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ABSTRACT This paper proposes novel compressive sampling (CS) of colored iris images using three RGB
iterations of basis pursuit (BP) with sparsity averaging (SA), called RGB-BPSA. In RGB-BPSA, a sparsity
basis is performed using an average of multiple coherent dictionaries to improve the performance of BP
reconstruction. In the experiment, first, the level of wavelet decomposition is studied to analyze the best
reconstruction result. Second, the effect of compression rate (CR) is considered. Third, the effect of resolution
is investigated. Last, the sparse basis of SA is compared to the existing basis, i.e., curvelet, Daubechies-1 or
haar, and Daubechies-8. The superior RGB-BPSA over existing CS is shown by better visual quality with
a higher signal-to-noise ratio (SNR) and structural similarity (SSIM) index in the same CR. In addition,
reconstruction time also investigated where RGB-BPSA outperforms the curvelet.

INDEX TERMS Compressed sampling, basis pursuit (BP), sparsity averaging, iris images.

I. INTRODUCTION
Medical Imaging (MI) is the science of interpreting or inves-
tigating medical obstacles based on several MI processes and
digital image processing methods [1]. With the advancement
of medical diagnostic equipment, such as magnetic resonance
imaging (MRI), ultrasound imaging (UI), computed tomog-
raphy (CT), iris eye imaging, wireless capsule endoscopy
(WCE), and other characteristic medical images are produced
in the field of biomedical [2]. Employing those methods, one
can generate images of the individual body or each part of
its organ for medical science objectives such as diagnosis,
treatment, or operation. A lot of research work has been
attempted and ongoing for the development of algorithms
and systems that can support medical specialists assisting
them to enhance the quality of human health. Formulating
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well-suited and stable algorithms for the investigation of
images is the significant challenge that coerces the medical
image interpretation fraternity to strive with large efforts [3].

Although medical technologies have led to generating
medical data for different parts i.e., both outside and inside
of the human body, yet there are issues that need to be
addressed. These issues include storage, transmission, and
representation in a smaller size with a high level of perceived
quality. Taking CT and UI as a case where the number of
images produced in one process comprised of more than
55,000 images and quite a large size, respectively make it
extremely hard to handle [4]. Similarly, medical data like the
iris medical data which is quite sensitive and needs to be of
good quality to perform MI analysis. It is vital to adhere to a
certain level of quality for these medical data in order to avoid
jeopardizing the clinical evaluation. Compression techniques
for medical data can help with storage, transmission, and
perceived quality issues [5], [6].
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Compressive sensing or compressive sampling or com-
pressed sensing (CS) was proposed to restore an image or sig-
nal when it has been sampled remarkably under the Nyquist
rate [7]–[9]. The U.S. Food and Drug Administration approve
CS as an approach that break the classic Nyquist rate and
reduce the medical investigation time [10]. Recently, CS has
opted for the reconstruction of the medical data in detail yet
there is a research gap of the iris data analysis where both
perceived quality and data representation is of a crucial task.
The CS method can assemble data at a below sampling rate,
and acquisition of the data along with the compression can be
performed in the corresponding process [7].

A. RELATED WORKS
Lately, CS method has been researched briefly for the recon-
struction of the signals/images and has achieved satisfac-
tory results considering both theoretical perspectives and
engineering applications. These applications span from data
like natural to medical to even hyperspectral images [5].
A nonuniform sampling from a sensors has been employed
in the CS framework by exploiting the lessened sets of
measurements [11]. Nowadays, the data transmitted over
wireless networks face two issues i.e., humongous data gen-
eration, storage, and transmission. The CS approach has
been recently adopted for the reconstruction of the large
non-uniformed data generated by sensors using the Fourier
transform domain [11]–[13]. CS has also been investigated
for the reconstruction of hyperspectral images (HSI), which is
based on a multi-type mixing representation conducted at the
spectral sampling staging using the CS technique. This tech-
nique alleviated the concerns that come with a linear mixed
model (LMM), such as the environment, device setups, and
tangible nonlinear mixing consequences [14], [15]. Further-
more, a reconstruction of HSIwith CSwas proposed using the
spectral mixing properties where the HSIs are parted into an
abundance matrix and endmember matrix using the features
of LMM [16]. The conventional CS for HSIs faces issues such
as separation and vectorization of the hyperspectral cubes into
spectral and special vectors that lead to storage and com-
putational burden in the restoration process. For addressing
the above concerns, a CS approach for HSIs is presented via
sparse tensor and nonlinear sparse tensor coding [17].

The CS has been lately researched well for MI anal-
ysis and has proven to be adequate for the reconstruc-
tion. A detailed CS approach based on multiple basis
reweighted analysis was proposed for medical data [5]. A CS
based on total variation (TV) minimization was presented
for the ultrasound CT imaging resulting in lessening the
time for acquisition [18]. An active pseudo-polar Fourier-
based Radon transform where parallel beaming-based CS
approach is adopted for CT images reducing the computa-
tional restrains [19]. Moreover, the CS method has drawn
attention for CT image restoration dependent on sparseness
and sampling tactics [20]–[23]. Similarly, for MRI data, the
CS method is researched in detail and demonstrated encour-
aging outcomes forMRI acquisition speedup [24]–[27]. Deep

learning-based CS approaches using vanilla convolutional
neural networks [28], ADMM-NET [29], and Generative
adversarial networks [30], [31] recently opt for MRI data
showing better performance for the reconstruction.

For the WCE and colonoscopy data, CS approach based
on TV and average sparsity modelling using basis pursuit
denoising is implemented [4]. A 3D discrete cosine transform
based image compression approach is implemented address-
ing the issue of three channels of WCE frame [32]. Some
efforts are reported via compression method such as JPEG
andMPEG for capsule endoscopic data, yet not favorable due
to extreme power dissipation and computational complexi-
ties [33]–[36]. Based on our comprehensive research analy-
sis, a specific analysis of spread spectrum (SS) acquisition
and BPDN based reconstruction for iris data is not found in
the current literature. Consequently, for filling this research
gap iris data is employed to investigate as (SS) analysis.
The detail behind the motivations and contributions of the
particular research work are discussed in subsection II(B).

B. MOTIVATIONS AND CONTRIBUTIONS
The earlier CS methods were based on a sparsity basis using
wavelet transform and curvelet [7], [37]. In [38], sparsity
analysis prior was proposed using multiple frames with aver-
age sparsity prior in radio astronomy images. In [39], sparsity
averaging with reweighted analysis (SARA) was proposed
for natural images with excessive coherent dictionaries in
compressed imaging. Furthermore, multi-basis reweighted
analysis was proposed to enhance SARA by using a group
of SARA basis for 4 different medical images, i.e., MRI, CT,
WCE images, and colonoscopy images [5], [40]. In [5], com-
pressed medical imaging (CMI) was introduced to investigate
the performance of the CSmethod inmedical image compres-
sion for efficient sampling method. Moreover, a TV-based
SARAwas proposed for CT images to reduce the reconstruc-
tion time of basis pursuit (BP) in SARA [4]. The earlier CMIs
are focused on one-layer images and RGB-based CMI is not
investigated yet.

Motivated by these, an RGB-based CMI using spread
spectrum (SS) and BP with sparsity averaging (RGB-BPSA)
for iris images are proposed in this paper. Different from
SARA [39], M-BRA [5], and TV-SARA [4], reweighted
analysis (RA) is not considered in this paper due to the
long reconstruction time in the RA process and the main
focus of this paper is to shorten the reconstruction time while
keeping a good quality of the image. In addition, the presented
research contributions are presented as follows:
• A novel compressed sampling for colored iris image
is proposed by exploiting basis pursuit reconstruction
method with average sparsity model.

• An analysis of sparsity basis in CS using sparsity aver-
aging to enhance the performance of CS reconstruction
and compared with the conventional CS basis, i.e., Haar,
Daubechies 8 (Db8), and curvelet.

• An analysis of the proposed RGB-BPSA with the effect
of resolutions and RGB layer.
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• Performance analysis of RGB-BPSA in colored medical
images with CS metrics.

The organization of this paper is listed as follows.
The concept of compressed medical imaging is presented
in Section II. A detailed explanation of CMI-SS-BPSA
is presented in Section III. The results of the proposed
CMI-SS-BPSA are shown in Section IV. Last, this paper is
concluded in Section V.

II. COMPRESSED SAMPLING IN MEDICAL IMAGE
In compressed sampling [8], with an assumption of a signal
to be sparse in some basis then the signal contains only
k-number of non-zero value. In this paper, a medical image
compression framework based on compressed sampling (CS)
is studied, referred to as compressed medical imaging (CMI).
In CMI, acquisition and reconstruction are performed. Acqui-
sition is a process to measure the medical image where the
measured signal samples are below the Nyquist-Shannon
sampling theorem. Moreover, reconstruction is a process to
recover an image from the measured signal.

A. CMI ACQUISITION
In CMI, an image as two-dimensional data is reshaped to a
signal s ∈ Rn×1. Next, a signals are sparse and represented by
some basis, i.e., a sparse signal x is the sparse representation
of s with sparsity basis 9. A sparse domain is defined as
x = 9s, where 9 ∈ Cn×n and s ∈ Cn×1. The acquisition
process in CMI is a process to measure a less m-number of
sample from signal x ∈ Cn×1 using a sensing/measurement
matrix8 ∈ Cm×n. The result of this acquisition is a measured
signal y ∈ Cm×1 and defined as

y = 8x. (1)

The CMI acquisition becomes y = 89s, where 9 and
8 denote the sparsity basis and the acquisition matrix,
respectively.

B. CMI RECONSTRUCTION
Reconstruction process is a process to recover x from y and8

as shown in Eq. (1). A signal x can be compressed following
CS rule if the signal is sparse with k-sparse non-zero value.
However, the reconstruction process is a convex problem as

min
x̂

∥∥x̂∥∥1 s. t. ‖y−8x̄‖2 ≤ ε, (2)

where x̄ denotes the reconstructed sparse signal, ‖·‖2 denotes
`2 norm, ε denotes `2 norm upper bound, and ‖ · ‖1 denotes
`1 norm. From Eq. (1), given 8, 9, and y, the optimization
problem becomes

ŝ = min
s
‖s‖1 s. t. ‖y−89 s̄‖2 ≤ ε. (3)

C. CMI METRICS
This section presents CMI metrics, i.e., compression ratio
(CR), signal to noise ratio (SNR), and the structural

similarity (SSIM) index. CR is calculated as

CR =
n
m
, (4)

where n and m are the size of sparse signal x and measured
signal y, respectively. SNR is calculated as

SNR =
1
3

3∑
i=1

20 log10

(
‖xi‖2∥∥xi − x̂i∥∥2

)
, (5)

where i denotes RGB color layers, xi denotes the i-th original
signal, and x̂i denotes the i-th reconstruction signal. SSIM is
calculated as

SSIM(x, x̂) = [lum(x, x̂)]α · [con(x, x̂)]β · [struc(x, x̂)]γ ,

(6)

where lum, con, and struc denote the luminance, the contrast,
and the structural of the image, respectively. The luminance,
contrast, and structural are defined as

lum(x, x̂) =
2µxµx̂ + C1

µ2
x + µ

2
x̂ + C1

,

con(x, x̂) =
2σxσx̂ + C2

σ 2
x + σ

2
x̂ + C2

,

struc(x, x̂) =
σxx̂ + C3

σxσx̂ + C3
, (7)

where µx denotes the mean of pixels in original image, µx̂
denotes the mean of the pixels in reconstruction image, σx
denotes the standard deviations of pixels in original image,
σx̂ denotes the standard deviations of pixels in reconstruction
image, σxx̂ denotes cross-covariance between x and x̂, C3 is a
default coefficient where C3 =

C2
2 , and α = β = γ = 1 are

exponent coefficients. SSIM becomes

SSIM(x, x̂) =
(2µxµx̂ + C1) (2σxx̂ + C2)(

µ2
x + µ

2
x̂ + C1

) (
σ 2
x + σ

2
x̂ + C2

) . (8)

III. PROPOSED RGB-BPSA
In this paper, novel CMI for colored iris image is pro-
posed which exploits basis pursuit with sparsity averaging
(RGB-BPSA) as depicted in Fig. 1. First, a colored iris image
I ∈ ZN×N×3 (denoted as colored original) is considered
as input of the proposed method, where N × N denotes
the resolution in pixels and the last dimension of the matrix
denotes the RGB layers. Second, Red, Green, and Blue lay-
ers are obtained from original image. Third, preparation is
performed to process Red, Green, and Blue layers. Fourth,
spread spectrum (SS) sampling is performed using SS mask-
ing image to sample the prepared image and vector y is
obtained. Fifth, sampled image is obtained from vector y.
Sixth, sparse basis (9) is generated by sparsity averaging.
Seventh, the CS reconstruction using BPSA is performed to
recover x from the known y, 9, and 8. Seventh, end of loop
condition is checked, if the loop is not last layer (Blue layer),
then continue to next loop. Last, if the loop is Blue layer loop,
the process is finished with the result image.
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FIGURE 1. The graphical flow of the proposed RGB-BPSA.

Algorithm 1 RGB-BPSA
Input: Measured vector y, SS mask 8, and ε
Output: Reconstructed Iris Image Î
Sparsity averaging basis 9
for i← 1 to 3 do

Initialization j = 1;
while j < jmax and α > ε do

x̂(j−1)i = 9†x̂(j−1)i ;
Compute BP solution 1(y,8, ε);
x̂(j)i = 1(y,8, ε);

Update α =

∥∥∥x̂(j)i −x̂(j−1)i

∥∥∥
1∥∥∥x̂(j−1)i

∥∥∥
1

;

j← j+ 1;
end

end
Î = x̂;

Algorithm 1 presents RGB-BPSA. First, sparsity averag-
ing generate basis 9. Second, 3 iterations are performed to
reconstruct each layer of x̂i from sampled signal y. Third,
each i-iteration, BP solution (denoted as 1(y,8, ε) with 9)
is obtained. The iteration of BPSA is stop according to α less
than ε ∈ (0, 1), or j = jmax is obtained.

A. PREPARATION
Each process of RGB loops is start with preparation process
where the input is 1 layer image and the output is the prepared
images. The preparation process consist of two process, i.e.,

pixel normalise and enforce positivity. The pixel normalise
is a process to normalise the range oh pixel intensities to the
normalized range as 0 and 1. While the enforce positivity is
a process to remove the negative value after pixel normalise
process. An visual example of preparation process is shown
in Fig. 2(a).

B. SPREAD SPECTRUM SAMPLING
A CS approach using spread spectrum (SS) sampling is
defined as

y = 8x+ w, (9)

where 8 = MFA ∈ Cm×n is the measurement matrix and
w is input signal-to-noise ratio (ISNR).M is the mask image
and modeled by a rectangular binary matrix Rm×n. F is the
discrete Fourier transform coefficients and modeled by com-
plex matrix Cn×n. A is spread spectrum matrix and modeled
by a diagonal matrixRn×n. FTMT1M is the inverse transform
of binary mask with matrix of ones 1M ∈ RM . Fig. 2(b)
show an visual example of SS process in terms of mask
images and measured images after downsample process. The
measurement is corrupted by complex Gaussian noise w and
the associated ISNR is defined as

ISNR = 20 log10

(∥∥y0∥∥2
‖w‖2

)
, (10)

where y0 denotes the clean measurement vector. This ISNR
can be considered as noise in wireless networks transmission.
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FIGURE 2. An visual of step in RGB-BPSA.

Moreover, an visual example of SS sampling is shown in
Fig. 2(b).

C. SPARSITY AVERAGING (SA)
In sparsity averaging [38], 9 denotes the sparse basis which
is generated by averaging eight multiple wavelet bases with
Daubechies (Db) mother wavelet filter and L-number of
wavelet level decomposition. Furthermore, 9 is defined as

9 =
1
√
8
[91,92, . . . ,98] , (11)

where 91 is wavelet basis with Db1 mother wavelet and so
on $98 is wavelet basis with Db8 mother wavelet.

D. BASIS PURSUIT RECONSTRUCTION
In CS, the relation between sparsity basis 9 and measure-
ment matrix 8 need to follow a restricted isometry property
(RIP) [7]. CS problem is defined as

min
s̄∈Cm

∥∥∥9†s̄
∥∥∥
1

s.t.‖y−89 s̄‖2 ≤ ε, (12)

where 9† denotes an ad-joint operator of 9. In this paper,
3 iterations of RGB image are performed and the example
results of this process are shown in Fig. 2(c).

IV. EXPERIMENT
A. IRIS IMAGES
The iris images in this paper are obtained from the patients
who had high cholesterol and acquired by one expert operator
at the TelkomMedika hospital, Bandung, Indonesia [41], [42].
The test image is 90 colored iris images (RGB channel) with
resolution 660× 603 pixels in 8 bits *.BMP file format.

B. EXPERIMENT SCENARIO
Experiment scenario is presented to investigate RGB-BPSA
using performance metrics in Section II-C. Firstly, colored
iris image as original images is resized to N × N pixels.
Then, mask image is generated according to CR to compress
the original image using SS acquisition. Next, BPSA is per-
formed to recover the compressed image and reconstructed
image is obtained. Last, the performance metrics are obtained
between the colored original and colored result image. The
experiment scenarios are presented as follows

• The effect of decomposition level in wavelet; In
this scenario, the resolutions is fixed using
64× 64 pixels. This scenario investigates the effect of
decomposition level in wavelet (l) for sparsity
averaging.

• The effect of CR; In this scenario, the resolutions is fixed
using 128 × 128 pixels. This scenario investigates the
effect of CR in RGB-BPSA and RGB-BP with existing
basis (i.e., haar, Db8, and curvelet).

• The effect of ISNR; In this scenario, CR is fixed using
0.5 and ISNR is investigated.

• The effect of resolutions; Different resolutions N ×N of
iris images are investigated, i.e., 64×64, 256×256, and
512× 512 pixels.

C. HARDWARE AND SOFTWARE SPECIFICATIONS
In this paper, to implement the RGB-BPSA method in col-
ored iris images, MATLAB R2020b is used for simulation
and the hardware specifications are as follows: processor
Intel(R) Core(TM) i&-8700 CPU @ 3.20GHz and installed
RAM 16GB.
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FIGURE 3. Performance metric results of RGB-BPSA with respects to l .

FIGURE 4. Figure of merit for an example of iris image with regard to l .

V. RESULTS
A. LEVEL OF WAVELET DECOMPOSITION
This Section presents the results of experiment sce-
nario from Section IV-B to show the performance of
RGB-BPSA. The performance comparison between the pro-
posed RGB-BPSA, CS using BP with curvelet basis, Haar
basis, and Daubechies 8 (Db8) basis are investigated using
SNR and SSIM to show the visual quality, and also recon-
struction time results.

The effect of decomposition level in wavelet is presented
in Figs. 3(a), (b), and (c) for SNR, SSIM, and reconstruction
time, respectively. Fig. 3(a) show the SNR results with the
effect of l = 1, 2, 3, 4. SNR is calculated using (5) at CR =
2, 4, 6, 8, 10. The results show that when l increases, SNR
also increases. Targeting SNR > 30 dB, is only achieved by
l > 1 at CR = 2 and it is shown that iris imagewith resolution
64×64 pixels can compressed with good SNR using l = 4 at
CR = 2. Furthermore, Table 1 presents SNR results in the
form of mean with standard deviation.

Fig. 3(b) show the SSIM results with the effect of l =
1, 2, 3, 4. SSIM is calculated using (8) at CR = 2, 4, 6, 8, 10.
The results show that when l increases, SSIM also increases.
Targeting SSIM > 0.95 dB, is only achieved by l > 1 at
CR = 2 and it is shown that iris image with resolution
64×64 pixels can compressed with good SSIM using l = 4 at

TABLE 1. SNR result w.r.t level in wavelet.

TABLE 2. Reconstruction time result w.r.t level in wavelet.

TABLE 3. SSIM result w.r.t level in wavelet.

CR = 2. Furthermore, Table 3 presents SSIM results in the
form of mean with standard deviation.

Fig. 3(c) show the reconstruction time results with the
effect of l = 1, 2, 3, 4. The results show that when l increases,
SSIM also increases. Furthermore, Table 2 presents SSIM
results in the form of mean with standard deviation.

Furthermore, figure of merit (FOM) is used to show the
visual comparison between different results as shown in
Fig. 4. The FOM shown that higher level and lower CR results
gradually approach the original image.

B. COMPRESSION RATIO (CR)
In this subsection, the effect of CR is investigated and pre-
sented in Figs. 5(a), (b), and (c), for SNR, SSIM, and recon-
struction time, respectively.

Fig. 5(a) show SNR results with regards to CR. Targeting
SNR > 20 dB, the proposed method achieves at all CR
conditions and outperforms Curvelet, Haar, and Db8.
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FIGURE 5. Performance metric results of RGB-BPSA with respects to CR.

FIGURE 6. An example of iris image with different CS methods.

Next, Fig. 5(c) show SSIM with regards to CR, where the
SSIM is calculated using (8). Targeting SSIM > 0.95, the
proposed method achieves at CR ≤ 6. The proposed method
outperform all methods and it is shown that the highest CR =
10 of the proposed method obtain SSIM = 0.83.
Fig. 5(c) show reconstruction time with regards to CR =

10, 8, 6, 4, 2 to investigate RGB-BPSA, BP with Haar basis,
Db8 basis, and Curvelet basis. The reconstruction time results
show that RGB-BPSA outperforms Curvelet CS methods
with less reconstruction time at all CR conditions. The fastest
and longest reconstruction time results are Haar and Curvelet,
respectively. Even though Haar obtains the fastest reconstruc-
tion time, the SNR and SSIM of Haar basis is the second
worst. With this condition, it is validated that RGB-BPSA
with resolution 128× 128 outperforms all existing CS meth-
ods in the view of SNR and SSIM, although the reconstruc-
tion time is two times longer from Haar and Db8.

Furthermore, an example of visual comparison between
different results as shown in Fig. 6 withN = 128 at CR = 10.
The proposed RGB-BPSA shows better visual and gradually
approach the original image.

C. EFFECT OF ISNR
From Eq. (9), w denotes the complex Gaussian noise and
related to ISNR. The proposed RGB-BPSA can solve two

main problems of massive data generation, i.e., storage and
transmission in wireless networks. To investigate the per-
formance of RGB-BPSA, the effect of ISNR is presented
with resolution 64 × 64 and CR = 4. Figs. 7(a), (b) and (c)
show the results of ASNR, SSIM, and reconstruction time,
respectively.

Fig. 7(a) presents SNR results with the effect of ISNR.
Targeting SNR ≥ 20 dB, CR ≤ 8 is recommended at all
ISNR. The ASNR of CR = 10 is saturated around 17 dB at
all ISNR, the ASNR of CR = 8 is saturated around 23 dB
at ISNR ≥ 20 dB, the ASNR of CR = 6 is saturated around
28 dB at ISNR ≥ 30 dB, the ASNR of CR = 4 is saturated
around 31 dB at ISNR ≥ 40 dB, and the ASNR of CR = 2 is
saturated around 34 dB at ISNR ≥ 50 dB. It is show that
lower CR is required for lower ISNR.

Fig. 7(b) presents SSIM results with the effect of ISNR.
Targeting SSIM ≥ 0.9, CR ≤ 6 is recommended at ISNR >
10 dB. The SSIM of CR = 10 is saturated around 0.74 at
all ISNR, the ASNR of CR = 8 is saturated around 0.88 at
ISNR ≥ 20 dB, the ASNR of CR = 6 is saturated around
0.95 at ISNR ≥ 30 dB, the ASNR of CR = 4 is saturated
around 0.97 at ISNR ≥ 30 dB, and the ASNR of CR = 2 is
saturated around 0.98 at ISNR ≥ 30 dB. It is show that lower
CR is required for lower ISNR.

Furthermore, Fig. 7(c) presents reconstruction time results
with regards to ISNR. The proposed method outperforms
BPSA with faster reconstruction time at all ISNR conditions.

D. RESOLUTIONS
The effect of resolutions to SNR, SSIM, and reconstruction
time are presented in Fig. 8(a), (b), (c), respectively. The
solid lines denote 64 × 64 pixels, dash lines denote 256 ×
256 pixels, and dash-dot lines denote 256 × 256 pixels. The
comparison between RGB-BPSA (Proposed) and RGB-BP
with Db8 basis is shown to show the SNR, SSIM, and
reconstruction time. The results of the proposed method with
N = 256, 512 achieve SNR > 30 dB and SSIM >

0.93 at CR ≤ 8. From the SNR and SSIM, RGB-BPSA out-
performs RGB-BP with Db8 basis while the reconstruction
time increases 2× than RGB-BP with Db8. The results of
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FIGURE 7. Performance metric results of RGB-BPSA with respects to ISNR.

FIGURE 8. Performance metric results of RGB-BPSA with respects to resolutions.

FIGURE 9. Figure of merit for an example of iris image with regard to N .

resolutions N = 64 shows that the proposed RGB-BPSA
achieve SNR > 30 dB and SSIM > 0.95 at CR ≤ 4. The
reconstruction time of N = 64 shows the same trends, the
RGB-BPSA achieves longer timewith ratio 2× than RGB-BP
with Db8.

Furthermore, figure of merit (FOM) is used to show the
visual comparison between different results as shown in
Fig. 8. The FOM shown that higher resolution (N = 256)
and lower CR results gradually approach the original image.

VI. CONCLUSION
This paper have proposed novel CS of colored iris image
using spread spectrum sampling for acquisition and basis
pursuit with sparsity averaging (BPSA) for reconstruction.
The sparsity averaging basis improves the performance of CS
reconstruction quantitatively which is measured by SNR and
SSIM on colored iris images. The proposed RGB-BPSA out-
performs CS using BP with curvelet, haar, and Db8 basis and
can be compressed until CR ≤ 6 in SNR > 30 and SSIM >

0.95 using resolution more than 128 × 128 pixels. The cost
of the proposed RGB-BPSA is reconstruction time, where it
increases two times than haar and Db8, while the reconstruc-
tion time of RGB-BPSA outperforms curvelet basis.

For future work, one can explore but not be limited, the
efficiency of the presented CS method considering higher
image resolutions (i.e. 1024 × 1024 pixels). In addition, the
performance of CS to the noise can extend to another type of
noise and existing noise removal methods [43]–[45].
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