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ABSTRACT Procedural terrain generation aims to create topographically coherent landscapes with realistic
terrain features. Realistic landscapes of our blue planet are not complete without river deltas; however,
there is an insufficient advancement in the generation of landscapes with this terrain feature. Therefore,
this paper presents a modular approach to generate landscapes focused on the river deltas features. The
modular proposal initially creates skeletons of deltas using a stochastic L-system grammar; we include the
guidelines for the rules design. In the first module, we propose three L-systems that automatically create
delta skeletons using these guidelines. The second module constructs the coastline and the sedimentary lands
for the delta skeleton. Finally, the third module uses conditional generative adversarial networks (cGANs)
to create the corresponding digital elevation models (DEMs) and land surface images. The evaluation of
our proposal includes visual comparisons, and image quality metrics: the Frechet Inception Distance (FID),
and the Naturalness Image Quality Evaluator (NIQE). The proposed modular integration generates realistic
deltas with enough variability to outperform related work.

INDEX TERMS L-system grammar, generative model, procedural terrain generation.

I. INTRODUCTION
Procedural Content Generation (PCG) is an area of study that
aims to automate the creation of computing assets requiring
limited human input. In other words, computer algorithms
do most of the content creation process [1]. Many com-
puter assets can be generated automatically, such as charac-
ters, music, scenarios, items, stories, landscapes, and virtual
worlds, looking for sufficient variability. Terrains are essen-
tial assets of a virtual world which are computer represen-
tations of landscapes and landforms. In general, procedural
terrain generation (PTG) aims to create landscapes with topo-
graphic features that are faithful to natural terrains and their
variations over time.

PTG research has applications mainly in video game pro-
duction [2] and virtual reality [3]. Additionally, the appli-
cation of PTG in data augmentation for Machine Learning
has become more prominent because Deep Learning models
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require large amounts of labeled inputs during the network
training step [4]. Furthermore, Earth system sciences rely on
observational data from satellite imagery [5]; the availability
of this data is constrained by the satellites’ position when
capturing images. Thus, generating realistic terrains adapted
to those situations can alleviate some limits of data readiness
for research purposes.

PTG research focuses on the generation of landscapes with
mountains and rivers; however, more complex features, such
as river deltas, did not have the same development pace.
The complexity of deltas’ features comes from their natural
formation process when rivers reach bigger and calmer water
bodies. Rivers erode the lands they run through and carry the
sediment downstream.When the terrain’s slope decreases, the
current speed also reduces; then, the transported sediment
goes to the bottom of the river. Over time, the deposition
creates new land [6]. Naturally, these processes depend on
the soil composition, rainfall, the slope of the terrain, and the
tides and waves on the coast. In particular, if the deposition
occurs in the middle of the river, the land cuts the river
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channel and forms divergent channels called distributaries.
This process repeats itself over time, generating intricate
branching shapes. Therefore, river deltas can be classified
depending on how this deposition process occurs.

There are different types of branched deltas. On the one
hand, river-dominated deltas extend over the receiving water
body due to the sediment carried by the river on coasts with
no strong waves or great tidal ranges. On the other hand,
the tide-dominated deltas grow along the coastal plains with
channels widening as they approach the ocean, as a result
of ocean water entering during high tides. On the contrary,
wave-dominated deltas create a peak-shaped river mouthwith
no branches because the waves push the sediment back to
the existing shoreline; thus, the land created in this way is
stratified. Moreover, deltas may present features of more than
one type [7]. Figure 1 shows examples of different types of
real-world deltas.

FIGURE 1. Real-world deltas: (a) the Mississippi delta is a
river-dominated delta; (b) the Orinoco delta belongs to the
tide-dominated type; (c) the Grijalva river delta is an example of
wave-dominated deltas; (d) the Krishna river delta presents
characteristics from river-dominated deltas and wave-dominated deltas,
which are the land expansion and stratification in the coastline,
respectively. These images come from Bing maps [8].

In sum, deltas have specific features that differ from the
rest of the river. Because of this, current generative models
for rivers do not reflect the delta complexity. For instance,
some models present ways to generate simplified branching
shapes [9]. In counterpart, other models simulating delta
formation are highly computationally demanding [7]. Nev-
ertheless, cheaper models based on grammars can reproduce
natural structures with fractals, such as the branching shapes
in rivers and tide-dominated deltas. In this work, we propose
an adaptation of Lindenmayer systems (L-systems) [10] to
create skeletons of the river delta based on improvements of
our previous work in [11].

The river delta structure is not enough to create a real-
istic landscape on its own; that is why we propose the
integration of generative techniques such as conditional
generative adversarial networks (cGANs) and L-systems.

We incorporate the approach in [12] that uses a triplet of
cGAN models to generate Digital Elevation Models (DEM)
and land surface images using water maps as input.

Awater map is an image depicting permanent water in dark
blue, seasonal water in lighter shades of blue, and dry land in
white [13]. For instance, Figure 2 presents the water maps of
some relevant rivers.

FIGURE 2. Seasonal water maps of some major river deltas.
(a) Mississippi, (b) Orinoco, (c) Grijalva, and (d) Krishna. These water
maps were obtained from the European Space Agency through its global
surface water platform [14].

Thus, this paper proposes a modular method to gener-
ate realistic images of the land surface specialized in river
delta areas. Our approach integrates an improved stochastic
L-system to create delta structures with an image processing
module to form their corresponding water map, activating
generative models for its land surface image. Moreover, our
L-system generates new delta skeletons skipping hand draw-
ing and specializes in the river and tide-dominated types.
The ultimate purpose is to automatically create deltas with
natural features not existing in the real world, improving the
variability of current generative methods.

The remainder of the paper is organized as follows:
Section II presents a review of related terrain generation tech-
niques for river deltas. Section III talks about the description
of the modules of the proposed method. Subsection III-A
presents the module for the generation of river delta skeletons
using stochastic L-systems. Subsection III-B describes the
image processing module that converts the delta skeletons
into water maps. Subsection III-C shows the third mod-
ule which translates water maps into land surface images.
Section IV discusses the experimental results of the entire
process. Finally, the conclusions and future work are in
Section V.

II. RELATED WORK
PTG research introduced grammar-based methods a long
time ago. One of the earliest applications was to rewrite
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terrain structures to simulate the erosion processes in small
terrains [15]. In particular, a L-system is a parallel rewriting
grammar that describes the fractal morphology behavior of
biological structures based on initial conditions. Adaptations
of L-systems during the interpretation step allow the gener-
ation of assets such as trees and bushes. Other computing
assets that have been successfully generated with the adapta-
tion of L-systems are roots [16], cities [17], video game crea-
tures [18], and video game levels with their corresponding
vegetation [19]. There is an adaptation of L-systems for the
generation of delta skeletons in [11]. This method introduces
a series of guidelines of the L-system focusing on the sinuos-
ity of the river and its distributaries. Nonetheless, the afore-
mentioned deterministic L-system does not address the lack
of variability for more realistic results beyond the initial
skeleton.

Other procedural approaches for river delta generation
use sequential image processing. For instance, in [7],
a simulation-based approach generates realistic delta struc-
tures. However, it processes a considerable amount of data,
such as water flow and soil features, and requires many
iterations to simulate the deposition process. Another method
presented in [9], describes a fast and straightforward gen-
eration of rivers reaching the ocean. It creates an irregular
semicircle of land at the river mouth; then, it generates the
shoreline with random points connecting the original mouth
to the distributary channels. Thus, this method generates
only river-dominated deltas. Other types of methods used in
PTGuse subroutineswith instructions for construction. These
instructions have adjustable parameters that allow exerting
control over the generated features. The variability of such
methods lies in the number of parameters controlled and
adjusted by the user. For example, the parameters can control
characteristics such as the altitude of mountain ranges and
changes in altitude caused by nearby mountains [20]. There
are also cases where parameters can control the generation of
entire areas rather than individual elements; for example, the
type of biomes present in a given latitude and the size of their
transition zone into another biome [21]. It is also possible
to have several building agents, each with parameters the
user can adjust to influence the resulting terrains [22]. Other
parameter-driven methods have more significant user inter-
action, whom chooses the location of specific sections of the
generated assets, such as waterfalls and river channels [23].
Finally, other procedural methods try to simulate the natural
behavior of water; for instance, in [24], the authors propose a
model to animate the movement of ocean waves.

Deep learning models can also generate assets. Current
approaches use Generative Adversarial Networks (GANs),
composed of a pair of convolutional networks: a generator
and a discriminator. The generator tries to create an image
belonging to a set of images, while the discriminator is
used to identify real images from fake ones [25]. Regular
GANs use a random initialization [26], whereas conditional
GANs (cGANs) have a specific input such as an image.
Providing an initial image to transform into another one is

known as image-to-image translation. For instance, translat-
ing a sketch to a colorized image, a map to a satellite surface
image, and from day-light images to night ones [27]. Image-
to-image translation can also be used for problems such as
facial aging simulation [28].

In the context of PTG, image-to-image translation learns
terrain patterns from a given training input. For instance,
in [29], fitted GANs create terrains in the form of a heightmap
modeled for video game scenarios. In [30], GANs with
images of delta structures as input learned the deposition
patterns of deltas. In counterpart, Guérin et al. [31] presented
a proposal for the generation of mountains and rivers using
cGANs with hand-drawn sketches as input for different tasks
such as simulating erosion, generating elevation models, and
completing missing areas. Finally, the architecture presented
in [12] uses water maps as input to generate synthetic digital
elevation models and land surface imagery of river deltas
fitting three different cGANs. The first one uses a water map
as input and generates its elevation model. Then, each of the
other two cGANs generates a surface image specialized in
tropical and polar climatic zones. However, the need for a
natural watermap or user-drawn sketches limits the automatic
generation capabilities of this method, becoming a bottleneck
when many deltas are needed.

III. MODULES DESCRIPTION
The method presented in this paper for delta generation
consists of three modules. Figure 3 depicts them. The first
module generates a river delta skeleton using a stochastic
L-system. The second module uses image processing tech-
niques to create a water map from a delta skeleton. Finally,
the water map serves as the input of the third module which
generates its corresponding digital elevation model (DEM)
and two surface images of different climatic conditions. Each
of the threemodules is described in the following subsections.

A. THE DELTA SKELETON MODULE
The first module creates a delta skeleton using a L-system.
This module improves on the deterministic guidelines previ-
ously proposed in [11]. The improvement consists of a) using
a new set of stochastic guidelines to create alternative suc-
cession rules, maximizing the probability of obtaining valid
delta skeletons, and b) establishing ranges for the parameters
variation, resulting in a more realistic emulation.

In general, a L-system is a grammarGwith parallel rewrit-
ing defined by G = (V , ω,P); where V is the alphabet,
ω is the initial state called axiom, and P is a finite set of
rules. The alphabet is the collection of symbols available;
two or more symbols make up a word. An axiom can be
a symbol or a word. The rules consist of the predecessor
symbol α and the successor χ , a symbol or a word. For each
symbol in a string, the successor replaces the predecessor
during the rewriting process according to Equation 1, the
result is a new string. Whenever there is no rule for a symbol,
the identity is assumed and the symbol is repeated in the
rewriting process [10]. The rewriting process is repeated
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FIGURE 3. The delta generation process is performed by three sequential
modules. (a) Module that generates a delta skeleton, (b) module that
creates a water map, and (c) module that translates the water map into
surface images.

for a number of iterations i.

(α→ χ ) ∈ P (1)

Turtle graphics are useful for providing a graphical inter-
pretation of the resulting strings. Turtle is a vector method
that consists of a cursor (the turtle) that draws its route on
a Cartesian plane. The cursor parameters are length of the
drawn lines r , current position (x, y), and current direction θ ,
which can be modified by adding or subtracting an angle β.

The resulting L-system string serves as instructions for
the turtle to draw the channels of the delta, therefore, each
symbol is a command. The graphic interpretations of the
symbols used in this method are explained in Table 1. The
push and pop symbols, ‘‘[’’ and ‘‘]’’ respectively, are required
to generate branch structures. Symbols that do not have a
graphical interpretation are called filler symbols; they are
used to initiate the generation, control the generation speed
or call a rule under certain conditions.

TABLE 1. The symbols used for the graphical interpretation of the
L-system grammar for the generation of delta skeletons.

1) THE PROPOSED GUIDELINES
It is possible to obtain L-system strings that are interpreted
as delta skeletons by following the considerations below.
Distributaries are sinuous, this can be emulated when the
symbol ‘‘F’’ is surrounded by a couple of ‘‘+’’ and ‘‘−’’

symbols. What happens is that there is a change of direction,
a line is drawn and then the previous direction is restored.
An important characteristics of the rules is the balance, it is
when within a rule the amount of ‘‘+’’ and ‘‘−’’ symbols is
the same; when balance is not kept, the resulting delta spirals
as a result.

However, keeping the balance between the symbols of
direction change is not straightforward; if two rules that are
executed one after the other have the same number of ‘‘+’’
and ‘‘−’’ symbols between the two, there is also a balance,
but this tends to result in deltas skewed to one side, however
the general direction of the delta is preserved.

The parameter controlling the angle of the direction change
(β) should be between 15◦ and 35◦; smaller angles produce
channels with diminished sinuosity that are very close to
each other, and larger angles draw angular shapes with no
resemblance to deltas. Figure 4 shows some examples of
the effects on the resulting skeletons caused by the different
modifications on the rules and parameters.

It is also necessary to set the values of the initial parame-
ters. We propose different ranges for a probabilistic selection
of them to add variability to the generated shapes. Table 2
summarizes the proposed intervals obtained empirically.

TABLE 2. Initial parameters and values intervals.

In accordance with the above constraints, we propose the
following guidelines to add variation to the rules while keep-
ing balanced growth of L-systems for the creation of delta
skeletons:
• Swap the position of two opposite direction change
symbols.

• Add a pair of direction change symbols separated from
each other within a rule.

• Add a single line draw symbol F or axiom symbol I .
• Change the position of a filler symbol, as long as this
does not leave a pair of push and pop symbols empty.

• Eliminate pairs of direction change symbols, as long as
enough of these symbols remain within the system to
maintain the sinuosity.

Using these guidelines to create rule variations, we have
constructed three stochastic systems as valid examples. Those
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FIGURE 4. Variation effects in a L-system. (a) The base L-system, proposed in [11]. (b) Example of variation; there is no direction change symbols
surrounding the line draw symbols, thus, sinuosity is lost. (c) When the + and − symbols are uneven in the rule R, the delta spirals. (d) When β is
below 15◦, the resulting delta loses many features. (e) The upper limit for β (35◦). (f) If β is too big, the delta shape is lost.

TABLE 3. The first stochastic L-system generates deltas with intricate
channel structures due to the axiom’s presence in all the rules, effectively
restarting the system at each iteration. A delta that comes from a word
created by the I , X , and R rules with fewer direction change symbols
would show less sinuosity in its channels.

instances are presented in the tables 3, 4, and 5. In the first
system, in Table 3, the first variation in the rules eliminates
the direction change symbols in the rule for the symbol I ; all
possibilities for the rules X and R include balanced direction

TABLE 4. The second stochastic L-system presents noticeable
self-similarity due to the axiom’s presence in the successor of its own
rule. The number of F symbols determines the growth rate of this system.

change symbols, while the rules S and L complement each
other. This balances the final word produced by the L-system.

The system presented in Table 4 has three possible rules
for each symbol. In all cases, the positions of the direction
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change symbols were modified. There are rules for S and
L that are not balanced; this skews the system to one side
but does not make it spiral because the system does not
present other imbalances. The system grows rapidly due to
the size of the rule for I and how often this rule is repeated.
Furthermore, the final L-system presented in Table 5 shows
swaps in change direction symbols, as well as filler symbols
exchanging positions. Thus, this system does not present any
imbalance in its rules.

TABLE 5. The third stochastic L-system has fewer branching than
previous systems since only the rule R produces it. The direction change
symbols surrounding the axiom in the rules S and L will create entangled
channels in some of the combinations.

Stochastic L-systems aim to produce different deltas each
time they are executed. The number of systems that a stochas-
tic L-system can produce is given by the multiplication prin-
ciple in Equation 2; where L are the possible structures that
will be generated by a stochastic L-system, N is the number
of symbols, and x is the number of rules each symbol has.
Aside from this, the graphical interpretation is also modified
with probabilistic parameters for the initial position, direction
of the delta, the direction change, the step size when drawing
lines, and the number of iterations. Finally, the deltas can be
rotated or mirrored once finished. Each rule has the same
probability of being chosen. Thus, by following the guide-
lines it is possible to create L-systems with more rules and
achieve more variability.

L =
N∏
i=1

xi (2)

B. THE WATER MAP MODULE: FROM SKELETONS TO
WATER MAPS
The skeleton is the graphical interpretation of the L-system
and resembles a river delta by itself; however, the receiving
water body has not been defined yet. Therefore, thewatermap
module uses an algorithm to create natural-looking contours
for irregular objects, generating the sedimentary land sur-
rounding the delta channels and the boundary for the coast-
line. That is, the second module converts the delta skeletons

generated by the L-systems into water maps. A diagram of
the process of creating the water maps is in Figure 5.

This process is subdivided into several subroutines:
1) Generation of delta’s surrounding land:

• Creation of convex hull to simulate the surrounding
land

• Computation of control points to generate coarse
edges

• Refinement of edges of surrounding land
2) Generation of the coastline:

• Creation of the main features of the coast
• Refinement of the coast

3) Integration of surrounding land and coastline with the
delta skeleton to form the water map

The process for creating the water map generates the sur-
rounding land, the delta channels, and the coastline on a
blue background. The land surrounding the channels and the
coastline are polygons described by the set of points A and B,
respectively. The generation of these two sets is found in the
following subsections.

1) SURROUNDING LAND
The first step is to determine the convex hull of the delta
skeleton, which is the smallest convex polygon surrounding a
set of points. The setA is initially formed by the vertices of the
convex hull. The OpenCV function for finding contours com-
putes the convex hull. Figure 6 shows an example of a delta
skeleton with its convex hull filled in white surrounding it.

Algorithm 1 Segment Subdivision for the Fitting of Delta
Channels
Input: Set of points A
Output: Subdivided set of points A
1: for p ∈ A do
2: for j ∈ [1,

⌊
Dp/Zi

⌋
− 1] do

3: xj = xpa ∗ (1− j/
⌊
Dp/Zi

⌋
)+ xpb ∗ j/

⌊
Dp/Zi

⌋
4: yj = ypa ∗ (1− j/

⌊
Dp/Zi

⌋
)+ ypb ∗ j/

⌊
Dp/Zi

⌋
5: if (i 6= 1) then
6: xj + ρx;whereρx random ∈ [−Zi/2 . . . Zi/2]
7: yj + ρy;whereρy random ∈ [−Zi/2 . . . Zi/2]
8: end if
9: Add the new point (xj, yj) to the set A

10: end for
11: end for
12: return A

In order to fit this initial polygon into the delta channels,
more points are added to the set A by subdividing each line
segment formed by a pair of adjacent points p = (pa, pb).
The subdivision procedure is shown in Algorithm 1; where
Dp is the Euclidean distance between adjacent points; Zi is
the desired sub-segment size at the current subdivision i; j
is the current created point, and j/

⌊
Dp/Zi

⌋
is used as the

weight value for the linear combination between the points
pa and pb to obtain the Cartesian coordinate of j, i.e. (xj, yj).
The last part randomly moves the point around its original
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FIGURE 5. Water map creation process. (a) A delta skeleton is the input, (b) generation of surrounding land, (c) generation of the coastline,
(d) integration of the surrounding land, the coastline and the delta skeleton into a water map.

FIGURE 6. Example of the convex hull of a delta skeleton.

position in a neighborhood of Zi + 1 × Zi + 1 pixels; the
size of the neighborhood was chosen to avoid overlapping
points intersecting each other when it is larger, it should be
noted that a smaller neighborhood often does not generate
enough sinuosity. This last step is not performed in the first
subdivision.

For the first subdivision of the set A, the value of Z1 is
20 because it allows creating enough controllable points to
adjust the initial land to the channels. The value of Z1 was
defined through empirical experimentation when considering
an image of size 1024 × 1024 pixels. The value assigned to
the other Zi was also found empirically. The resulting points
after the first subdivision are depicted in red in Figure 7.
The following step adjusts the position of the points in

A to the delta channels. This process explores the space
between each point in A and the centroid of the convex hull;
the exploration is carried out in a straight line considering a
neighborhood of 7× 7 pixels because sometimes the closest

FIGURE 7. Fitting the convex hull. The new points on the hull are shown
in red, the black lines show the exploration path towards the centroid,
which is in green. The yellow points represent the new position of each
point after the fitting process.

channel is not exactly on the exploration path. The position
of each point in A is updated based on the three possible
exploration scenarios:

1) No channel is found during the exploration. In this case,
the point moves towards the centroid, at 90% of the
original distance between the point and the centroid.

2) The channel is close to the original position of the point
in A, this is, at 10% or less of the distance between
the point and the centroid. In this case, the point is
randomly moved in the opposite direction between 5%
to 10% of its distance from the centroid. The land is
increased in these cases simulating the deposition that
surrounds the channels.

3) The channel is not near the point. In this case, the point
approaches the position of the delta channel, leaving
enough space for the land surrounding the channel.
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The new position of the point will be between 90% and
95% of the original distance between the point and the
channel. This allows the new shore to be located close
to a delta distributary and at the same time prevents the
surrounding terrain from disappearing.

The relocated points can be observed in yellow in Figure 7,
the black lines are the exploration trajectories of each point
without the neighborhood. This set of points describes a
coarse shape around the delta channels, which needs to be
refined to obtain sinuous lines. To achieve this, the subdivi-
sion routine is performed one more time. Z2 takes the value
of 10 pixels because the sinuosity is expected to be subtle
but still visible, and this time the step of relocating the point
within the neighborhood is performed. The resulting set A
describes a polygon that represents a more natural-looking
depositional land around the delta channels. An example of
the resulting refined shape is shown in Figure 8.

FIGURE 8. The land boundary of the delta is refined to look more natural.
This polygon is defined by the final set of points A.

2) CREATION OF THE COASTLINE
The second set of points B describes the polygon that forms
the coast. The first point that belongs to B is the coastline ori-
gin; finding it involves using the delta origin and the point on
the convex hull that is furthest from the delta origin. A linear
combination of these two points determines the position of
the coastline origin point; the weighting value will determine
how close the coastline origin is to the delta origin, which is
controlled by the user and is called λ. This is used to create
river- or tide-dominated deltas using the same skeletons.
When the value of λ is close to 1, the coastline is close to
the origin of the delta, the resulting shape resembles a river-
dominated delta where the delta grows over the receiving
body of water while creating land surrounding its branches.
When the value of λ is close to 0, the coastline will be near the
furthest point on the convex hull and the coast will cover most
of the delta, this resembles a tide-dominated delta. In this

type of deltas the sediments are pushed back by the action
of the tides resulting in a more homogeneous accumulation
of land along the coastline and the delta extends over the
coastal plains. An example of the differences between river-
and tide-dominated delta types is shown in Figure 9, sub-
figure (a) uses a λ of 0.8 while in sub-figure (b) it is of 0.2.

FIGURE 9. Example of delta types. (a) A delta dominated by the river
grows over the receiving water body. (b) A delta dominated by the tides
where the land formation expands the shoreline more evenly. Both delta
types can be simulated by our approach.

After selecting the coastline origin, the upper and lower
limits of the coast are searched. Three points are needed: the
delta origin, the coastline origin, and a third point, which has
the value x of the coastline origin and the value y of the delta
origin. These three points form the angle γ , which has its
vertex at the delta origin, then its amplitude is calculated. The
angle indicating the position of the lower coastal limit, γL ,
is obtained by adding 70◦ to 110◦ to γ ; this range is used to
add variability. The angle corresponding to the upper coastal
limit, γU , is obtained by adding 160◦ to 200◦ to γL . Using
these angles, the coordinate positions of the upper and lower
coastal limits can be calculated.

The initial set B is made up of these three points: the coast-
line origin, its upper limit, and its lower limit. An example of
this initial coastline is shown in Figure 10. The convex hull
is shown filled in white, the delta origin is shown in blue and
the furthest point on the convex hull is in green. Within this
segment, a linear combination using a λ of 0.8 determines the
position of the coastline origin. Then the two points defining
the upper and lower limits of the coast are used to draw the
line segments that describe the initial coastline.

The two segments formed by the coastline origin and the
lower and upper limits are subdivided to create variations and
accidents. For this purpose, Z3 takes a value of 50, because
the intention is to create bigger accidents in the coast than
in previous subdivisions. These initial accidents look sharp
and angular; to improve on this, the coastline is refined by
performing another subdivision, this time using Z4, which is
assigned a value of 10. After this, the resulting set B describes
a more refined coastline. The set B is finalized by adding the
image vertices that lie within the coast; these are found by
moving clockwise from the upper coastal limit until arriving
to the position of the lower coastal limit. Now the set B
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FIGURE 10. The delta origin (blue) and the furthest point on the delta
hull (green) are used to find the coastline origin (red). From there, the
upper and lower coastal limits are found.

describes a closed polygon. An example of a coarse and a
refined coastline is shown in Figure 11.

FIGURE 11. Refinement of the coast. (a) Coarse accidents of the initial
coast. (b) Coast refinement to be used in the water map.

To finalize the water map generation, an image is filled in
blue ((0, 0, 170) in the RGB color model), and both sets of
points A and B are drawn and filled in white to represent all
the land. Finally, the delta is drawn on top of this using the
same shade of blue.

C. THE ELEVATION MODEL AND SURFACE IMAGE
MODULE
The third module uses the method proposed in [12] to gen-
erate digital elevation models (DEMs) and realistic delta
surface images. The cGANs approach proposes to use as
input either a user-drawn sketch or a real-world water map.
However, this paper introduces an automatic process for
generating original river deltas without manual intervention
using the water maps from our proposed first two modules.
The generated water maps are used as input for the orig-
inal cGANs, which were trained and validated using the
DRCA2020 dataset, publicly available in https://github.com/
DRCA2020/Tropical-Rainforest-and-Monsoon. The cGANs

are trained with pairs of images that serve as input and
expected output. The first cGAN uses a pair of water map
and DEM; then the climate cGANs are trained using pairs
of DEM and tropical surface images, and DEM and polar
surface images respectively. [12]. Figure 12 shows the gen-
eration pipeline presented in [12].

The cGANs approach uses a water map as input and gen-
erates a digital elevation model (DEM), which is a matrix
containing the information of the terrain altitude in meters
at each position (x, y). Figure 13 shows an example of a
DEM, normalized into a grayscale image for visualization
purposes. Then, from each DEM two cGANs can generate
surface images corresponding to deltas in tropical and polar
regions respectively. In sum, the cGANs approach generates
the elevation model and two distinct surface images from a
single water map input.

IV. RESULTS AND DISCUSSION
This section presents some river delta generation examples
showing the L-system skeleton, water map, DEM, and sur-
face images. Then, we provide the quality assessment of the
generated images. Finally, this section shows a comparison
against other related works.

A. THE GENERATIVE PROCESS RESULTS
As it was described in section III, each stochastic L-system
is capable of generating multiple skeletons given the same
parameters. Two examples of the generated skeletons are
presented for each of the three L-systems that were designed.
Figures 14 and 15 show an example of the generation results
using the L-system 1. In both cases, sub-figure (a) shows the
skeleton generated by the L-system. The resulting image in
the Figure 14 was rotated 90◦ counterclockwise. This delta
has intricate distributaries due to the effects of rules that
call the axiom several times during the rewriting process.
The generated delta, as can be observed in sub-figure (b),
is a river-dominated one. However, its surface images have
characteristics of the tide-dominated type, such as the size of
the channels and the apparent incursion of the sea in the delta
area. The channels’ widths diminish as they move further
away from the delta origin. The image in Figure 15 (a) shows
intricate braiding channels. In sub-figure (b), the coastline
origin covers a big portion of the delta and the width of
the channels. It is a tide-dominated delta. The sub-figure (c)
shows the result of the DEM generation with the first cGAN.
The result of the polar surface cGAN is shown in sub-
figure (d) and the tropical one is in sub-figure (e). In the
case of Figure 14 the result exhibits sandbanks along the
islets created by the delta. Despite both were generated from
the same system, the differences are obvious; the first one
presents entanglements in its channels and is skewed towards
its left side, while the second delta is only lightly skewed
upwards and does not present entanglement.

Figures 16 and 17 show the results generated by the second
L-system. Both deltas show less and more spread channels
than system 1; this happens because branching symbols in
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FIGURE 12. The third module, previously proposed in [12], uses three cGANs. The first one takes a water map as input (a) and converts it
to a digital elevation model (b). Then, the user chooses between the other two cGANs to generate a tropical landscape or a polar one
respectively (c).

FIGURE 13. A digital elevation model (DEM). For visualization purposes,
it can be represented as a grayscale image where the lowest areas are in
black and the highest in white. A black value represents an altitude of 0
and a white is a maximum altitude set to 50 meters; assuming a near to
sea level altitude.

the rules are more limited than in the previous system. The
resulting deltas are river-dominated as well. The delta in
Figure 16 has more straight channels in comparison with the
one in Figure 17 due to rules with fewer direction changes.
The self recurrence is apparent in both deltas, showing that
small variations in the L-systems allow preserving general
features of the generated deltas. Even more, Figure 17 resem-
bles the Mississippi delta shown in the sub-figure (a) of
Figures 1 and 2. The polar and tropical images preserved the
channels generated by the L-system.

Following that, Figures 18 and 19 show two different deltas
from the third L-system. The first one has a skewed upper
portion, while the second one is almost symmetric. The braid-
ing channels in Figure 19 are achieved by surrounding axiom
generation symbols with change angle symbols recurrently.
This created image resembles the Krishna river delta, which
has only three distributaries and a braided section, as it was
shown in sub-figure (d) of Figures 1 and 2. In these two deltas,
the coastal origin is very close to the furthest part of the delta,
and the result is that the coastline is in the ending of the
channels. The result is a delta that is dominated by the tides
and waves.

The above examples show the variability in the resulting
deltas; even if generated by the same system, the results are
very different due to the randomness involved in generating
the water map and the skeleton. For this reason, the systems
and parameters should be saved for delta reproduction. The
proposed method presents a significant advantage, as it can
generate deltas without needing user input in the form of an
initial water map. It can automatically generate original river
deltas and their corresponding surface images along with
the elevation information. Previous proposals lack enough
variability when generating the delta skeletons, as a determin-
istic system generates just one skeleton. Even more, with the
proposed guidelines for designing additional rules for each
symbol, it is possible to increase the generative capabilities
of the same L-system.
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FIGURE 14. A delta structure using the first L-system of Table 3. (a) shows the graphical result rotated 90◦ clockwise, and (b) is its corresponding
water map. (c) The height map generated by the first cGAN; (d) and (e) show the polar and tropical climate images. These were generated by
independent cGANs using the height map as input.

FIGURE 15. Another example of a delta generated by the first L-system of Table 3. (a) shows its graphical result. (b) The water map. (c) The height
map generated by the first cGAN. (d) and (e) show the polar and tropical climate images, respectively.

FIGURE 16. A delta generated by the second L-system in Table 4. (a) shows its graphical result and (b) its corresponding water map. (c) The height
map generated by the first cGAN, while (d) and (e) show the polar and tropical climate images respectively, these were generated by independent
cGANs using the height map as input.

FIGURE 17. Another delta generated by the second L-system in Table 4. Column (a) shows graphical result, which was rotated 90◦. While column
(b) has its corresponding water map. The column (c) shows the height map generated by the first cGAN and columns (d) and (e) show the polar and
tropical climate images respectively, these were generated by independent cGANs using the height map as input.

1) QUANTITATIVE EVALUATION
The evaluation of the image quality includes two metrics:
the Frechet Inception Distance (FID) [32] and the Natural-
ness Image Quality Evaluator (NIQE) [33]. FID measures

the similarity of GAN-generated images with real images,
while NIQE is a no-reference evaluator. To compare the
generated deltas against real images, we use the Full-Delta
set of images of tropical and polar climates of the DRCA2020
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FIGURE 18. A delta resulting from the third L-system of Table 5. (a) Its graphical result and (b) its corresponding water map. (c) shows the height map
generated by the first cGAN and (d) and (e) show the polar and tropical climate images.

FIGURE 19. A different delta resulting from the third L-system shown in Table 5. (a) shows its graphical result; (b) the water map; (c) the height map
generated. (d) and (e) show the polar and tropical climate images respectively, these were generated by independent cGANs using the height map as
input.

dataset (available in https://github.com/DRCA2020/Full-
Deltas). The Full-Deltas dataset has 22 images of the polar
climate and 105 of tropical climate. The FID is a metric that
shows how close a group of images is to another; comparing
an image group with itself gives a distance of 0, despite the
order of the images. The evaluation of the generated images
was between two mutually exclusive groups of real images of
the same climate. Thus, the real deltas were randomly divided
into control and test groups (50/50%). The first compari-
son was between the control and test groups to determine a
reference distance. The second comparison was between the
control group and the processed test group; the processing for
the test group added Gaussian noise with a mean of zero and
a standard deviation of 0.3. This second comparison aims to
establish the other reference interval, where an image has an
inferior quality. Finally, the third comparison was between
the control and 30 images generated by our modular method.
Examples of each group are shown in Figure 20.
The quality evaluation with the NIQE uses the statistical

features of a natural scene statistics model, which is focused
on the image quality [33]. Therefore, in this quality eval-
uation, we used the original pre-trained model of NIQE,
implemented inMatlab.We compared each image in the three
groups (the control images, the processed test images and the
generated images) obtaining the average divergence for each
group. Again, we performed this evaluation for tropical and
polar images.

The results of both the FID and NIQE evaluations are
reported in Table 6 and Table 7. The tropical deltas from
the DRCA2020 dataset have a FID of 8.86. This value is the

TABLE 6. Quality measurements for the tropical images.

TABLE 7. Quality measurements for the polar images.

lower reference distance for tropical deltas. The comparison
between the control group and the generated images show a
distance of 27.6, this distance is approximately in the mid-
dle of our reference interval, as the FID in the comparison
between the control group and the noisy group is of 44.45.
When measuring the NIQE of the images, in average the
control group has a divergence of 2.93 from themodel and our
generated images come very close with an average of 3.66,
while the noisy images have an evaluation of 29.27.

Regarding polar images, the FID of the generated images is
closer to the FID of the noisy images; this could be because
some features are missing in the generated images, such as
the lakes which are common in polar climates. However,
when measuring the quality of the images with the NIQE, the
generated images are closer in quality to the real ones than to
the noisy images.
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FIGURE 20. An example of images in the quantitative evaluation. (a) A real image of tropical climate in the control group. (b) A generated
image using our proposed modular method. (c) A processed image of the test group decreased in quality.

2) EXAMPLE OF RELATED WORKS
There are a few methods for the automatic generation of
river deltas. One of them is the algorithm proposed in [9],
which converts a river mouth into a delta by generating an
irregular semi-circle of new land linked to the former mouth
to form the delta channels. Unlike our proposal, that method
cannot generate complex deltas, as it only allows to have a
single branching point. As a result, it can only generate simple
river-dominated deltas. The delta generated in [9] is shown in
Figure 21.

FIGURE 21. A delta generated by the method of Teoh, presented in [9].

Another way of generating deltas is with simulation meth-
ods such as in [7], which simulates the sediment transport
process representing the terrain as a graph. At each step, the
sediment movement is calculated, and the river channels are
created as a result. Figure 22 shows the state of the delta after
1.2 million, 2.5 million and 5 million time steps in the sub-
figures (a), (b) and (c) respectively. In contrast, our proposed
approach generates four different images in each instance: a
water map, its DEM and two different surface images. To the
authors’ knowledge there are no mature methods generating
river deltas this way in order to perform a direct comparison.

3) INFERENCE TIME
The inference time of our modular approach was measured
in a device with an Intel Core i7 (4th Gen) 4510U 2.0 GHz
processor, 4 GB of RAM, and an Nvidia GTX 860m 2GB
GPU. The average inference time for the generation of the
images is presented in Table 8. An input water map is created
in less than 2 seconds on average, and the three resulting

FIGURE 22. Image of a simulation method proposed in [7], at 1.2 million
steps (a), 2.5 million steps (b), and 5 million steps (c).

images (DEM, tropical and polar landscape) are obtained in
22.5 seconds on average.

TABLE 8. Average time that each module takes to complete its
generation task.

4) LIMITATIONS
The proposed approach has limitations. First, it can not gen-
erate seasonal water areas in the water map, producing noise
in the land areas of the generated landscapes. Second, the
channels created through stochastic L-systems can only grow
into the same general direction. Deltas switch the growth
to other areas when the slope is changed by the sediment
deposited in the original area. This results in some channels
that stop receiving the same amount of water and others that
start receiving more. Third, although the guidelines help to
generate useful deltas, a small number of them could be
unrealistic. Therefore, the user must follow strictly the pro-
posed guidelines to change variable parameters or between
rule interactions. Thus, these shortcomings open up space for
future research.

V. CONCLUSION
Although river deltas in nature are dynamic systems with
complex features, our modular approach can generate
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terrains with realistic river deltas structures. The first module
proposes and follows a set of guidelines for rule creation
and parameter adjustment for stochastic L-systems designing.
The proposed design provides variability in creating original
river delta skeletons. A second module processes the delta
skeleton using a designed algorithm to create watermaps. The
construction parameters were empirically adjusted, allowing
us to propose values that workwith all the skeletons generated
through our L-system. Through these parameters adjustment,
it is possible to generate both river-dominated and tide-
dominated deltas. Finally, integrating cGANs architectures
in the third module produces elevation models and surface
images of the generated deltas in polar and tropical cli-
mates. Therefore, the proposed modular approach introduces
an automatic process to generate original and realistic river
deltas. In the quality validation of the proposed method, the
Frechet Inception Distance showed that the generated images
are inside the control intervals. Thus, the generated images
with our modular approach are similar enough to real images.
Additionally, the Naturalness Image Quality Evaluator vali-
dates the effectiveness of this proposed method with values
almost similar to the real images in the DRCA2020 dataset.
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