
Received November 29, 2021, accepted December 25, 2021, date of publication January 5, 2022, date of current version January 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3140446

Optimizing Implementations of Non-Profiled
Deep Learning-Based Side-Channel Attacks
DONGGEUN KWON 1, SEOKHIE HONG 1, (Member, IEEE), AND HEESEOK KIM 2
1Institute of Cyber Security and Privacy (ICSP), Korea University, Seoul 02841, Republic of Korea
2Department of Cyber Security, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea

Corresponding author: Heeseok Kim (80khs@korea.ac.kr)

This work was supported in part by the Military Crypto Research Center throughthe Defense Acquisition Program Administration (DAPA)
and the Agency for Defense Development (ADD) under Grant UD210027XD.

ABSTRACT The differential deep learning analysis proposed by Timon is the first non-profiled side-channel
attack technique that uses deep learning. The technique recovers the secret key using the phenomenon
of deep learning metrics. However, the proposed technique made it difficult to observe the results from
the intermediate process, while the neural network had to be retrained repeatedly, as the cost of learning
increased with key size. In this paper, we propose three methods to solve the aforementioned problems and
any challenges resulting from solving these problems. First, we propose a modified algorithm that allows
the monitoring of the metrics in the intermediate process. Second, we propose a parallel neural network
architecture and algorithm that works by training a single network, with no need to re-train the same model
repeatedly. Attacks were performed faster with the proposed algorithm than with the previous algorithm.
Finally, we propose a novel architecture that uses shared layers to solve memory problems in parallel
architecture and also helps achieve better performance. We validated the performance of our methods by
presenting the results of non-profiled attacks on the benchmark database ASCAD and for a custom dataset
on power consumption collected from ChipWhisperer-Lite. On the ASCAD database, our shared layers
method was up to 134 times more efficient than the previous method.

INDEX TERMS Side-channel attacks, deep learning, non-profiled attack, differential deep learning analysis,
efficient implementations.

I. INTRODUCTION
As attackers can access physical equipment, they require
cryptographic algorithms embedded in the equipment for
security against not only mathematical cryptanalysis but also
against physical attacks. A side-channel attack is a physical
attack that breaks a security system using side-channel infor-
mation gained from cryptographic devices, such as operation
time, sound, temperature, power consumption, or electro-
magnetic radiation. Cases of successful attacks through
side-channel attacks on actual devices, such as mobile phones
and transit cards, are rising [1], [2].

Side-channel attacks can be categorized into profiled and
non-profiled attacks, depending on an attacker’s environ-
ment. A profiled attack is an example of a side-channel attack,
performed using a profiling device, which is the same (but
not equal to) as the attack target device with a fixed secret

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

key, such as Template Attack [3] and Stochastic Attack [4].
Attackers use profiling devices to characterize the leakage of
the target device and then use the information collected to
analyze the target device. Conversely, a non-profiled attack
is part of a side-channel attack in an environment without
profiling devices. Attackers collect side-channel information
only from a target device and analyze secret keys using
statistical techniques with the measurements captured from
the target. These attacks involve recovering the secret key
using only the side-channel information collected from the
target devices without pre-calculated templates. Non-profiled
attacks include Differential Power Analysis (DPA) [5] and
Correlation Power Analysis (CPA) [6].

Recently, research on side-channel attacks combined with
deep learning, which demonstrated high performance in
various fields, has been introduced [7]–[9]. Most studies
have focused on profiling attack scenarios. Similar to con-
ventional profiling attacks, an attacker trains a neural net-
work using side-channel information acquired through a

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 5957

https://orcid.org/0000-0002-5269-7634
https://orcid.org/0000-0001-7506-4023
https://orcid.org/0000-0001-8137-4810
https://orcid.org/0000-0002-7542-4356


D. Kwon et al.: Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks

profiling device. Next, the secret key is recovered by clas-
sifying the side-channel information gained from the target
device using a trained neural network. Studies have shown
that masking and hiding countermeasures can be exploited
without preprocessing when the attacker uses deep learning-
based side-channel attacks [10]–[12]. However, profiled deep
learning-based side-channel attacks have a limitation because
it is necessary to know the correct label for the training data
to train the neural network. Therefore, this approach has been
restricted to research into profiling attacks where training
data and labels can be obtained.

With a focus on research in the profiling environment,
Timon proposed a side-channel analysis using deep learning
in a non-profiling context, called differential deep learning
analysis [13]. Timon’s method uses the metrics of deep
learning as a distinguisher instead of conventional metrics,
such as the correlation between side-channel information and
intermediate values, such as the estimated power consump-
tion or electromagnetic radiation. The attacker uses deep
learning metrics, such as loss, accuracy, and gradient, as the
distinguisher. The method takes advantage of the fact that
an intermediate value calculated with the right key is faster
to train than a value calculated with wrong keys, and the
various training metrics can distinguish this. To the best of
our knowledge, Timon’s work is the first to demonstrate that
deep learning can be applied in non-profiling attacks.

However, performing differential deep learning analysis
requires training the same neural network the same number of
times as the number of key guesses k . For example, if a single
network needs to be trained for e epochs, then the total train-
ing time is k×e epochs. This total number of epochs required
is relatively expensive compared to profiled deep learning
attacks. In addition, the cost of I/O operations is not included
in the algorithm and cannot be ignored because the adversary
needs to initialize k identical neural network parameters to
the same value. Still, determining the total number of epochs
needed to distinguish the right key before an attack is an
enormous challenge. In order to monitor the metrics in every
epoch, the computational cost, including I/O operations, must
increase. More complex neural networks may be needed to
succeed in a non-profiled deep learning attack, compared to
a profiled attack. Thus, higher time complexity is required.
This implies that the cost of performing differential deep
learning analysis is prohibitive.

Differential deep learning analysis is different from con-
ventional non-profiled side-channel attacks such as CPA or
DPA, which can obtain fixed results with a single execution.
Because random factors such as initial weights and hyper-
parameters affect deep learning network training, analysis
results must be obtained through several repetitions and then
analyzed. For example, the correlation coefficient between
the measurements and hypothetical intermediate values was
fixed unless the data changed. However, even if the train-
ing data and their labels are the same, the training results
vary from performance to performance owing to random
factors, such as hyperparameters and weighted initial values.

In addition, it is difficult to set hyperparameters in
non-profiling environments where the attacker cannot obtain
the correct labels. Therefore, it is important to reduce the
attack time to obtain results for more hyperparameters or to
reduce probabilistic factors through repetition attacks. There-
fore, unlike in conventional attacks, the faster the attack, the
better the results.

According to the previous algorithm, if the attacker per-
forms differential deep learning analysis, the attacker will
set up an initial epoch and then perform an attack. However,
a non-profiled deep learning attack can fail at the initial set
value. If more training is needed, the attacker must start the
training from the beginning. When the attacker modifies the
algorithm and stored each model, they can load the stored
training parameters and perform the attack again using these
parameters; however, in this case the added cost of storing
models as many as the number of key guesses must be con-
sidered. Therefore, the attacker needs tomonitor the results of
each epoch to decide when the attack stops learning. It makes
that the attack can be trained at less than the value set up at the
beginning. This called an early stopping. Early stopping [14],
which is widely used in deep learning, is clearly necessary
and has been applied in profiled deep learning side-channel
attacks [12], [15], [16]. Non-profiled attacks are no excep-
tion. Prior research recognized these problems and suggested
reducing complexity by monitoring, but failed to suggest a
practical method to achieve this. In this paper, we propose
novel methods that can monitor training metrics that reflect
the intermediate training process and help perform faster than
the previous approach.

A. OUR CONTRIBUTIONS
The contributions of this paper can be summarized as follows.

1) Modifying a Timon’s algorithm to apply an early stop-
ping technique that can prevent overfitting
In Timon’s algorithm [13], an attacker cannot observe
metrics, such as accuracy, loss, and gradient in the inter-
mediate process of training. Therefore, it is difficult
for the attacker to set an epoch and check the result or
terminate it in advance; instead, they must wait for all
the training to be performed. In this paper, we modify
the algorithm to allow an attacker to monitor every
epoch. Owing to this modification, the attackers can
apply the early stopping technique, which is used to
reduce overfitting and time complexity. Furthermore,
we show the problems that arise when the algorithm is
changed, and propose new neural network architectures
to solve these problems.

2) Introducing a novel neural network architecture in par-
allel to improve speed
The previous method had to set the neural network so
that it corresponded to each key guess and trained the
weights of each network separately. For example, when
attacking the first subkey byte in the first AES round,
the attacker has to train 256 neural networks, while
the size of the key is guessed. Because the number of

5958 VOLUME 10, 2022



D. Kwon et al.: Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks

backpropagations required for a single neural network
is (number of epochs) × (training set size) / (batch
size), the number of backpropagations for an attack is
256× (number of epochs)× (training set size) / (batch
size). When the size of the key being guessed is k ,
the total number of backpropagations is k × (number
of epochs) × (training set size) / (batch size). In this
paper, we propose a parallel strategy to reduce the
time complexity of differential deep learning analysis.
Our method performed training separately for each key
estimated, while we integrated it into a single network.

3) Proposing a novel method with shared layers to reduce
memory and time costs
When an attacker designs the algorithm, they can
observe the intermediate training process, and this
reduces speed. When an attacker uses a parallel archi-
tecture, the disadvantage is that thememory complexity
increases because many weights are stored in memory
at once. In this paper, we propose a new methodology
that uses shared layers to reduce both memory and
time complexity. In the parallel method, several train-
ing parameters are required because all the networks,
according to all the key guesses, are independently
composed. However, if the networks share layers or
neurons, memory usage can be reduced. Our shared
layers encode the data and decrease the number of
weights for the networks by reducing the data dimen-
sions during the encoding process, reducing memory
complexity.

4) Implementing the proposed methods as well as veri-
fying and comparing these methods with the previous
method
We propose three methods to improve on the previous
differential deep learning analysis. We expected our
methods to recover the secret key and reduce time
and memory usage costs, except in the method that
was modified to use only early stopping techniques.
To verify the strategies and compare them with the
previous attack, we implemented the parallel method
and shared layers method. Through implementation,
we showed that the proposed methods can successfully
perform side-channel attacks, similar to the conven-
tional method. In our experiments, all the proposed
methodswere faster than Timon’swork. In addition, the
method with shared layers has less memory usage than
the previous method. According to our experiments on
the ASCAD database, an attack using the shared layers
technique is 134 times faster than the execution time
of a conventional attack with a similar memory usage
level.

B. ORGANIZATION
We organised this paper as follows. Section II describes
conventional side-channel attacks with deep learning and is
most related to this study’s work, differential deep learning
analysis. In Section III, we present the proposed method

using novel neural network architectures. Then, we verify this
proposed method with previous work in Section IV. Finally,
Section V includes concluding remarks and a discussion of
future work.

II. PRELIMINARIES
In this section, we briefly review a previous attack, differ-
ential deep learning analysis, which is most closely related to
ourwork. For a general introduction to deep learning, we refer
interested readers to [17].

A. DEEP LEARNING-BASED PROFILED
SIDE-CHANNEL ATTACKS
Deep learning has attracted much attention recently owing
to developments in hardware and improvements in learning
algorithms that have resulted in significantly improved results
in various fields, such as computer vision, natural language
processing, and speech recognition. Recently, deep learning
has been actively studied in the field of side-channel analysis,
and has been used as a classifier to classify side-channel mea-
surements [18]–[21]. Research on classifying measurements
using deep learning was conducted primarily in a profiling
environment in which an attacker uses a profiling device.
The attacker characterizes the leakage of the profiling device
and then analyzes the measurements collected from a target
device using the characterized information.

Maghrebi’s research results show that deep learning-based
profiling attacks can be analyzed regardless of whether
masking response techniques are applied [11]. Results by
Cagli et al. show that if an attacker uses convolutional neural
networks, it is possible to recover the secret key through
deep learning-based side-channel attacks without performing
preprocessing steps such as alignment [12]. Open datasets
are provided to compare and benchmark the analysis perfor-
mance based on deep learning [22]. Recently, not only on
block ciphers, but also deep learning based attack have been
performed on public-key cryptosystems [23], [24].

B. DEEP LEARNING-BASED NON-PROFILED
SIDE-CHANNEL ATTACK; DIFFERENTIAL
DEEP LEARNING ANALYSIS
Differential deep learning analysis (DDLA) is the first
type of deep learning-based side-channel analysis in use in
non-profiled scenarios, where the attacker cannot obtain a
template device [13]. Without a template device, it is not
possible to obtain the label for side-channel measurements,
so it becomes difficult to apply the profiling side-channel
attacks based on deep learning, as described in the previous
subsection. However, DDLA overcomes these limitations by
providing a methodology for guessing labels. In a correlation
power analysis, which is a type of conventional side-channel
analysis, intermediate values guessed with the right key are
most correlated with measurements. Similarly, in deep learn-
ing analysis, a neural network trained with the correct label
performs better than the other neural networks trained with
incorrect labels. Various metrics describe the performance

VOLUME 10, 2022 5959



D. Kwon et al.: Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks

of deep learning, but in DDLA, these metrics are used as a
distinguisher. The attacker can distinguish the right key from
the wrong key using this type of distinguisher. Algorithm 1 is
the algorithm for the DDLA in AES implementation.

Algorithm1Differential Deep LearningAnalysis [13] (Case:
AES)

Input:N traces (ti)0≤i<N with corresponding plaintexts pi.
A neural network Net, number of epochs ne, and substitution
box Sbox(·).

Output:Metrics of trainingM .
1: Set training data as X = (ti)0≤i<N
2: for k = 0 to 255 do
3: Re-initialize trainable parameters of Net
4: Compute the series of hypothetical values

(Hi,k )0≤i<N = Sbox(pi ⊕ k)
5: Set training labels as Yk = (Hi,k )0≤i<N
6: // Perform Deep Learning training: DLk =

DL(Net,X ,Yk , ne)
7: for e = 1 to ne do
8: Perform Deep Learning training: DLk =

DL(Net,X ,Yk , 1)
9: end for
10: Calculate DLk metrics mk
11: end for
12: return Metrics M = (m0,m1, . . . ,m255)

The execution procedure of the algorithm is as follows.
First, the attacker sets the collected traces as the training
data X . Next, the following steps were repeated according to
each key guess. First, initialize or re-initialize the trainable
parameters of the neural networkNet , such as the weights and
biases. Second, we estimate the intermediate values through
the guessed secret key value k and calculate the hypothetical
values Hi using the hypothetical intermediate values and
power consumption model. Third, we set the hypothetical
power consumption value calculated above as the label Yk of
the training data according to the guessed key. Finally, we use
the training data X and label Yk to train Net for as many
epochs as ne. If the attacker has completed the deep learning
training DL for all key guesses, the attacker can recover the
right key, which leads to the best DL metrics M . Figure 1
shows the results of the training metrics, such as accuracy
and loss, for the key guess. The loss and accuracy of training
with the correct label differed significantly.

In the first method, sensitivity analysis based on multilayer
perceptron (MLP) first layer weights uses the weights of the
first hidden layer of the MLP, which is the same as the corre-
sponding name. The first hidden layer has parameters, called
weights, that are connected to the input and hidden layers.
The neural network updates the weights of the hidden layer to
minimize loss through learning. In this process, the updating
increases the absolute value of the weights connected to the
feature points of the input to transfer the features of the input
to the next hidden layer. Therefore, when learning through a

FIGURE 1. Examples of DDLA results: (a) accuracy and (b) loss.

label generated with the correct key, the weights connected
to the feature point of the input have significant values and
are updated considerably. This implies that the gradient of
the weights was large. However, when learning with labels
generated through the wrong key, the neural network cannot
find the feature points that distinguish the label groups or
the wrong feature points, so the weights connected to the
feature point of the input are only updated slightly. Given
these results, the attacker can recover the secret key using
the gradient of the weight of the first hidden layer as the
distinguisher. The attacker calculates Sweights according to
each key guess, and the Sweights with the maximum value can
be recovered for the secret key.

∇Wi,j =
∂L

∂Wi,j

Sweights[i] =
∑
j=1

∣∣OWi,j
∣∣

The secondmethod is sensitivity analysis based on network
inputs, which uses a backpropagation value, the gradient that
updates the weight of the neural network. When attackers
used a convolutional neural network to attack an implemen-
tation with hiding countermeasures, the first method became
difficult to apply because there is no weight matched with
the input dimensions one-to-one in the convolutional neural

5960 VOLUME 10, 2022



D. Kwon et al.: Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks

network, making it dissimilar to MLP. Therefore, when an
attacker uses CNN, the input-based sensitivity analysis tech-
nique should be applied. As in the first method, an input-
based technique can also be applied by calculating the Sinputs
according to the key guess, and the Sinputs with the maximum
value can be recovered for the secret key.

S1inputs[j] =
N∑
i=1

∣∣OTi,j∣∣
S2inputs[j] =

N∑
i=1

(OTi,j × Ti,j)

In DDLA, loss and accuracy are primarily used as the
metrics M to recover the secret key. Training with the cor-
rect labels tends to reduce loss and increase accuracy when
learning is performed. However, when training with labels
generated by wrong keys, the metrics do not change much
or get worse, so the previous mentioned phenomenon is not
observed. Therefore, the wrong key model is distinguishable
from the right key model. Figure 1 shows the results for loss
and accuracy for each key guess. In this paper, we used the
most common metric, accuracy.

III. PROPOSED METHODS
In this section, we propose several methods to overcome the
limitations of the previous DDLA proposed in Timon’s work.
First, we introduce a modified algorithm such that the metrics
in the intermediate process can be monitored by the DDLA
algorithm aswell as the problems associatedwith this change.
Second, we propose a parallel method to solve the problem of
time complexity. We confirmed that the networks, according
to each key guess, are independent of each other, and thus we
know that each network can be used in parallel. Therefore,
we propose a novel algorithm that can be performed in par-
allel by changing the neural network architecture: networks
in network. Finally, we propose shared layers that solve the
speed and memory problems. Our method using this parallel
technique is fast, but the memory complexity is increased
because the networks have to be stored in memory at the
same time. We know all the networks used in the parallel
method are the same network and solve the memory problem
by sharing the hidden layer connected to the input layer.

A. MODIFIED DIFFERENTIAL DEEP LEARNING ANALYSIS
FOR MONITORING METRICS
In Algorithm 1, the process of training Net is repeated with
the labels according to each key guess. When the network
is trained with the label computed by the guessed key k , the
results or metrics for the other key (larger than k) cannot be
checked until all the epochs the attacker selected have been
performed. In other words, even if k has the best result among
the metrics results from 0 to k , the attacker cannot stop the
attack because the result of a value higher than k is unknown.
Therefore, in order to monitor the results of all key guesses
in the intermediate training process, key guesses should be

the inner loop, and the epoch should be the outer loop. When
modifying the algorithm, it is not reasonable to create a label
for each epoch. Thus, it is efficient to calculate and store
labels for all key guesses in advance. At this time, additional
memory space is required to store the all key guessed labels.

When training for the ne epochs, where the attacker presets
for all key guesses, it is not guaranteed that the key can be
selected at all times from the metrics M obtained through
the attack. There are several reasons this might happen, but
among them, if the number of training epochs is insufficient
and then the attacker fails, the attacker must select a higher
value n′e than the previous number of epochs ne and perform
the algorithm again. In order to solve the failure problem,
the trained networks for all key guesses should be stored,
and the attacker must reload the networks when they fail to
recover the key and perform additional training. At this time,
the operation and memory resources for storing the trained
networks are required. Algorithm 2 depicts a modifiedDDLA
for observing metrics on a per-epoch basis.

Algorithm 2 Modified Differential Deep Learning Analysis
for Early Stopping (Case: AES)

Input: N traces (ti)0≤i<N with corresponding plaintexts
pi. A neural network Net, number of epochs ne, substitution
box Sbox(·), and early stop function ES(·).

Output:Metrics of trainingM .
1: Set training data as X = (ti)0≤i<N
2: for k = 0 to 255 do
3: Compute the series of hypothetical values

(Hi,k )0≤i<N = Sbox(pi ⊕ k)
4: Set training labels as Yk = (Hi,k )0≤i<N
5: end for
6: Initialize trainable parameters of (Netk )0≤i≤255
7: for e = 1 to ne do
8: for k = 0 to 255 do
9: Load trainable parameters of Netk .
10: Perform Deep Learning training: DLk =

DL(Netk ,X ,Yk , 1)
11: Calculate DLk metrics mk,e
12: Save trainable parameters of Netk
13: end for
14: // Early stopping technique or monitoring
15: if ES(M = (m0,m1, . . . ,m255)) is true then
16: Break
17: end if
18: end for
19: return Metrics M

Algorithm 2 is a modified differential deep learning analy-
sis that solves the problems of monitoring. Because the order
for training and setting the labels is changed, it is possible
to attack using the same network as the network used in
Timon’s algorithm. The label-setting process performed for
each key guess was pulled out with a separate loop. The key
guessing loop and the epoch loop are changed, and the loop

VOLUME 10, 2022 5961



D. Kwon et al.: Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks

FIGURE 2. Proposed neural network architecture with parallel
methodology.

change allows the network for each key guess to be stored.
In addition, we added lines 15 to 17 to the algorithm to check
whether the early stop condition is satisfied for each epoch
with the metricsM so that the attacker can stop training early.
With early stopping, if the attack is successful, the process is
terminated earlier than expected to prevent overfitting, where
the network memorizes the training data instead of learning
the features of the data. Even in the case where the attack fails,
it determines whether the proper hyperparameter is chosen
early, so the algorithm can be stopped in the middle of the
key recovery attack, and it reduces the unnecessary cost.
However, additional storage is required for this modification.

B. PARALLEL METHODOLOGY FOR DIFFERENTIAL DEEP
LEARNING ANALYSIS
In this subsection, we propose a new algorithm and a novel
neural network architecture that can improve the performance
of DDLA. Using the networks in network methodology,
we design the architecture to work in parallel and replace
the previous algorithm so that attacks can be performed by
training only a single network. In this paper, a small network
within a neural network, denoted Neti, is called the base
architecture for key i. The base architecture is the neural net-
work used in the previous work. The proposed neural network
architecture replicates the base architecture for the number of
key guesses, sharing only the input layer and output layer.
In addition, our architecture is locally-connected such that
the other parameters are not connected. The proposed neural
network architecture is illustrated in Figure 2.

In Timon’s training parameters, MSB (most significant bit)
or LSB (least significant bit) labeling was used, and we used
the same labeling method. They used the dense output layer
of two cells with the softmax function for one-hot encoding.
If the output of the first cell is higher than the second, the
MSB or LSB is predicted to be 0. If not, it is determined
to be 1. However, we use the dense output layer of single
cell with the sigmoid function for multi-hot encoding. If the

output of the single cell is lower than 0.5, the bit is predicted
to be 0. If not, it is determined to be 1. This technique
reduces the dimensions of the output layer and cost because
performing one-hot encoding is unnecessary and only MSB
or LSB is used. Thus, the base architecture is the same as the
hyperparameter used in Timon’s paper, except for the output
layer. Each output cell represents the predicted value for each
key guess, as shown in Figure 2. Therefore, category loss
functions are not available, and binary cross-entropy or the
sum of squared functions should be used as loss functions.
Table 1 compares the network used in Timon’s work and the
proposed network.

When using the proposed architecture, non-profiling
attacks should be performed using Algorithm 3, not
Algorithm 1 or 2. The main difference between the other
algorithms and Algorithm 3 is that Algorithm 3 trains a
single neural network, not several networks. Up to line 6, the
label setting and initialization of the training parameters are
performed, similar to Algorithm 2. After line 6, the algorithm
trains the network, which can be seen in many other deep
learning algorithms.

Algorithm 3 Improved Differential Deep Learning Analysis
(Case: AES)

Input:N traces (ti)0≤i<N with corresponding plaintexts pi.
A neural networkNet, number of epochs ne, AES substitution
box Sbox(·), and early stop function ES(·).

Output:Metrics of trainingM .
1: Set training data as X = (ti)0≤i<N
2: for k = 0 to 255 do
3: Compute the series of hypothetical values

(Hi,k )0≤i<N = Sbox(pi ⊕ k)
4: end for
5: Set training labels as Y = (Hi,k )(0≤i<N ),(0≤k<256)
6: Initialize trainable parameters of Net
7: for e = 1 to ne do
8: Perform Deep Learning training: DL =

DL(Net,X ,Y , 1)
9: Calculate DL metrics (mk,e)0≤k<256
10: // Early stopping technique or monitoring
11: if ES(M = (m0,m1, . . . ,m255)) is true then
12: Break
13: end if
14: end for
15: return Metrics M

However, the memory burden increases when the parallel
method is used. This is because the networks, according to
each key guess, should be put into memory all at once. For
example, if the attacker recovers an AES 1-byte subkey, the
attacker has to upload 256 networks to memory at once.
The attacker can perform an attack with a DDLA method by
choosing an algorithm that depends on the attack environment
selectively.

5962 VOLUME 10, 2022



D. Kwon et al.: Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks

FIGURE 3. Proposed neural network architecture with shared layers.

C. IMPROVED DIFFERENTIAL DEEP LEARNING ANALYSIS
WITH SHARED LAYERS
TheDDLAwith the parallel technique is faster than a conven-
tional attack, but the memory burden increases with the size
of the key being guessed.Memory burden comes from putting
the weights of the networks for all key guesses into memory
at once. The most memory-intensive part of the process is
to store the weights of the first hidden layer. No matter how
small the hyperparameter of the base architecture is designed
to be, the number of weights increases significantly if the
length of the trace is long. For example, when the length of
the trace is 1, 000 and the dimensions of the first hidden layer
of the base architecture are 200, 1000 × 200 × 256 training
parameters are required for the weights.

We propose an architecture that encodes measurements
using shared layers to reduce the dimensions of the mea-
surements before transferring them to each base architec-
ture. A similar approach to this concept, which encodes
side-channel measurements using deep learning was pro-
posed by Robyns [25]. Also, in [26], they also separated
a neural network for Points of Interest (PoI) detection and
plaintext feature embedding. The part of the network that
detects PoIs is similar to our shared layers. Considering that
profiled deep learning-based side-channel attacks perform
preprocessing and classification through the network; end-
to-end attack, it is reasonable to have the network perform
preprocessing. Therefore, the attacker was designed to pre-
process the traces using the shared layers and deliver the
preprocessed traces to each base architecture so that all key
guesses can be performed through one network similar to the
proposed parallel method. Because only the neural network
architecture has been switched and the input and output are
the same, the attack can use the same algorithm (Algorithm 3)
as the parallel method. Figure 3 shows the neural network
architecture with the proposed shared layers.

Comparing Figure 3 and Figure 2, it can be seen that
when the number of layers in the shared layers is increased,

many parts of the base architecture are shared, and the
number of training parameters decreases. This approach
clearly reduces the memory burden. Moreover, as the shared
weight increases, the weights that need to be updated
are reduced, and the training speed increases. Therefore,
if the performance of the analysis is the same, it is advan-
tageous to design the architecture to share as much as
possible.

However, with a neural network, which is a black-box
model, it is challenging to determine the extent to which the
shared layers are affected. In other words, it is difficult to
confirm in advance whether the performance of the attack
will improve or worsen by sharing many weights, and the per-
formance change according to the shared part is not verified.
We show that it is possible to perform a non-profiled deep
learning attack, and we experimentally validate the sharing
technique in the following section. In order to verify the per-
formance of the shared layers method, we set the architecture
that maximized the shared part in all of our experiments. This
means that we use the most different architecture from the
parallel method.

IV. EXPERIMENTAL RESULTS
In this section, we validate the proposed methods introduced
in Section III. We do not show the experimental results of
the method proposed in Section III-A because it is simply a
modification of the order of operation from Timon’s work.
In our experiments, we used same hyperparameters provided
in Timon’s work [13] as much as possible, except for a
batch normalization layer [27], which makes training faster
and reduces internal covariate shift through normalization
for each training mini-batch, and fine-tuning only the initial
learning rate. We did not consider that Timon’s hyperparam-
eters are optimal for our proposals because we do not claim
that they are best. In this paper, we focus only on the success
or failure of an attack and its complexity.

A. ATTACK ON ChipWhisperer-LITE
In order to verify the performance of the proposed
methods, we use side-channel measurements collected
by ChipWhisperer-lite [28]. We program the AES-128
1 Round SubBytes without countermeasures code on
the ChipWhisperer-lite evaluation board with an Atmel
XMEGA128 8-bit processor with a fixed clock frequency
of 7.37 MHz. We captured the power trace sampled at four
points per clock. The dataset includes 10,000 power con-
sumptions of 800 samples for AES SubBytes operation with
random plaintexts and a fixed key. The experimental results
obtained using the proposed method with the collected power
consumption dataset are shown in Figure 4. We target its
1-byte subkey; the red line represents the accuracy for the
right key, and the gray lines are the results for the wrong keys.
As shown in Figure 4, the difference between the two lines is
clear. This results confirm that attackers can recover the secret
key successfully.

VOLUME 10, 2022 5963



D. Kwon et al.: Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks

FIGURE 4. Comparing DDLA results against ChipWhisperer-Lite.

B. ATTACK ON DE-SYNCHRONIZED TRACES
Timon showed that if the attacker performs DDLA with
convolutional neural networks (CNN), which is called
CNN-DDLA, implementations with hiding countermeasures
can be exploited without preprocessing because of the
translation-invariance property of the CNN architecture [13].
In this paper, we show that the proposed method can also be
applied to CNN-DDLA. We construct the base architecture
with convolutional layers and attack de-synchronized traces.

The traces were created by arbitrarily shifting the mea-
surements captured from the ChipWhisperer-Lite used in the
first experiment. We set the maximum range for the shift to
20, which implies that we obtained a shifted trace of 780
points from the 800 point trace. The shifted traces were
obtained from the traces in the ChipWhisperer-Lite database
without increasing the number of traces. CNNexp was used as
the base architecture [13]. The experimental results obtained
using CNN-DDLA with the proposed methods are shown in
Figure 5. Similar to the previous results, the red line repre-
sents the right key, and the gray lines indicate the wrong keys.
As can be seen in Figure 5, the difference between the two
types of lines is clear. This shows that attackers can recover
the secret key successfully, even if a hiding countermeasure
is applied.

FIGURE 5. Comparing DDLA results against de-synchronized traces.

C. ATTACK ON ANSSI SCA DATABASE (ASCAD)
The third dataset to be analyzed is a set of databases, called
ASCAD [22], which was released as a benchmark reference
for side-channel analysis. The data were collected by a 2Gs/s
sampling rate for the implementation of AES with Boolean
masked countermeasure operated by an Atmel ATmega8515,
and there were a total of 60,000 electromagnetic measure-
ments. In our experiments, we used 20,000 electromagnetic
traces captured during the AES SubBytes operation of the
third byte, with 700 points in the ASCAD database. Figure 6
shows the experimental results of applying the proposed
methods to the open dataset. The red line is the accuracy for
the right key, and the gray lines are the results for the wrong
keys. As can be seen in Figure 5, the difference between the
two lines is clear. This indicates that attackers can success-
fully recover the secret key even if a masking countermeasure
is applied.

D. COMPARISON OF TIME AND MEMORY COMPLEXITY
In Section IV-A, IV-B, and IV-C, we validate the performance
of our proposedmethods on themeasurements in different sit-
uations, and our proposed methods can successfully recover

5964 VOLUME 10, 2022



D. Kwon et al.: Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks

TABLE 1. Dimension and activation function of the neural networks with trace length len. (PL: ParalleL, SL: Shared Layer).

FIGURE 6. Comparing DDLA results against ASCAD.

the right key in all scenarios. In this subsection, we verify that
the proposed method can improve the speed of the attack.
In our experiments, we recovered the AES subkey. In other
words, 8-bit key guessing is performed; the number of key
guesses is 256.

Table 1 is a summary of the architecture used in our
experiments. The conventional DDLA attacks were all per-
formed with the same architecture, MLPexp. Furthermore,
we carried out all of the proposed methods with MLPexp
as the base architecture. Table 2 is a comparison of the time
taken and the memory used for each method. All experiments
were performed with the TensorFlow (Version 1.14.0) [29]
and Keras (Version 2.2.4-tf) [30] library from Python on

TABLE 2. Comparison of time and memory complexity for 1 byte subkey
attacks. (MLPexp with batch size 2000) (PL: ParalleL, SL: Shared Layer).

a personal computer with a single NVIDIA GeForce GTX
1080Ti GPU, a single Intel(R) Core(TM) i7-8700K CPU
and 48 GB of RAM.

Table 2 summarizes the execution time and memory usage
of the previous DDLA method and the proposed methods.
For a fair comparison, 50 epochs were set to be performed
equally by all the methods without applying early stopping
techniques. Therefore, memory usage was compared using
the results from measuring memory usage when each tech-
nique was performed for 50 epochs. As expected, all the
proposed methods were faster than the conventional DDLA
attack. Notably, the results of the shared layer method are
significantly faster than those of the other attack methods.
It is up to 140 times faster than the previous method on
ChipWhisperer-Lite and 134 times faster on the ASCAD
database. Memory usage is the largest in the parallel tech-
nique, and the other two techniques are smaller and are simi-
lar to each other. The results of the experiments show that the
performance of the attack speed is faster when the proposed

1Locally-connected layer.
2MiB; Mebibyte.
3In [13], Timon recorded the performance of the DDLA attack on a

computer with a single NVIDIA GeForce GTX 1080Ti GPU, two Intel Xeon
E5-2620 v4 CPUs, and 64 GB of RAM. The attack against the ASCAD
database consumed 852 s.

VOLUME 10, 2022 5965



D. Kwon et al.: Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks

methods are used, and the method with shared layers is best
in terms of speed and memory usage.

V. CONCLUSION
In this paper, we proposed three methods to efficiently per-
form a non-profiled side-channel attack based on deep learn-
ing. First, we modified DDLA to allow attackers to observe
training metrics for each key guess at each epoch so that the
attackers can monitor the model and apply early stopping
techniques if appropriate. Second, we optimized the design
of neural network architectures to work in parallel according
to each key guess, so that attackers can perform all training
at once and reduce the attack time. Finally, we reduced the
number of training parameters by integrating parts of the
parallel networks through shared layers, thereby reducing
not only memory usage but also time complexity. Using the
proposed method that reduces the time and memory costs, the
attacker is able to apply DDLA with more epochs and more
hyperparameters, whichwill, in turn, improve the success rate
of deep learning attacks.

Timon’s research showed that a non-profiled context
in side-channel analysis is not the same as an unsuper-
vised learning context in machine learning, proving that
deep learning-based side-channel attacks can be applied in
non-profiled attack scenarios. However, learning without cor-
rect labels has led to many problems. The first problem is
that it is hard to search for network hyperparameters. It is
challenging to distinguish whether wrong hyperparameters
are selected or there is a lack of training, which makes it
difficult to determine the cause of failures. In addition, when
the attacker selects wrong hyperparameters, the wrong key
may have a higher accuracy than the correct key due to
overfitting, and the attack fails. The second problem is that
there is no clear criterion for choosing a key in the DDLA.
We recovered the guessed keywith the highest accuracy value
into the right key. Owing to the first problem, it cannot be
claimed that the training result with the right key is always
better than the other results. For an attacker who does not
know the correct answer, it is difficult to select the correct key
when the training metrics of several keys are similar. Further
research will be undertaken to address these problems.

APPENDIX
OVERFITTING IN DIFFERENTIAL DEEP
LEARNING ANALYSIS
In profiled deep learning analysis, overfitting is one of the
main reasons for failure. It is also no exception in non-
profiled attacks. Validation sets, which are separate data from
training sets, were used to prevent overfitting in profiling
attacks. Because attackers cannot know the real key for train-
ing data, they predict labels with guessed keys for training
neural networks. So all collected measurements are used as
training data without validation data. At first glance, it seems
that it is unnecessary to separate a part of the training datasets
into validation datasets because the attackers do not aim
to increase the accuracy of the model, but are focused on

FIGURE 7. DDLA results for the (a) training set and (b) validation set.

distinguishing one of the models. However, the problem of
overfitting can occur in DDLA, andwewill display the exper-
imental results. We also show that high accuracy on incorrect
key-labeled data due to overfitting can be a major cause of
attack failure in DDLA. As shown in Figure 7, the right key
with the red line was well distinguished at the beginning of
learning, but as the learning progressed, it was difficult to
distinguish it from the wrong keys because of overfitting.

As in the case we presented, there are cases in which
overfitting results in high accuracy not only for the right key,
but also for the wrong keys. In this case, attackers who did
not monitor intermediate processes were confused about the
key to choose. In this paper, we recommend using a part of
a training data as a validation set, like performing profiled
attacks. If attackers check whether the features extracted from
the training datasets also show meaningful results on the
validation data, the attackers are able to distinguish the right
key even if overfitting occurs on the training data, as shown
in Figure 7. K-fold cross-validation is a powerful method
for preventing overfitting [31]. Furthermore, applying early
stopping techniques is useful to prevent the problem. These
methods are not sufficient to solve the overfitting problem,
but they can help mitigate it.

5966 VOLUME 10, 2022



D. Kwon et al.: Optimizing Implementations of Non-Profiled Deep Learning-Based Side-Channel Attacks

REFERENCES
[1] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom, ‘‘ECDSA

key extraction from mobile devices via nonintrusive physical side chan-
nels,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2016,
pp. 1626–1638.

[2] T. W. Kim, T. H. Kim, and S. Hong, ‘‘Breaking Korea tansit card with
side-channel analysis attack-unauthorized recharging,’’ inProc. 18th Annu.
BlackHat Asia Conf., 2017, pp. 1–13.

[3] S. Chari, J. R. Rao, and P. Rohatgi, ‘‘Template attacks,’’ in Proc. Int.
Workshop Cryptograph. Hardw. Embedded Syst. Berlin, Germany:
Springer, 2002, pp. 13–28. [Online]. Available: https://link.springer.
com/chapter/10.1007/3-540-36400-5_3

[4] W. Schindler, K. Lemke, and C. Paar, ‘‘A stochastic model for differential
side channel cryptanalysis,’’ in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst. Berlin, Germany: Springer, 2005, pp. 30–46. [Online].
Available: https://link.springer.com/chapter/10.1007/11545262_3

[5] C. Paul Kocher, J. Jaffe, and B. Jun, ‘‘Differential power analysis,’’ in
Proc. 19th Annu. Int. Cryptol. Conf., Santa Barbara, CA, USA: Springer,
Aug. 1999, pp. 388–397.

[6] E. Brier, C. Clavier, and F. Olivier, ‘‘Correlation power analysis with a leak-
age model,’’ in Proc. 6th Int. Workshop Cryptograph. Hardw. Embedded
Syst., Cambridge, MA, USA: Springer, Aug. 2004, pp. 16–29.

[7] S. Yang, Y. Zhou, J. Liu, and D. Chen, ‘‘Back propagation neural net-
work based leakage characterization for practical security analysis of
cryptographic implementations,’’ in Proc. Int. Conf. Inf. Secur. Cryptol.
(ICISC). Berlin, Germany: Springer, 2011, pp. 169–185. [Online]. Avail-
able: https://link.springer.com/chapter/10.1007/978-3-642-31912-9_12

[8] Z. Martinasek and V. Zeman, ‘‘Innovative method of the power analysis,’’
Radioengineering, vol. 22, no. 2, pp. 586–594, 2013.

[9] Z. Martinasek, J. Hajny, and L. Malina, ‘‘Optimization of power analysis
using neural network,’’ in Smart Card Research and Advanced Applica-
tions, A. Francillon and P. Rohatgi, Eds. Cham, Switzerland: Springer,
2014, pp. 94–107.

[10] R. Gilmore, N. Hanley, and M. O’Neill, ‘‘Neural network based attack
on a masked implementation of AES,’’ in Proc. IEEE Int. Symp. Hardw.
Oriented Secur. Trust (HOST), May 2015, pp. 106–111.

[11] H.Maghrebi, T. Portigliatti, and E. Prouff, ‘‘Breaking cryptographic imple-
mentations using deep learning techniques,’’ in Proc. Int. Conf. Secur., Pri-
vacy, Appl. Cryptogr. Eng. Cham, Switzerland: Springer, 2016, pp. 3–26.
[Online]. Available: https://link.springer.com/chapter/10.1007%2F978-3-
319-49445-6_1

[12] E. Cagli, C. Dumas, and E. Prouff, ‘‘Convolutional neural net-
works with data augmentation against jitter-based countermeasures,’’
in Proc. Int. Conf. Cryptograph. Hardw. Embedded Syst. Cham,
Switzerland: Springer, 2017, pp. 45–68. [Online]. Available: https://link.
springer.com/chapter/10.1007/978-3-319-66787-4_3

[13] B. Timon, ‘‘Non-profiled deep learning-based side-channel attacks with
sensitivity analysis,’’ IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2019, no. 2, pp. 107–131, Feb. 2019.

[14] L. Prechelt, Early Stopping—But When. Berlin, Germany: Springer, 2012,
pp. 53–67.

[15] G. Perin, B. Ege, and J. V. Woudenberg, ‘‘Lowering the bar: Deep
learning for side channel analysis,’’ BlackHat USA, Las Vegas, NV, USA,
Tech. Rep., 2018. [Online]. Available: https://www.blackhat.com/us-
18/briefings/schedule/#lowering-the-bar-deep-learning-for-side-channel-
analysis-11524

[16] E. Cagli, ‘‘Feature extraction for side-channel attacks,’’ Ph.D. dis-
sertation, Sorbonne Univ., Paris, France, 2018. [Online]. Available:
https://hal.inria.fr/tel-02494260/

[17] I. Goodfellow, Y. Bengio, and A. Courville,’’ Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[18] Z. Martinasek, L. Malina, and K. Trasy, Profiling Power Analysis Attack
Based on Multi-layer Perceptron Network. Cham, Switzerland: Springer,
2015, pp. 317–339.

[19] Z. Martinasek, O. Zapletal, K. Vrba, and K. Trasy, ‘‘Power analysis attack
based on the MLP in DPA contest v4,’’ in Proc. 38th Int. Conf. Telecom-
mun. Signal Process. (TSP), Jul. 2015, pp. 154–158.

[20] Z. Martinasek, O. Zapletal, K. Vrba, and K. Trasy, ‘‘Profiling power
analysis attack based on MLP in DPA contest V4. 2,’’ in Proc. 38th Int.
Conf. Telecommun. Signal Process. (TSP), Jul. 2015, pp. 223–226.

[21] S. Picek, I. P. Samiotis, J. Kim,A. Heuser, S. Bhasin, andA. Legay, ‘‘On the
performance of convolutional neural networks for side-channel analysis,’’
in Proc. Int. Conf. Secur., Privacy, Appl. Cryptogr. Eng. (SPACE). Cham,
Switzerland: Springer, 2018, pp. 157–176.

[22] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, ‘‘Deep learning
for side-channel analysis and introduction to ASCAD database,’’ J. Cryp-
tograph. Eng., vol. 10, no. 2, pp. 163–188, 2019.

[23] L. Weissbart, S. Picek, and L. Batina, ‘‘One trace is all it takes:
Machine learning-based side-channel attack on EdDDSA,’’ in Proc.
Int. Conf. Secur., Privacy, Appl. Cryptogr. Eng. Cham, Switzerland:
Springer, 2019, pp. 86–105. [Online]. Available: https://link.
springer.com/chapter/10.1007%2F978-3-030-35869-3_8

[24] M. Carbone, V. Conin, M.-A. Cornélie, F. Dassance, G. Dufresne,
C. Dumas, E. Prouff, and A. Venelli, ‘‘Deep learning to evaluate secure
RSA implementations,’’ Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2019, no. 2, pp. 132–161, Feb. 2019.

[25] P. Robyns, P. Quax, and W. Lamotte, ‘‘Improving CEMA using correla-
tion optimization,’’ IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2019, no. 1, pp. 1–24, Nov. 2018.

[26] A.-T. Hoang, N. Hanley, and M. O’Neill, ‘‘Plaintext: A missing feature for
enhancing the power of deep learning in side-channel analysis: Breaking
multiple layers of side-channel countermeasures,’’ IACR Trans. Crypto-
graph. Hardw. Embedded Syst., vol. 2020, no. 4, pp. 49–85, Aug. 2020.

[27] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., vol. 37, Jul. 2015, pp. 448–456.

[28] C. O’Flynn and Z. D. Chen, ‘‘Chipwhisperer: An open-source platform for
hardware embedded security research,’’ in Proc. Int. Workshop Construc-
tive Side-Channel Anal. Secure Design. Springer, 2014, pp. 243–260.

[29] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: tensorflow.org

[30] F. Chollet et al. (2015). Keras. [Online]. Available: https://keras.io and
https://keras.io/getting_started/faq/#how-should-i-cite-keras

[31] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction. Springer,
2009. [Online]. Available: https://link.springer.com/book/10.1007/978-0-
387-84858-7

DONGGEUN KWON received the B.S. degree
in mathematics and the M.E. degree in informa-
tion security from Korea University, South Korea,
in 2014 and 2018, respectively, where he is
currently pursuing the Ph.D. degree in information
security with the Graduate School of Cyber Secu-
rity. His research interests include cryptography,
side-channel attacks, and machine learning-based
cryptanalysis.

SEOKHIE HONG (Member, IEEE) received the
M.S. and Ph.D. degrees in mathematics from
Korea University, in 1997 and 2001, respectively.
From 2000 to 2004, he was with SECURITY
Technologies Inc. From 2004 to 2005, he was a
Postdoctoral Researcher with COSIC, KULeuven,
Belgium. He joined the Graduate School of Cyber
Security, Korea University. His research interests
include cryptography, public and symmetric cryp-
tosystems, hash functions, and MACs.

HEESEOK KIM received the B.S. degree in
mathematics from Yonsei University, Seoul,
South Korea, in 2006, and the M.S. and Ph.D.
degrees in engineering and information secu-
rity from Korea University, Seoul, in 2008
and 2011, respectively. He was a Postdoctoral
Researcher with the University of Bristol, U.K.,
from 2011 to 2012. From 2013 to 2016, he was a
Senior Researcher with the Korea Institute of Sci-
ence and Technology Information (KISTI). Since

2016, he has been with Korea University. His research interests include side-
channel attacks, cryptography, and network security.

VOLUME 10, 2022 5967


