IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 13, 2021, accepted December 27, 2021, date of publication January 5, 2022, date of current version January 13, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3140522

Surgical DDoS Filtering With Fast LPM

DENIS SALOPEK"™, (Student Member, IEEE), MARKO ZEC',
MILJENKO MIKUC™?, (Member, IEEE), AND VALTER VASIC2

!Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

2Republic of Croatia, Information Systems Security Bureau, 10000 Zagreb, Croatia

Corresponding author: Denis Salopek (denis.salopek @fer.hr)

ABSTRACT Can software-based packet filters effectively dampen volumetric distributed denial-of-service
(DDoS) streams in an era when 10 Gbps links are considered slow? The potential of longest prefix
matching (LPM) for enforcing precise DDoS scrubbing policies seems to be overlooked in contemporary
packet filtering datapaths, and in this paper, we argue that this should not be the case by showing that effective
whitelist / blacklist LPM-based filtering can be performed with commodity hardware. A showcase datapath
we propose can evaluate multiple queries in large separate LPM databases for each forwarded 64-byte packet,
while sustaining 10 Gbps line rate on a single CPU core, with a healthy scaling potential due to its lockless
architecture and small memory footprint of LPM structures. We demonstrated forwarding 64 million packets
per second using only six CPU cores while performing independent lookups for each packet in three large
LPM databases created by aggregating malicious IP addresses or by mapping different geolocation identifiers

to IPv4 prefixes.

INDEX TERMS Firewalls, network security, packet lookup and classification, software routers.

I. INTRODUCTION

The proliferation of still predominantly IPv4-based volumet-
ric/flooding distributed denial-of-service (DDoS) attacks [1],
which are exploiting the openness and simplicity of the
Internet’s addressing and routing architecture, is placing an
increasing burden on Internet service providers (ISP) and
datacenter operators. An effective mitigation strategy has to
include scrubbing malicious from legitimate traffic close to
the attack target. Packet filtering using specialized hardware
such as ternary content addressable memories (TCAMs)
offers high throughput, but TCAMs have arigid structure, low
density, suffer from high power consumption, and are costly.
In a quest for more flexibility and virtualization capabilities,
a new interest in implementing high-speed packet filters in
software has recently emerged.

Legacy software firewalls available in general-purpose
operating systems (OS) were designed when speeds
of 100 Mbps and 1 Gbps were considered fast, but in today’s
datacenters, even 10 Gbps network interface cards (NICs)
are gradually being replaced by 25, 40, or 100 Gbps
parts. Moreover, software datapaths have evolved towards
generalizations such as OpenFlow [2], which aim to adapt to

The associate editor coordinating the review of this manuscript and

approving it for publication was Hosam El-Ocla

4200 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

all conceivable packet manipulation scenarios, with emphasis
on stateful operation. However, the precise flow tracking /
caching paradigm suffers from a wide spectrum of inherent
architectural limitations [3]. Particularly in the context of
volumetric DDoS attacks, as source addresses of inbound
packets are either randomized (spoofed), or the packets
originate from vast pools of compromised or vulnerable
hosts, the elastically expanding flow tracking structures either
quickly reach their preset limits, or spill over CPU’s caches.
Furthermore, synchronizing access to mutable shared data
structures such as flow tables can require tens to hundreds
of CPU clock cycles per table access, itself consuming the
entire per-packet time budget for a single 10 Gbps link.

The need for simplifying and stripping down packet
processing software datapaths of non-essential functions is
well recognized and can be reflected in the widespread
adoption of fast packet I/O frameworks such as DPDK [4] or
Netmap [5], which map NIC buffers directly into user space.
More recently proposed mechanisms for fast (pre)processing
of packets before they get encapsulated and consumed
by complex data structures and function call paths in
an OS kernel are currently enjoying gigantic momentum:
eBPF/XDP [6], [7], are re-exploring the paradigm of safe just-
in-time (JIT) translation of packet filtering programs from
bytecode form to native machine code [8] within a running

VOLUME 10, 2022

https://orcid.org/0000-0002-3434-4923
https://orcid.org/0000-0002-6408-4405
https://orcid.org/0000-0002-8202-7762

D. Salopek et al.: Surgical DDoS Filtering With Fast LPM

IEEE Access

Linux kernel, refining it to adapt more efficiently to modern
CPU architectures, and making it more versatile.

A surprising common denominator among software datap-
ath proposals from the recent literature (user space and XDP-
based alike) is that only a few have explored the advances
in longest prefix matching (LPM) reported over the past
decade. Most user space proposals use the popular DIR-24-
8 [9] scheme available as a library in DPDK, while XDP
relies on the even older LC-trie, and rare exceptions such
as the Kamuee router [10], which uses PopTrie [11] for
LPM, do not focus on packet filtering. Therefore, in this
paper, we explore whether there are incentives for moving
away from the omnipresent DIR-24-8 to more modern
LPM schemes in DDoS filtering scenarios, which call for
methods to blacklist 10° to 10° individual compromised
host addresses, such as in the well-exposed Mirai DDoS
incidents [12] from 2016. In contrast to current trends in
XDP-based end host filtering, we were more interested
in providing forwarding capacity to move precision DDoS
scrubbing further away from end hosts, i.e., towards upstream
providers, with the ultimate goal of better protecting the entire
downstream infrastructure, including links at the network
edge that are often irreparably saturated by volumetric DDoS
attacks. Encouraged by reports of other successful user space
network function specializations for speed, such as [3], [13],
we designed and implemented our own JIT-compiled user
space datapath, which we used as a testbed for tuning and
evaluating a handful of recent LPM schemes while having
them bombarded with synthetic DDoS-type traffic.

A. OUR CONTRIBUTION

We argue and show that the use of LPM offers significant
potential for the development of new DDoS scrubbing
strategies. Our research indicates that using large datasets
as allowlists and blocklists (usually called whitelists and
blacklists) allows for precise, high-speed filtering of IPv4
traffic. To support our case, we refine a modern LPM lookup
scheme and integrate it into a packet filtering application that
allows multiple independent LPM queries to be performed
per packet using randomized keys (IP addresses) while
maintaining a 10 Gbps line rate on a single CPU core. We defy
the currently prevailing view which favors placing high-speed
packet filtering functions as JIT-compiled modules in an OS
kernel by demonstrating that efficient user space filtering
datapaths can be constructed with fewer constraints. Finally,
our results are practical: the prototype described here includes
all the components necessary for a real-world application:
a comprehensive filter description language matched with a
fast parser and compiler front-end, as well as a functional
control interface with on-the-fly reconfiguration and statistics
gathering capabilities.

The rest of the paper is structured as follows. Section II
elaborates our choice and refinements of an LPM scheme.
Section III presents our datapath and discusses its design and
implementation tradeoffs. Section IV provides a performance
evaluation with different synthetic ruleset types. Section V

VOLUME 10, 2022

places our work in context with related developments in the
field. In Section VI, we outline directions for future work with
concluding remarks.

Il. LONGEST PREFIX MATCHING

As our main objective is to filter traffic based on queries
across multiple large IP address datasets, a suitable scheme
should have compactly encoded lookup structures (to pro-
mote cache locality and conserve memory traffic), searchable
through a simple and not overly branchy process (since CPU’s
out-of-order execution and branch prediction machinery
yield diminishing returns when operating on essentially
random data patterns). Ideally, it should be versatile enough
to support very specific IP prefixes, as well as broader
subnet addressing. The scheme should also perform well
both with predominantly random traffic patterns, which are
characteristic for cases where attackers are successful at
source address spoofing, and with more localized patterns
typical of large botnets which transmit with legitimate
source addresses. Finally, the scheme should not suffer from
exceedingly narrow structural limitations.

PopTrie [11] and SAIL [14] are two LPM schemes from
the recent literature which stand out as being capable of
delivering more than 200 million lookups per second (Mlps)
per CPU core in synthetic tests. Both are multiway tries
which begin the lookup process by directly indexing a small
table with K most significant bits of the key (IPv4 address),
where K = 18 with PopTrie, and K = 16 with SAIL.
If the table entry does not indicate a hit, the search continues
with up to two 256-way further levels with SAIL, while
PopTrie progresses down the sequence of 64-way nodes with
a compact encoding which leverages the popcnt x86 machine
instruction. Another LPM scheme that consistently comes
third in PopTrie vs. SAIL standoffs (the two swap on the
throne depending on how the benchmarks were conducted)
is DXR [15], which is also the oldest of the three. All three
schemes were originally devised to work well with BGP-like
IPv4 prefix datasets, i.e., to support around 1 million entries,
dominated by prefix lengths less specific or equal to /24.

We selected an updated version of DXR [16] as the
main LPM scheme for building into our filtering datapath,
while introducing further refinements which we describe
in the rest of this section. Our previous familiarity with
DXR clearly influenced our choice, but the decisive factor
was its blend of high LPM throughput with low memory
footprint. In order to perform comparative tests we later
added implementations of PopTrie! (which worked out of the
box), SAIL? (which we had to implement ourselves because
the reference implementation incorrectly constructed lookup
structures for prefix lengths exceeding 16, or simply locked
up in an infinite loop), and DIR-24-8 (which was easy to
distill from the existing DXR’s structures).

1 https://github.com/pixos/poptrie
2https ://github.com/mengxiang0811/SAIL

4201

IEEE Access

D. Salopek et al.: Surgical DDoS Filtering With Fast LPM

TABLE 1. Lookup structure characterization for D16X2R, D16X4R, PopTrie18, SAIL, and DIR-24-8.

D =16, X = 2 (D16X2R) D =16, X = 4 (D16X4R) PopTrie | SAIL | DIR248

Table N L é m ¢] M m ¢ 0 M M M M
gl2_city | 3075441 | 25.0 | 115503 | 0.601 | 0.652 | 2150439 | 8.85 | 0.764 | 0.558 | 2069692 | 10.13 (NC) | (NC) (NC)
gl2_asn 430965 | 22.1 66349 | 0.844 | 0424 349632 | 1.76 | 0.927 | 0.331 309076 2.50 (NC) | (NO) (NC)
gl2_country 338006 | 24.1 252 | 0932 | 0.239 117553 | 0.70 | 0.970 | 0.155 102750 1.01 2.23 7.70 35.49
blacklist_1 177935 | 32.0 1| 0.835 | 0432 344517 | 1.75 | 0.934 | 0.338 278549 2.41 11.35 | 1941 41.15
blacklist_2 11212 | 32.0 1| 0975 | 0.200 24985 | 0.29 | 0.993 | 0.106 18514 0.49 1.75 3.91 3244
blacklist_3 | 1113393 | 32.0 1 | 0.680 | 0.568 | 2056778 | 8.41 | 0.818 | 0.475 | 1967409 9.40 53.62 | (NC) (NC)
whitelist_1 82156 | 32.0 1| 0.878 | 0.389 162218 | 1.01 | 0.957 | 0.295 109258 1.60 6.16 | 14.25 34.96
whitelist_2 201477 | 32.0 1] 0.738 | 0.581 392801 | 2.08 | 0.895 | 0.487 269278 2.98 13.92 | 25.22 38.38
whitelist_3 264363 | 32.0 1 | 0.709 | 0.603 521079 | 2.59 | 0.876 | 0.509 382509 3.50 17.64 | 27.55 40.99
private 9 | 111 1 | 1.000 | 0.125 2| 0.13 | 1.000 | 0.031 2 0.13 1.00 0.13 32.00

Number of IPv4 prefixes in a dataset N; Average prefix length L; Number of unique labels (next hops) d; Direct + eXtension table hit ratio y; Di-
rect + eXtension table footprint size ratio relative to the original DXR ¢; Number of 32-bit elements in the range table o; Total memory footprint
of the lookup structures in MBytes M. (NC) denotes table construction process not completing due to a structural limitation being exceeded.

DXR’s lookup process is trivial: the most significant K
bits of the key are used to index a primary table. This
may either yield a direct hit (an index in a next hop
table), or index a corresponding variable-length address range
descriptor block, which is searched in logarithmic time using
the remaining less significant R = 32 — K bits of the key.
The tradeoff between lookup speed and memory footprint
depends on the choice of the direct table size (2X elements).

Direct table eXtension table Range table

Il LILLIIIILILL

D | x | R
32-bit key (IPv4 address)

FIGURE 1. Enhanced DXR structures and lookup process.

Inspired by forwarding information base (FIB) compres-
sion techniques such as trie folding [17], we further enhanced
DXR by splitting the single direct lookup table into two
stages, while subjecting the second stage table to data
deduplication [18]. As shown in Fig. 1, the lookup process
was modified so that the primary (Direct) table is indexed
with the D most significant bits of the key, which yields an
index pointing to a block in the secondary (eXtension) table,

4202

which is then indexed using the subsequent X bits of the
key. As in the original scheme, the search either terminates
if the indexed eXtension table entry indicates a hit, or it
continues with the binary search in a range table chunk using
the remaining R = 32—D — X bits of the key.

Table 1 shows lookup structure characterization for several
datasets® that we experimented with. For the two D, X
configurations presented in Table 1, the ratio ¢ of Direct
+ eXtension table size compared to Direct table size in
the original DXR scheme ranges from approximately 0.1 to
0.6, except for the extreme GeoLite2 City table, i. e., for
similar memory footprints, the improved scheme permits
resolving up to two more bits of the search key via direct
indexing, leading to a proportional reduction of (slower)
search iterations over range table chunks. The penalty is an
extra memory access, but with D < 16, the indices stored in
the Direct table cannot exceed 21© — 1, so for D = 16 the
Direct table consumes only 128 KBytes, small enough to
achieve good hit rates in L2 caches of modern CPUs. The
remainder of the lookup structures should fit into L3 caches,
with the parameter X determining the memory footprint /
lookup speed tradeoff. The simplicity of the scheme makes
inlined compiling of access to the first two tables feasible,
which, combined with high hit rates u reduces the frequency
of costly function calls required to complete the resolving
process via binary search on address ranges.

Earlier DXR versions limited both the total number of exit
labels (next hops) and the length of the range table blocks
to 212, and the overall size of the range table to 219 elements.
We revised the encoding scheme to remove the limit on range

3Nov 2019 snapshots of free GeoLite2 tables mapping country, BGP
AS numbers, and city identifiers to IPv4 prefixes; two smaller blacklists
obtained from automated aggregator https://github.com/stamparm/ipsum
in Dec 2019 and May 2020 along with a broader one obtained from
https://iplists.firehol.org also in May 2020; and three whitelists generated
locally from logs of (presumably) legitimate traffic at a department of the
University of Zagreb during different periods from Dec 2019 to Mar 2020.

VOLUME 10, 2022

D. Salopek et al.: Surgical DDoS Filtering With Fast LPM

IEEE Access

Statistics collector

v 9
N satisties handiing
— g

statistics handling

\\
.
statistics data, “~_
sampled traffic
)

[\
W<«

DDoS detection system

i
< filtering| rulesets
|

Administrator

remote access
________________)
/Y-a v
-
-

-
,

_-7 remote access
-

v")v

External network

~d -

Protected network

FIGURE 2. A deployment of the filtering system datapath with the working DDoS detection tool.

table block lengths by allowing the values to be stored at the
head of the range block in the very rare cases where they
would not fit in the eXtension table entries. This also raised
the limit on exit labels & to 2PTX | ie., to 2!% and 220 for
the configurations shown in Table 1. The Range table now
supports up to 222 elements, which is sufficient for massive
datasets such as GeolP City.

Table 1 further includes memory footprints for PopTrie,
SAIL, and DIR-24-8. None of these schemes could accom-
modate datasets with a large number of exit labels (next
hops): PopTrie is limited to 2'® and DIR-24-8 to 2!° labels,
which is a theoretical rather than a practical limitation in
many applications, but SAIL’s limit of only 28 next hops
is an even more pronounced one. The capacity for 2!0
(65,536) and 21 (32,768) next hops is not sufficient for
extremely large datasets, but the limit is high enough not to
be a concern for reasonably large ones. As can be seen in
Table 1, the two largest datasets used for this paper have
115,503 and 66,349 next hops, but they represent extreme
cases of dataset fragmentation that can be avoided when
using schemes with next hop number constraints. Extending
SAIL to reserve more than one byte for encoding next
hop information would require major architectural changes
and source code upgrades, which would have a negative
impact on its performance envelope. Alternatively, to make
the comparison with other schemes more fair, next hop
encoding space would have to be halved in PopTrie, DIR-
24-8 and DXR. Additionally, both DIR-24-8 and SAIL have
a fundamental structural problem that limits the number
of leaf blocks needed to resolve prefixes more specific
than /24 (21> blocks with DIR-24-8 and 2'® with SAIL).
We had to implement leaf block deduplication to get SAIL
and DIR-24-8 to accommodate even our medium-sized
datasets, but this enhancement could not save SAIL and
DIR-24-8 from both being unable to digest our largest
blacklist, which did not present a problem for either PopTrie
or DXR.

All the LPM implementations we experimented with were
validated by comparing lookup results against the proven
reference radix tree [19] implementation borrowed from
FreeBSD.

VOLUME 10, 2022

IIl. FILTERING DATAPATH

A widely accepted approach to “‘stop” flooding DDoS
attacks is BGP blackholing [20]: the victim throws in the
towel by telling its upstream provider(s) to stop routing all
traffic to the targeted host(s), in an attempt to prevent the
rest of its infrastructure from collapsing under the excessive
traffic load. Our goal is to enable filtering at such speeds
that instead of blackholing the victim’s address, providers
could precisely filter out vast maps of identified or suspected
compromised hosts that serve as the originators of the
attack.

Under extreme conditions, such as handling volumetric
DDoS traffic, the task of a filtering datapath is to move
packets from one interface to another after classifying them
and applying appropriate actions as quickly as possible, while
still providing elementary operating statistics. Secondary
functions may also include diverting manageable amounts
of samples to a separate packet processor for detailed
analysis. An external tool, such as a DDoS detection
system, may use the collected sampled packets and traffic
statistics to generate filtering rulesets in the event of an
attack, as shown in an example filtering system deployment
in Fig. 2. A filtering device does not necessarily have
to perform the functions of an IP router; in fact, most
legacy firewalls have an option of hiding their presence
by not updating the time-to-live (TTL) field of forwarded
packets, or they are simply used in transparent bridging
mode.

Fig. 3 illustrates the structure of our datapath, which aims
to trade richness of functionality for raw speed, dubbed
Reduced Feature-Set Packet Filter (RFPF) to emphasize
our focus on simplicity and efficiency. We define two sets
(bundles) of network interfaces and refer to traffic flowing
from the “lower” to the ‘“upper” set as “‘upstream” and
traffic in the opposite direction as ‘“downstream” . Traffic in
each direction is subjected to entirely independent filtering
rulesets. A parser translates the two rulesets into C code
as two separate functions that are processed by a standard
gce or clang compiler, yielding executable machine code
in a dynamically loadable object. The unit of work for the
compiled filtering functions are not individual packets, but

4203

IEEE Access

D. Salopek et al.: Surgical DDoS Filtering With Fast LPM

entire packet queues, which netmap exposes to userland
applications as circular buffers (or ‘“‘rings” in netmap /
DPDK parlance). This not only allows the compiler to
perform extensive optimizations after inlining rule-based
classification components within a loop iterating over a
receive queue, but also amortizes expensive indirect function
calls from worker threads to the dynamically loaded code.
Moreover, operating on an entire packet queue leaves the
specialized filtering function freedom for optimizations such
as elimination of unneeded checks and branches, or choosing
a prefetching strategy.

lower interface(s)

Ty Camstzeam g™ 111
] [T i O e
[T =L (downstream = 41T

datapath worker thread(s) upper interface(s)

| | |
L1 > _upstream _}+— T
e gtz T L1
[T = 9/ oounsieam] = 4o A [TTT
I ‘
e
| ||
\

[Thsmx RTx Ll
‘/threadt—q+1 |

[TT w9ee L dowmsiream 1= LT[

|1
1] [_upstream] ‘ 1111
LLLITRYITX H/‘H
»
[T =2 T downstream 1.1/ { T

=

lower interface 1

upper interface 1

==

lower interface i
upper interface i

I 1 lockless
| f
I I) POSIX
=38 statistics % command j/// remote stats. lockin
<3 aggregator line interface access 9
o= thread (CLI) thread thread(s)
—~_ 4

FIGURE 3. RFPF datapath: interfaces, queues, worker threads.

Not unique to our approach but nevertheless an impor-
tant implicit optimization inherent to compiling rules into
machine code is the propagation of constants, such as L4
port numbers, L3 address ranges, etc., into the instruction
stream, that reduces data dependencies and CPU pipeline
stalls that might otherwise occur when fetching data. Even
resolving supposedly minor constants at compile time, such
as circular buffer (ring) index masks, can have an observable
impact on throughput when total timing budget per packet
may not significantly exceed 100 to 150 clock cycles. This is
a typical constraint when aiming at 10 Gbps line rate packet
forwarding on a single CPU core.

All other components (configuration parser, CLI, etc.) are
also implemented in C and operate in user space. Since
each NIC can be configured to balance inbound traffic over
multiple receive queues (rings), a separate worker thread is
allocated to each receive / transmit queue pair between the
corresponding “‘upper” and ‘“lower” interfaces. Optionally,
packets can be rerouted or sampled to a “divert” interface
bundle.

Two private sets of statistics counters are assigned to
each worker thread. At any given time, each worker thread
operates on one set, while the other is being accessed by

4204

a separate statistics gathering thread, which aggregates per-
queue counters into a unified form presentable to the system
administrator or external tools. In order to always provide
fresh statistics, the aggregator thread switches between the
“hot” and shadow counter sets twice per second. Since
this is performed at a low frequency, it is feasible to do
it by asynchronously updating a shared flag signaling the
change to worker threads, with minimal penalty to the filter
performance and without losing any data. Worker threads
are only permitted read access to shared data, such as LPM
tables, which remain immutable for the filter configuration
lifetime.

When the packet filter configuration changes, a new set
of both shared and thread-local supporting data structures is
allocated and populated, and worker threads asynchronously
switch over to freshly compiled filtering functions operating
on the new state. The transition is non-blocking (i.e. no pack-
ets are lost) but is not guaranteed to be atomic, with both
old and new state being operated on concurrently as threads
switch state, until the last worker thread releases the reference
held on the old state in a RCU-like arrangement [21] [22].
Once all threads have completed the transition, the old
functions and data structures are relegated to hot-standby
state, to be either optionally reactivated on a later request
(instant revert functionality), or garbage collected when
they are no longer needed. This also permits for several
filtering configurations to be prepared upfront and being
ready for instant activation should a need arise. Rebuilding
filtering routines and all associated data structures from a
sample configuration file shown in Listing 1, which includes
parsing prefixes from the ASCII format, constructing the
LPM structures, compiling the dynamically generated code,
and linking it into the running program takes 4.25 sec-
onds on our test machine. Rebuilding a configuration that
references blacklist_3 with 1,113,393 addresses instead of
the smaller blacklist_1 takes approximately three seconds
longer.

The described scheme eliminates the need for any further
synchronization between worker threads. The price is that
functionalities that inherently require synchronized write
access to shared data cannot be easily fit into our datap-
ath without introducing an additional locking mechanism.
Expanding RFPF with precise dynamic bidirectional connec-
tion tracking or dynamic network address translation (NAT)
would require multiple (both upstream and downstream)
concurrent lookups and modifications to the flows stored in
the shared data. This cannot be done without a locking mech-
anism, which would inevitably incur a hefty performance
penalty.

For the purpose of conducting comparative tests, we have
extended our parser frontend to permit optional generation of
eBPF/XDP programs based on regular RFPF configurations,
in which case the packet datapath is established exclusively
within the kernel. However, such generated XDP datapaths
still rely on the eBPF’s built-in LPM module, which is
LC-trie based.

VOLUME 10, 2022

D. Salopek et al.: Surgical DDoS Filtering With Fast LPM

IEEE Access

include gl2_country.cfg # 338,006 nets, 252 nhops
include whitelist_3.cfg # 264,363 hosts

include blacklist_1l.cfg # 177,935 hosts

define UN_SECCNL UK, CN,US,RU,FR

direction downstream

accept src table whitelist_3 any

deny src table black_1 any

accept src table gl2_country HR

sample 0.01 src table gl2_country $UN_SECCNL

direction upstream
deny tcp src port 123-456,789 \
dst table gl2_country IT,HU

Listing 1. A sample RFPF configuration file.

IV. PERFORMANCE EVALUATION

A series of tests was conducted in a simple 8 * 10 Gbps
Ethernet testbed* to characterize the performance envelope
of our datapath under different filtering rulesets and operating
conditions. Our tests were focused on how throughput scales
when the processing load is distributed among multiple
processing cores, which we tuned during the experiments
by adjusting the number of hardware queues to which the
interface cards distribute incoming packets and by gradually
turning on 10 Gbps packet sources.

Fig. 4 shows baseline throughputs with unconditional
forwarding and dropping rulesets. The software accesses the
header of each packet to identify traffic by EtherType ID
and count IPv4 and all other protocols separately. The user
space datapath can filter out (drop) 29.8 Mpps (millions of
packets per second) and forward 28 Mpps using a single
CPU core, while the peak throughput, limited by the PCle
3.0 x8 bandwidth [23] of our NIC’s, saturates with four
cores when forwarding packets at 74 Mpps and five cores
when dropping them at 84 Mpps. The throughput with
XDP is considerably lower: 11.5 Mpps when dropping and
7.3 Mpps when forwarding with a single core, which is
consistent with other previous reports using hardware similar
to ours [6], [24], [25]. XDP dropping throughput scaled up
to 48.6 Mpps with eight cores, while forwarding saturates
at only 19.1 Mpps with five cores, after which it degrades.
The main reason for XDP’s lower forwarding throughput
is architectural: to forward a packet using XDP, one eBPF
program must be executed on the inbound interface, which
then places a packet into a software queue, from which
another eBPF program attached to the outbound interface
dequeues the packet and forwards it to the NIC’s hardware
queue. In contrast, user space datapath processes packets to

4Device under test (DUT): 3.6 GHz AMD Ryzen 7 3700X CPU, X470
type motherboard, 8 GB of DDR4 2400MHz RAM split over two memory
channels. The CPU has eight physical cores organized in two ‘“‘core
complex” blocks, each having 16 MB of private L3 cache. Simultaneous
multithreading (SMT) mode was disabled. The DUT had two quad-port Intel
X710-SR2 10 Gbps Ethernet NICs, each plugged in a x8 PCle 3.0 slot routed
directly to the CPU. Four auxiliary machines served as packet sources and
/ or sinks, each with a single dual-port Intel X520-SR2 10 Gbps NIC. The
DUT ran Ubuntu 18.04 with Linux 5.5.0-rc34 kernel. Aux. machines ran
FreeBSD 11.4-RC1.

VOLUME 10, 2022

completion, i.e., it dequeues packets from an RX queue and
moves them in a single loop directly to the TX queue of an
outbound NIC. Another factor contributing to XDP’s lower
throughput figures are the counters, which with eBPF have to
be updated via calls to helper functions that check the indices
of the counter arrays for their limits. This (an extra function
call and a conditional branch) further eats into the miniscule
timing budget available for each packet. With the user space
datapath, each worker thread can simply update its private
set of counters without constraints. Finally, the atomic unit of
work for eBPF programs is individual packets, while packets
in the RFPF’s user space datapath are delivered to filtering
functions where they are processed in batches, which also
contributes to its more efficient operation.

100 ‘ ; ;
—+— RFPF-drop

% 80 +-- RFPF-fwd 1
< 60t " —— XDP-drop 1
3 e XDP-fwd

S 40t 1
8

£ 20+ 1

0 L L L L L L L L

4 5
Number of cores

FIGURE 4. Baseline forwarding / dropping throughput.

In subsequent tests, we used only the user space (RFPF)
datapath to examine the performance envelopes of the LPM
schemes. We used a ruleset configuration derived from the
example in Listing 1, which ensured that the source address
of each packet was subjected to three LPM queries before
the packet was either dropped or forwarded. One test was
performed with fully random traffic, the other with a mixture
of 10% random traffic, 20% addresses from the whitelist, and
70% addresses from the blacklist. Using this combination of
traffic exerts the filter significantly more than random traffic.
It is used to show the performance of the filter in the event
of a DDoS attack, as this synthetic traffic can be a reasonable
substitute for real DDoS traffic.

80 T ;

~o|—— DI16X4R
= OF = PopTrie o+ 1
60[---- D20R —]
Sl o SAL PR - 1
3401 DN P o T Po S o 4
>l e o DIR-24-8
201 —e— RADIX]
'_

10 - i

T T N SN SURNC R A

Number of cores

FIGURE 5. Forwarding throughput, random traffic, small blacklist.

Fig. 5 shows the forwarding throughput for uniformly
random traffic as a function of active processing cores.
The traffic pattern is representative of flooding attacks
with successful source address spoofing. The radix tree

4205

IEEE Access

D. Salopek et al.: Surgical DDoS Filtering With Fast LPM

implementation borrowed from FreeBSD, which has a com-
plexity of O(W), where W is the width of the key (32 bits),
is shown for reference and achieves 7.9 Mpps. At 39.9 Mpps,
DIR-24-8 was the worst performer of more modern schemes
due to its large memory footprint, followed by SAIL, which
suffers from a similar property and reached 56.3 Mpps with
8 cores. PopTrie and the original version of DXR (D20R)
achieved almost identical maximum throughput (64.1 and
64.7 Mpps with), while peak throughput with the revised
DXR (D16X4R) was already saturated with six cores at
67.2 Mpps. The more compactly encoded D16X2R was
between PopTrie / D20R and D16X4R (not shown in the chart
so as not to overload it).

80 — ‘ ‘
70/ —— D16X4R |
7 --x-- D20R ;
§60r .o SAIL e—F 1
250 o DIR-24-8 e 1
240+ 1
K=
230 e
g0 ome ™ m— PopTrie]
10 & g —e— RADIX |
0 2 3 4 5 6 7 8

Number of cores

FIGURE 6. Forwarding throughput, botnet traffic, small blacklist.

Fig. 6 shows the results with the same filtering con-
figuration but subjected to synthetic traffic with source
addresses being 10% random, 20% from the whitelist, and
70% addresses from the blacklist. The goal of this test was
to simulate traffic originating from a large botnet which
transmits with legitimate source addresses. While DXR
scaled best, reaching 62.6 Mpps, the difference between the
LPM schemes was minimal, with the exception of PopTrie,
which suffered a substantial hit and achieved only 30.5 Mpps.

We repeated the same sequence of tests but with the (larger)
blacklist_3 which encompasses 1.1 million host addresses,
versus 178 thousands addresses of blacklist_1 used in the
previous tests. As mentioned earlier, neither SAIL nor DIR-
24-8 could accommodate such a table due to their structural
limitations, so benchmarks were limited to DXR variants,
PopTrie, and BSD radix tree. For test traffic with fully
randomized source addresses, D16X4R has a healthy lead
of 66 Mpps over PopTrie and D20R, which reached 58 and
59.5 Mpps, respectively, as shown in Fig. 7.

However, with the same mix of localized and random
traffic as previously used to simulate botnet traffic with
legitimate source addresses, throughput degrades for all
schemes, as shown in Fig. 8. For DXR, the performance hit
is modest (from 66 to 51.2 Mpps with D16X4R and from
59.5 to 48.1 Mpps with the older D20R), but PopTrie suffers
from a throughput degradation of approximately 65% to only
21.4 Mpps with eight cores. PopTrie’s poor performance can
be related to the explosive growth in the size of its lookup
structure, which contains numerous host addresses sparsely
placed all over the IP address space (see Table 1), which at

4206

53.62 MB are over five times the footprint of D16X4R, and
significantly exceed the size of the L3 caches (16 MB).

80

; —— D16X4R

& 0[---- D20R 1
260 = PopTrie o N
S5 RADIX TR |
b =

340 1
ey

230 1
220f |
Pyl & 1

0 2 3 4 5 6 7 8

Number of cores

FIGURE 7. Forwarding throughput, random traffic, big blacklist.

80 T T
—+— D16X4R
< O[--%-- D20R 1
260 = PopTrie B

S50 —— RADIX

3401 P |
230 |
£20F ”]

10 - T |
’ - e o o ¢ —¢ — ¢ O

Number of cores

FIGURE 8. Forwarding throughput, botnet traffic, big blacklist.

V. RELATED WORK

The concept of dynamically recompilable datapaths has been
actively explored for over two decades: a report on a JIT-
compiled BPF optimizer [8] dates back to 1999. More recent
refinements include extended BPF (eBPF) and eXpress Data
Path (XDP), which were devised with a focus on fast packet
processing while enforcing safe execution of potentially
untrusted code in the Linux kernel, thus imposing numerous
constraints on how the code may be structured in order for
the kernel-level verifier to deem it acceptable. By design,
eBPF sandboxes accessing any data structures at runtime,
so even dereferencing a simple linear table element has
to be resolved by calling a function that performs bounds
checking on caller-provided indices before returning a pointer
to the requested element, thus generating an extra data
flow dependency per memory access. Reference [7] reported
24 Mpps baseline packet dropping throughput on a single
core, more than double what we achieved with XDP (Fig. 4),
using a program that blindly dropped all packets without ever
accessing their headers and without updating any counters.
The same paper reported a single-core forwarding throughput
of about 8.5 Mpps with XDP, while we observed 7.3 Mpps,
which is closer to other recent XDP reports such as [6], which
range from about 2.2 to 6.6 Mpps.

Mostly focused on end host protection, handling DDoS is
the main motivation for many XDP-based proposals. Early
reports such as [26] and [27] lack performance evaluation.
Reference [24] explores the tradeoff between hardware and

VOLUME 10, 2022

D. Salopek et al.: Surgical DDoS Filtering With Fast LPM

IEEE Access

software for end host protection. Their hybrid solution,
hardware-assisted preprocessing on a SmartNIC with XDP
running in software, allows traffic to be dropped at rates
of about 14 to 35 Mpps for 1000 malicious IP addresses
using 4 CPU cores. Similarly, [25] advocate eBPF/XDP for
end host DDoS protection in combination with a SmartNIC
that offloads some processing, reporting packet dropping
rates of up to 14.88 Mpps, but lack a performance evaluation
for a middlebox-type firewall use case. To take advantage
of the NIC offloading, the workload has to be carefully
partitioned between the (constrained) NIC hardware and the
(more flexible) eBPF software, also noticed by [28], which
may indeed work well for simple rulesets with smaller sets of
target IP addresses / nets.

A common denominator among most of the packet filtering
proposals encountered (XDP-based and others) was that they
tended to overlook the potential of leveraging large LPM
datasets for devising new DDoS scrubbing strategies. Most
user space datapaths that require LPM (e.g., [3]) resort to
the DPDK’s built-in DIR-24-8 implementation. Reference [7]
exercised a single LPM database with 752,138 distinct routes
with only 4,000 random IPv4 addresses and observed a
single-core throughput of 3.4 Mpps with XDP, which is
barely sufficient for forwarding regular traffic at 10 Gbps and
significantly less than RFPF with multiple LPM datasets and
streams of fully randomized IPv4 addresses. As a notable
exception, [29] proposes an approach to DDoS dampening
similar to ours: a user space datapath that relies on DPDK
for packet I/O and a large LPM dataset for DIR-24-8 [9]
based blacklisting. Using a proper testing methodology with
randomized traffic and with a single LPM dataset instance,
they report forwarding throughput of about 7 Mpps on one
CPU core, which is slightly lower compared to our results
when evaluating RFPF with DIR-24-8, but again inferior to
DXR-based LPM. However, their report does not include
any general-purpose firewalling features, nor does it discuss
the multi-LPM dataset or multi-core scaling architecture /
strategy.

Reference [30] is a kernel-level routing datapath, reaching
forwarding throughput of 28.2 Gbps with 64-byte packets
(cca. 42 Mpps) on an octa-core Xeon E5 machine and a
forwarding table with approximately 280k IPv4 prefixes.
However, their performance evaluation only shows results for
IPv4 forwarding without any firewall rules.

A more generalized development for defining packet
datapaths, compilable for both hardware and software,
is P4 [31], a datapath description language. It can be used
to construct software firewalls such as [32], which still fall
short of demonstrating throughput levels required for facing
real-world DDoS scenarios.

VI. CONCLUSION

The spectrum of contemporary DDoS firefighting prac-
tices spans from declaring defeat and blackholing victims’
addresses via BGP in order to reduce disruptions to other
parts of the datacenter infrastructure, to filtering in end hosts

VOLUME 10, 2022

before packets enter the network stack, which is where much
of the current XDP-based development is taking place. With
this paper we wanted to bring the center of this spectrum
back into focus, i.e., scrubbing malicious traffic floods using
middleboxes, before packets hit end hosts.

We introduced a filtering datapath specialized for for-
warding speed and fast LPM: on a consumer-grade 8-core
machine, we have demonstrated forwarding traffic at rates
exceeding 60 Mpps (i.e., 40 Gbps line rate with 64-byte
packets) while subjecting all packets to a series of LPM
queries in databases, each encompassing several hundred
thousand network prefixes or host addresses. Our experimen-
tal evaluation has shown that the choice of LPM scheme
makes or breaks the performance of such a filtering datapath,
and that some popular LPM schemes may be ill-suited for
blacklisting applications with large address datasets due to
their inherent structural limitations (insufficient memory for
next hop labeling or for more specific prefixes, resulting in
inability to load larger datasets). We have shown that even
ostensibly minor and simple tweaks to LPM data structures
and lookup algorithms may yield real-world throughput gains
approaching 10 Mpps, i.e., nearly 20% of the total forwarding
capacity of our test system.

REFERENCES

[1] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks,” IEEE
Commun. Surveys Tuts., vol. 15, no. 4, pp. 2046-2069, 4th Quart., 2013.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69-74, 2008.

[3] L. Molnér, G. Pongricz, G. Enyedi, Z. L. Kis, L. Csikor, F. Juhdsz,

A. K6r6si, and G. Rétvari, ““Dataplane specialization for high-performance

OpenFlow software switching,” in Proc. ACM SIGCOMM, Aug. 2016,

pp. 539-552.

Intel Data Plane Development Kit (Intel DPDK). Accessed: Dec. 29, 2021.

[Online]. Available: http://dpdk.org/doc/guides/prog_guide

[5] L. Rizzo, “Revisiting network I/O APIs: The netmap framework,”

Commun. ACM, vol. 55, no. 3, pp. 45-51, 2012.

S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal, *“Creating

complex network services with eBPF: Experience and lessons learned,” in

Proc. IEEE Int. Conf. High Perform. Switching Routing (HPSR), Jun. 2018,

pp. 1-8.

T. Hgiland-Jgrgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert,

D. Ahern, and D. Miller, “The eXpress data path: Fast programmable

packet processing in the operating system kernel,” in Proc. ACM Int. Conf.

Emerg. Netw. Exp. Tech. (CoNEXT), 2018, pp. 54-66.

A.Begel, S. McCanne, and S. L. Graham, “BPF+: Exploiting global data-

flow optimization in a generalized packet filter architecture,” in Proc. ACM

SIGCOMM, 1999, pp. 123-134.

P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at

memory access speeds,” in Proc. IEEE INFOCOM, Mar./Apr. 1998,

pp. 1240-1247.

[10] Y. Ohara and Y. Yamagishi, “Kamuee Zero: The design and implementa-
tion of route table for high-performance software router,” in Proc. Internet
Conf., 2016, pp. 1-10.

[11] H. Asai and Y. Ohara, “Poptrie: A compressed trie with population count
for fast and scalable software IP routing table lookup,” ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 57-70, Aug. 2015.

[12] M. Antonakakis et al., “‘Understanding the Mirai botnet,” in Proc. 26th
USENIX Sec. Symp., 2017, pp. 1093-1110.

[13] I. Marinos, R. N. M. Watson, and M. Handley, *“Network stack specializa-
tion for performance,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 175-186, Feb. 2015.

[4

=

[6

—

[7

—

[8

—

[9

—

4207

IEEE Access

D. Salopek et al.: Surgical DDoS Filtering With Fast LPM

[14] T. Yang, G. Xie, A. X. Liu, Q. Fu, Y. Li, X. Li, and L. Mathy, “Constant
IP lookup with FIB explosion,” IEEE/ACM Trans. Netw., vol. 26, no. 4,
pp. 1821-1836, Aug. 2018.

[15] M. Zec, L. Rizzo, and M. Mikuc, “DXR: Towards a billion routing lookups
per second in software,” ACM SIGCOMM Comput. Commun. Rev., vol. 42,
no. 5, pp. 29-36, Sep. 2012.

[16] M. Zec and M. Mikuc, “‘Pushing the envelope: Beyond two billion IP
routing lookups per second on commodity CPUs,” in Proc. 25th Int. Conf.
Softw., Telecommun. Comput. Netw. (SoftCOM), Sep. 2017, pp. 1-6.

[17] G. Rétvari, J. Tapolcai, A. Kérosi, A. Majdan, and Z. Heszberger, “Com-
pressing IP forwarding tables: Towards entropy bounds and beyond,”
IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 149-162, Feb. 2016.

[18] M. Zec, “Improving performance in software internet routers through
compact lookup structures and efficient datapaths,” Ph.D. dissertation,
Fac. Electr. Eng. Comput., Univ. Zagreb, Zagreb, Croatia, 2019.

[19] K. Sklower, “A tree-based packet routing table for Berkeley UNIX.” in
Proc. USENIX Winter Conf., 1991, pp. 93—104.

[20] V. Giotsas, G. Smaragdakis, C. Dietzel, P. Richter, A. Feldmann, and
A. Berger, “Inferring BGP blackholing activity in the internet,” in Proc.
Internet Meas. Conf. (IMC), Nov. 2017, pp. 1-14.

[21] H.T. Kung and P. L. Lehman, “Concurrent manipulation of binary search
trees,” ACM Trans. Database Syst., vol. 5, no. 3, pp. 354-382, Sep. 1980.

[22] P. E. McKenney, “Exploiting deferred destruction: An analysis of read-
copy-update techniques in operating system kernels,” Ph.D. dissertation,
OGI School Sci. Eng., Oregon Health Sci. Univ., Portland, OR, USA, 2004.

[23] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. Lépez-Buedo,
and A. W. Moore, “Understanding PCle performance for end host
networking,” in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 327-341.

[24] S. Miano, R. Doriguzzi-Corin, F. Risso, D. Siracusa, and R. Sommese,
“Introducing SmartNICs in server-based data plane processing: The DDoS
mitigation use case,” IEEE Access, vol. 7, pp. 107161-107170, 2019.

[25] O. Hohlfeld, J. Krude, J. H. Reelfs, J. Riith, and K. Wehrle, “Demystifying
the performance of XDP BPE,” in Proc. IEEE Conf. Netw. Softw. (NetSoft),
Jun. 2019, pp. 208-212.

[26] G. Bertin, “XDP in practice: Integrating XDP into our DDoS mitigation
pipeline,” in Proc. Tech. Conf. Linux Netw., Netdev, vol. 2, 2017, pp. 1-5.

[27] A.Deepak, R. Huang, and P. Mehra, “eBPF/XDP based firewall and packet
filtering,” in Proc. Linux Plumbers Conf., 2018, pp. 1-5.

[28] J. Kicinski and N. Viljoen, “‘eBPF hardware offload to SmartNICs: cls_bpf
and XDP,” in Proc. Tech. Conf. Linux Netw., Netdev, vol. 1, 2016, pp. 1-6.

[29] E. Kirdan, D. Raumer, P. Emmerich, and G. Carle, “Building a traffic
policer for DDoS mitigation on top of commodity hardware,” in Proc. Int.
Symp. Netw., Comput. Commun. (ISNCC), Jun. 2018, pp. 1-5.

[30] C.-H. Hong, K. Lee, J. Hwang, H. Park, and C. Yoo, “Kafe: Can OS
kernels forward packets fast enough for software routers?” IEEE/ACM
Trans. Netw., vol. 26, no. 6, pp. 2734-2747, Dec. 2018.

[31] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming protocol-independent packet processors,” ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95, Jul. 2014.

[32] R. Datta, S. Choi, A. Chowdhary, and Y. Park, “P4Guard: Designing P4
based firewall,” in Proc. IEEE Mil. Commun. Conf. (MILCOM), Oct. 2018,

pp. 1-6.

DENIS SALOPEK (Student Member, IEEE)
received the B.Sc. and M.Sc. degrees in computer
science from the Faculty of Electrical Computing
and Engineering, University of Zagreb, Zagreb,
Croatia, in 2011 and 2013, respectively, where he
is currently pursuing the Ph.D. degree in electrical
engineering and computing.

From 2013 to 2016, he worked as a Research
Assistant on a project called E-IMUNES, in col-
laboration with Ericsson Nikola Tesla and since
then he has been working as a Teaching Assistant at the Faculty of Electrical
Computing and Engineering. He also participates in the project “Smart
human-centric services in interoperable and decentralised IoT environ-
ments” (IoT4us). His research interests include high-speed networking,
FPGA, virtualization, and kernel programming. He is currently the Lead
Developer of IMUNES, and has contributed to the Linux and FreeBSD
kernels.

4208

MARKO ZEC received the B.Sc. degree in electri-
cal engineering and the Ph.D. degree in computer
science from the University of Zagreb, in 1997 and
2019, respectively.

After working as a Systems and Network
Administrator, a Designer, and a Consultant at
IBM, AT&T, and several local system integration
companies. In 2005, he joined the Faculty of
Electrical Engineering and Computing (FER),
University of Zagreb, where he currently holds the
position of an Associate Researcher. His research interests include computer
networks, operating systems, and programmable logic. His pioneering work
from 2002 at virtualizing networking state in a general-purpose operating
system was later merged into the mainline FreeBSD kernel, in 2008, while
the concept was later independently embraced by Linux and Solaris as well.
At that time novel, the network stack virtualization technology became the
foundation for a popular network emulation tool called IMUNES, which he
developed together with Prof. Mikuc.

MILJENKO MIKUC (Member, IEEE) received the
Ph.D. degree in electrical engineering from the
University of Zagreb, Croatia, in 1997.

He is currently an Associate Professor at the
Department of Telecommunications, Faculty of
Electrical Engineering and Computing, University
of Zagreb. His research interests include digital
logic design, network protocols, network simula-
tion, and security.

VALTER VASIC received the M.Sc. degree in
information and communication technology from
the University of Zagreb, in 2010, and the Ph.D.
degree in computer science from the Faculty of
Electrical Engineering and Computing, Univer-
sity of Zagreb, in 2016. His Ph.D. thesis was
“Secure layer-agnostic agreement protocol for
cryptographically agile communication.”

‘ y He was an Associate Researcher at the Faculty

b of Electrical Engineering and Computing, Univer-
sity of Zagreb, where he has published more than ten articles in journals and
conference proceedings. He continued his career as a Software Developer at
Ericsson and is now working as a Security Researcher in a computer security
incident response and prevention team at Information Systems Security
Bureau. His research interests include network communication, information
security, network traffic analysis, and virtualization.

VOLUME 10, 2022

