new artificial species
in the human environment. However, behavior elements of
a robot social skillset can mimic simple animal behaviors.
Modeling animal-like behavior patterns into a mobile robot
has some practical advantages. First of all, the complexity of
a pet creature is more suitable for a small-scale autonomous
robot and does not generate irrational expectations while
interacting with humans. On the other hand, pets, especially
dogs, have already proved to be good companions and well
integrated into the human environment. Many people believe
that the dog is the most loyal companion of a man, so dogs
can serve as an excellent model for the new artificial species
that serve humans. Modeling robot behavior after dogs also
implies that the interaction between a robot and a human also
should represent an inter-species interaction, like for example
adog and owner relationship rather than a human-human type
interaction. To develop and implement a dog behavior-based
behavior model on a mobile robot emerges a need for a
behavior transfer system (BTS). A system that is capa-
ble of observing a dog skill set and transferring it into a
robot on an abstract level. The goal is to use dogs as base
inspiration for behavior patterns but not as an exact copy.
While the digital twin concept depends on the high-level
similarity between the physical agent and the model, the
purpose of the BTS is to remap similar patterns between
two different agents. Dogs use legs for moving, robots move
on wheels but the positioning strategies of both agents can
be matched.

Theoretically, the task is to observe a behavior of a dog
in different situations and the interactions of the dog with
humans. With enough data, the desired behavior patterns
could be learned by a machine learning algorithm. However,
in practice, a task is way more complex. A fundamental
difference presumably persists for a long time between pet
animals and commercial serving robots. Walking robots are
much more expensive than wheeled robots, so commercial
robots that can be sold in large numbers are expected to be
wheeled for a long time. Bearing in mind this consideration a
new level of abstraction should be incorporated into standard
ethological observation, where instead of limb movements,
other elements of behavior should be observed. This justifies
the development of a behavior transfer system for recognizing
particular limb-independent behavior patterns based on the
intelligent space concept described in the article.

The methodology of the behavior transfer system requires
three key elements: an ethologically approved test, a proper
measurement system, and a learning algorithm. Interactions
between species have been studied by ethnologists and a
number of methods like cluster analysis [43] or multi-layer
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network analysis [44] have been developed for this purpose.
To keep the process robust and repeatable, a well-described
and controlled experiment scenario is used, called the Strange
Situation Test by Ainsworth. The original test [45] was
designed to examine the bond between a baby and a caregiver.
The test later was used to examine the interactions between a
dog and the owner of the dog [27]. In our case, the future goal
is to take one more step and implement the test to examine
a human-robot interaction in case of a successful behavior
transfer implementation. The test consists of seven different
blocks. Each block is two minutes long and mainly starts
with a passive phase and ends with a more active phase. The
test provides versatile situations in a controlled sequence and
environment thus, it is suitable to observe a relative complex
behavior in the case of a dog-human interaction.

To collect proper quality and quantity data for a deep
leaning based behavior analyzer is mandatory. There is no
such available database in the literature containing numeri-
cal measurements about dog behaviors focusing on human
interactions. To fulfill this need a novel measurement system
and setup is needed. So far, the experiments were recorded
on video, and the labeling of the data was made manually.
The labeling of the data only includes predefined behavior
patterns without the sensory measurement values. Processing
data is cumbersome and laborious. To speed up the process
and eliminate human error, an intelligent space-based mea-
surement system is proposed. The system makes it possible
to collect position, orientation, and other data automatically
and controls the episodes without any external human help.

The final component of the behavior transfer system is
the deep learning algorithm. During the learning phase, the
algorithm is trained with a supervised learning method. In this
case, the algorithm can learn how to decode automatically
behavior patterns on the previously logged data by the mea-
surement system. In this form in later, the algorithm can
speed up the labeling and replace humans in the process.
On the other hand, the trained algorithm can be used in a
mobile robot as a behavior-based decision-making algorithm.
Previously mentioned applications [33]-[37] utilized deep
learning-based solutions on video stream data to observe
and analyze animal behaviors, but these applications rely
on image data only. Image-based labeling of the behavior
patterns can be applied to analyze individual animals, but
the decoded database does not contain numerical information
about the cause of the observed behavior.

The main challenges that the paper addresses are the fol-
lowing. The first is to propose a dedicated measurement
system to observe and analyze dog behaviors without human
inference. The only requirement of the measurement system
is the attached marker set to the observed agent. The marker
sets make it possible to track variables that could play a
significant role in triggering different behavior patterns in the
case of dogs interacting with multiple humans. Since there is
no such database available in the literature that could provide
a solid base for deep learning solutions, the measurement
system plays a key role. The observed variables are chosen
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FIGURE 1. Behavior transfer flow chart.

so that an autonomous mobile robot onboard sensor system
could reproduce similar signals in the future. For example,
a LIDAR sensor provides distance measurement to calcu-
late the relative distances between the agents. The second
challenge is to implement a deep learning architecture that
is capable of predicting behavior of a dog. In the short run,
neural networks can help the work of human ethologists by
automatizing the measurement decoding step and reducing
human errors. In the long run, if the predictions are precise
and the trained model is complex enough and similar to real
dog behavior, the model can control an autonomous robot
after an appropriate mapping. In this way, a dog mimicking
behavior model implemented on the robot could help the
social acceptance of the robots in everyday life.

Ill. BEHAVIOR TRANSFER SYSTEM (BTS)
This section describes the novel behavior Transfer Sys-
tem (BTS) for dog behavior coding and robot control. The
schematic of the system is shown in Fig. 1.

A. DESIGN

The dual purpose of the method is to fulfill the require-
ments of the ethological measurements and a robot operat-
ing system in the same architecture. The design steps and
application steps can be applied parallel. However, there
are some key points in which this method differs from the
traditional ethological approach. Since the main goal is to
learn a behavior pattern of a dog and transfer them into an
autonomous robot, an abstract mathematical mapping step
is required. The simultaneous robot design makes it possible
to mount the robot with adequate equipment to meet certain
expectations. For example, feedback LED blinking frequency
could mimic the tail wagging of a dog. Other key features are
the observed movement sets. Traditional ethological pattern
coding methods observe the posture of the dog or the limbs
of the animal. Using mostly wheeled robots in the field
of social robots, a sophisticated engineering point of view
emerged. In robot control, the trajectory of the movement is
more important since most of the robots do not have limbs.
A limb independent behavior model contains mapping rules
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FIGURE 2. Intelligent space setup to track specified marker sets and log
data position and orientation data or to provide sufficient data stream to
control a robot.

to convert observable dog movements into possible robot
feedback patterns. In this way, even a four-legged animal
movement set could be transferred into a wheeled robot.

B. MEASUREMENT SYSTEM

An intelligent space (iSpace) concept [46] was used as a mea-
surement system. The setup contains an OptiTrack system
with 18 infrared cameras mounted in a room and using the
Motive 3.10 software [47]. The observation space is roughly
5 m by 2.5 m. The schematic of the iSpace is shown in Fig 2.

The mounted cameras as a motion capture system can
track infra reflective markers and marker sets. If at least three
cameras see a marker at the same time the position of the
spherical marker can be calculated. Three or more markers
can be defined as a rigid body. As long as all of the rigid
body markers are tracked, the 3D position and orientation
of the rigid body can be calculated and obtained from the
OptiTrack system. The position tracking error of the system
is approximately 0.2 mm. Each different moving agents in
the iSpace have a unique marker set, and the system tracks
the position and orientation of each agent. Fig. 3 shows two
marker sets in the case of a human holding a toy. The offset
pivot point of the toy marker set matches the center of mass of
the ball. Using this design, the system can track the ball even
when it is grabbed. Tracked data can be logged or streamed
via WiFi connection if an autonomous robot agent is inside
the observed space.

In the first scenario, the iSpace setup was used to observe
the behavior of a dog. The ethological measurement design
focuses on the movements of a dog while interacting with
humans. For the experiment, the strange situation test was
used. The original test was introduced by Ainsworth to exam-
ine the attachment between a baby and a caregiver. Later
the modified version of the test was used by ethologists to
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FIGURE 3. SHA and TOY marker sets and the calculated pivot points
respectively Pgy, and Proy .

TABLE 1. Marker set abbreviations and references.

Name Marker set reference
DOG dog
OWN owner of the dog
OHA owner hand
STR stranger to the dog
SHA stranger hand
TOY toy (tennis ball)
DOOR door to the room

examine the attachment behavior of dogs. The measurement
scenario contains seven episodes, each episode is two min-
utes long. In this case, the measurement is well defined and
repeatable which makes it possible to examine and identify
variables that can cause the different dog behaviors. The robot
operation side needs to rely on variables that can be identified
and measured in the case of a robot. The human distance from
a robot or dog or the relative orientation of the agents is a
suitable choice. Table 1. shows the marker sets used in the
measurement.

The main goal was to collect enough quantitative data
to teach a neural network. The position and orientation of
the DOG, STR, and OWN marker set were recorded. Only
the position data of the TOY, SHA, and OHA marker sets
were tracked since the orientation ofthese marker sets are
negligible. The orientation of the DOOR marker set was
tracked. The OptiTrack system uses an absolute coordinate
system. To make the dating uniform, a data preprocessing step
was made to calculate the relative distances and angles of the
observed marker sets compared to the dog. The representation
of the calculated variables can be seen in Fig. 4. The relative
distance and angular values respectively to the dog are calcu-
lated according to Eq. (1-8).

down = |Pown — Ppocl (1)
dstr = |Pstr — Ppocl )
droy = |Proy — Ppocl 3)

dpoor = |Ppoor — Ppocl )
(Proy — Ppoc)y

froy = Opog — arctan | — "2 (5)
(Proy — PpoG)x
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FIGURE 4. Schematic 2D representation of the specified marker sets in
the absolute coordinate system of the OptiTrack observation space.
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The TOY marker set was designed to make it possible to
track the TOY even if it is partially hidden or in the mouth of a
dog. The OHA, SHA, and DOOR marker sets have a support-
ing role. Hands markers were used to identify the ownership
of the TOY. OHA and SHA were attached to the dominant
hand of the owner and stranger, respectively. Before the mea-
surement, the human participant was asked to use only their
dominant hand when initiating playing with the dog. Based
on threshold values and synchronous movements, the toy has
four states: carried by the owner, carried by the dog, carried
by the stranger, or not carried. The variables describing the
ownership of the TOY calculated with Eq. (9-11).

1, if |Proy — Psual < T.
STR has. TOY — 1 |_}TOY _'SHA| =Tsik (g,
0, if [Proy — Psual > Tstr
1, if|Proy — Pomal < T,
OWN_has. TOY — 1 Iqroy _'OHA| = Town 1,
0, if [Proy — Ponal > Town
1, if|Proy — P <T
DOG._has. TOY — 1 Iqroy _}DOG| =TooG
0, if [Proy — PpoG| > Tpoc

TSTR = 100 mim, TOWN = 100 mim, and TDOG = 150 mm
are predefined threshold values.

The DOOR also has a special role. The basic behavior pat-
tern of the dogs shows that in the absence of the owner, most
dogs sit by the door or the opening of the door attracts the
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TABLE 2. Episode details.

No. Duration Participants
1 2 min DOG, OWN
2 2 min DOG, OWN, STR
3 2 min DOG, STR
4 2 min DOG, OWN
5 2 min DOG
6 2 min DOG, STR
7 2 min DOG, OWN

FIGURE 5. Ainsworth’s Strange situation test episode 2. The owner on the
left side is marked by the OWN and OHA marker sets. The dog is marked
by the DOG marker set. The stranger on the right side is marked by the
SHA and STR marker sets.

attention of the dog. The opening of the door was calculated
from the angle of the DOOR marker set according to Eq. (12).

1, if > T,
DOOR_is_OPEN ={ it Bpoor = Tpoor 5,

0, if Bpoor < Tpoor

Tpoor = 5° is a predefined threshold value.

The environment setup could vary depending on the room
layout, and setting up a marker set on the door makes it easier
to change the room setup. Furthermore, the door opening can
help synchronize the episodes. The iSpace was programmed
to execute the full measurement scenario without any external
human interaction. The iSpace was mounted with a sound-
bar and a monitor. With the help of these outputs, it can
instruct the human participants in the measurement to execute
different tasks or episodes. Since the episode changes took
some time, the transfer times were taken into account, and
the DOOR marker set was used to identify the new episode.
Every episode starts when the desired person leaves the room
or arrives in the room and shuts the door. Table 2. shows the
duration of the episodes and the observed participants.

Each episode started with a one minute-long passive phase
when the owner and/or the stranger were instructed to sit
still on the previously designated chair. In case the dog
approached the owner or the stranger, they were allowed to
pet the dog. Fig. 5 shows a passive phase state. After the
passive phase in the second phase, the humans were instructed
to seek contact with the dog actively and initiate playing.

C. DEEP LEARNING BEHAVIOR MODEL
Deep learning algorithms are used in a wide range of applica-
tions from controlling tasks [48], [49] to measurement system
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FIGURE 6. Behavior learning architecture.
TABLE 3. Accuracy comparison on different data sets.
Pattern Training | Validation Test
Contact 99% 92% 88%
Tail wag 94% 88% 82%
Attention 96% 74% 88%

optimization [50]. Neural networks can provide a flexible
architecture with the capability to learn from structured data.

Ensemble learning [51] principles were used to create the
architecture of the deep learning behavior model shown in
Fig. 6. The input data were fed into separate neural net-
work blocks. Each neural network is responsible for a spe-
cific behavioral pattern. In this setup, the model can handle
multiple behavior patterns simultaneously, and the archi-
tecture is easily expandable in case of an integration of a
new pattern. Multi-layer, fully connected feed-forward neural
networks were used to prevent overfitting and preserve the
computational cost efficiency of the algorithm. The neural
networks are implemented in Python using Tensorflow Keras
framework. During the training phase, an NVIDIA GeForce
RTX 2080Ti graphic card was used. However, the neural
network architecture was developed in a way that a Raspberry
Pi 3 B+ could run the prediction step in the future.

The input parameters of the neural network were the dis-
tance of the agents from the dog and their relative orien-
tation measured from the direction of the dog. Additional
preprocessed input variables were calculated to determine if
a marker set is tracked or not, the door is open or closed, and
the ownership of the toy. In general, the input feature vector
contains 19 variables. Tagged data records are treated as
different instances and not as complex time series. To detect
and avoid overfitting, the collected data is separated into
training, validation, and test data sets. This is done by break-
ing the chronologically ordered data into smaller segments.
The first 60% of a segment will be training data, and the
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e
FIGURE 7. Mispredicted test case. The attention of the dog is on the toy,
according to the human ethologist labeling the video. The deep learning
algorithm predicted the owner as the focus of the attention.

other 20%-20% will be validation and test data, respectively.
To ensure that each group gets data points from every episode.
The number of segments should be divisible by the number
of episodes.

In this paper three different output behavior variables were
implemented and tested. The three examined behavior pat-
terns of a dog are the tail wagging, the focus of the attention
of the dog, and the physical contact between the dog and
humans. The hyperparameters of the neural networks were
set based on preliminary tests. A different neural network was
assigned to each behavior pattern according to previous test
results. The detailed neural networks used in the ensemble
learning architecture shown in Fig. 6. are as follows. The first
neural network is the tail wag predictor neural network which
contains ten hidden layers with respectively 50-50-50-50-50-
25-25-25-10-10 neurons in each layer. The second neural
network is the contact predictor neural network which con-
tains eight hidden layers with respectively 100-100-50-50-
25-25-10-10 neurons in each layer. The third neural network
is the attention predictor neural network which contains nine
hidden layers with respectively 50-50-25-25-25-10-10-10-
10 neurons in each layer. The implemented neural networks
were trained with the Adam optimization algorithm. The
combined predicted output of the neural networks presents
the final behavior output. Depending on the application case,
the behavior output could be the labeling of an ethological
measurement video recording or the desired behavior of a
mobile robot.

The neural networks were trained separately in the case of
the different behavioral patterns. The training took 35 epochs,
and the training metrics can be seen in Table. 3. During the
training part, the early stopping method [52] was used to
prevent overfitting and stop the training method at the best
configuration.
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The orange dash line represents the reference values decoded by
proposed deep learning algorithm.
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FIGURE 9. Result of contact prediction. (NON: No contact, OWN: Contact with the owner, STR: Contact with a stranger) The orange dash
line represents the reference values decoded by a human ethologist. The blue dots represent the prediction of the proposed deep

learning algorithm.
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FIGURE 10. Result of tail wag prediction. (NO: No tail wag, YES: Tail wag) The orange dash line represents the reference values decoded

by a human ethologist. The blue dots represent the prediction of

IV. RESULTS

The National Science and Research Ethics Committee (Hun-
gary) (21/2015) approved the experiment in which we exam-
ined the behavior of companion dogs with their owners. The
participation was voluntary and the owners were informed
about the main aim of the study and that they are allowed to
interrupt the test at any time if needed. During the experiment
three dog were examined and six person took part in the
experiment. Each dog was measured multiple times. In this
case, the dogs were tested in different setups, and separated
data sets were logged for training and validating the neural
network. The results stated in this paragraph refer to one dog.
In this case an approximately 15 minutes long test was carried
out including all seven episodes from the Ainsworth Strange
Situation Test. The sampling time of the measurement system
was set to 0.02 s, and 47590 data points were recorded in
total. The entire database was separated into three different
groups, so the training set contains 28518 data points, the
validation set contains 9492 data points, and the test set
contains 9580 data points. Each separate data set contains
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the proposed deep learning algorithm.

segments from all seven episodes. On this data set the neural
network reached 88% accuracy in case of contact seeking
prediction, 82% accuracy in case of tail wag prediction, and
88% accuracy in case of attention-seeking prediction. The
compared accuracy of the three behavioral pattern training
can be seen in Table 3.

The test set was a separate measurement not used in the
training or validation set at all. The result of the attention pre-
diction can be seen in Fig. 8. The result of the contact-seeking
prediction can be seen in Fig. 9. The result of the tail wag pre-
diction can be seen in Fig. 10. The orange line represents the
reference signals decoded from a video by human scientists
with Solomon coder. The blue dots represent the predicted
signals from the neural network.

The results show that the errors made by the algorithm
generate outliers. These prediction errors can be dealt with
by implying a low pass filter after the prediction layer of
the neural network. In this way, a more smooth signal could
be achieved. Another type of error originates from human
supervision. The reference signal was made with Solomon
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Coder [53] by the human scientist. There are some cases in
which it is very challenging to predict the correct answer. For
example, when the owner is holding the toy, the attention of
the dog is hard to decide. The situation can be seen in Fig. 7
and the exact location is marked by “A” on Fig. 8 between
the 250 and 300" data point.

V. CONCLUSION

In this research, a novel measurement setup was proposed
to examine the behavior of dogs and their interactions with
humans. The motion capture camera system-based intelligent
space was developed to collect quantitative data from the
agents in the observed space tagged with infra reflective
marker sets. The system can navigate through a predefined
measurement scenario signaling the human participants the
next step. During the measurement the system logs the ori-
entation and position of all participants, and some calculated
values to produce the necessary database needed by the pro-
posed process. The collected numeric data and asynchronous
video provide a good base for a supervised learning task. As a
reference, human ethology scientists decode the behavior
elements of a dog according to the video, which can be
used as supervised labels during the training of the neural
networks. The implemented neural network architecture can
be used to predict different dog behaviors. This serves a
dual purpose. On the one hand, the system can label the
recorded video automatically. In this case, makes the work
of ethology scientists faster and more reliable. Trained neural
networks make the labeling process consistent meanwhile the
human error can be minimized or neglected due to the system.
Manual coding carried out by humans is always subjective
while a trained system is consistently objective. On the other
hand, special combined neural networks can be used to mimic
dog behaviors more realistically. The learned dog behavioral
patterns can be implemented in a real-life autonomous robot.
The movement set of the robot can be modeled after a real
dog. The method helps to develop socially more acceptable
robot behaviors.

However, the system proved to be useful more future work
will be required. More measurements with more dogs are
needed to avoid overfitting and to build a database on which
more generalized behaviors could be trained. The trained
neural networks reliability could be higher with more data.
The diversity in the examined dog could mean that different
personality types of dogs can be targeted and implemented
in a real-life application. Since the method in this article
used a special data frame to work with recorded in a special
test scenario more validation tests are needed. There is no
dog behavior model available in the literature to implement
or use it on a mobile robot to compare our achievements.
Future work targets a test where a fully autonomous robot can
interact with humans with the trained neural network-based
behavior control system. Measuring the reactions of the
human agents in the presence of a robot and comparing them
to the measurements made with a dog can validate the success
of the behavior element transfer.
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