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ABSTRACT In this paper, we propose an efficient feedback scheme for an angle of departure (AoD) based
channel estimation in frequency division duplex (FDD) massive multiple-input multiple-output (MIMO)
systems with multiple antennas at the users. The channel feedback scheme is based on zero-forcing block
diagonalization (BD) and it is proposed for two distinct design cases; in case I, the number of streams
intended for a user equals the number of antennas at that user; in case II, the number of streams is less
than the number of receive antennas. Case I is applicable in scenarios where high data rate requirements are
needed as it transmits data symbols over all of the available degrees of freedom of the system. Diversely,
case II is applicable when reliability is a priority in the system as it uses the additional receive antennas at
the user to achieve spatial diversity to enhance the link performance. The proposed scheme is analyzed for
the two cases by quantifying the downlink rate gap from the case of perfect channel state information (CSI).
Moreover, we design structured feedback codebooks based on optimal subspace packing in theGrassmannian
manifold and show that these codes achieve close performance to the perfect CSI case. Additionally, a vector
quantization scheme is proposed to quantize the user’s channel matrix when optimal power allocation across
multiple streams is adopted in the low signal-to-noise ratio (SNR) region. The feedback codebooks are based
on optimal line packing in the Grassmannian manifold, where every vector of the user’s channel matrix
is quantized and sent to the BaseStation. The results demonstrate a fundamental trade-off between vector
quantization, with power optimization across the data streams, and subspace quantization. Specifically,
vector quantization codebooks outperform subspace-based codebooks in the low SNR region, while the
situation is reversed in the high SNR region.

INDEX TERMS Massive MIMO, FDD, multiple antenna users, block diagonalization, singular values and
singular vectors, channel feedback, subspace codebooks, water-filling.

NOMENCLATURE
AoD Angle of Departure.
BD Zero-Forcing Block Diagonalization.
BS BaseStation.
CS Compressive Sensing.
CSI Channel State Information.
DFT Discrete Fourier Transform.
FDD frequency division duplex
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i.i.d. Independently and Identically Distributed.
LSTM Long-Short-Term Memory.
MIMO Multiple-Input Multiple-Output.
mmWave Millimeter-Wave.
MUSIC Multiple Signal Classification.
RVQ Random Vector Quantization.
SNR Signal to Noise Ratio.
SVD Singular Value Decomposition.
TDD Time Division Duplex.
ULA Uniform Linear Array.
ZF Zero-Forcing.
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I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) wireless
communication systems have been shown to introduce dra-
matic improvements, in both spectral and energy efficiency,
by simultaneously serving multiple users with simple linear
precoders [1]–[3]. To fully utilize multiplexing and array
gains of massive MIMO, the downlink channel state infor-
mation (CSI) must be acquired at the BaseStation (BS) to
perform precoding and digital beam-forming tasks on the
transmitted signals. In time division duplex (TDD) massive
MIMO systems, there have been many works in acquiring
downlink channels at the BS using the estimated uplink chan-
nels by utilizing the channel reciprocity. However, in fre-
quency division duplex (FDD) systems, channel reciprocity
cannot be used to obtain the downlink CSI at the BS. In this
case, the downlink CSI is generally estimated at the user
equipment and then fed back to the BS. The huge number
of antennas at the BS leads to an overwhelming overhead,
which adversely impacts the system’s bandwidth and energy
efficiency as well as exacerbating its latency, rendering such
a system to be impractical for time-varying channels. Hence
reducing this overhead is paramount for realizing the poten-
tials of this technique. FDD deployments provide wider
coverage than TDD as mobile equipments in FDD systems
transmit on a continuous basis, which enables devices to
achieve cell-edge rates farther from the base station [4].
Hence, FDD needs fewer BSs than TDD as long as FDD
devices achieve desired cell-edge rates at farther distances.
This results in reducing the deployment and operating costs
since FDD requires fewer BSs for the same coverage. The
previous advantages give a strongmotivation to advance FDD
massive MIMO topic.

A. RELATED WORK
Several CSI techniques were proposed in the literature for
reducing the feedback overhead in FDD massive MIMO
systems. For instance, in [5], a spatially common sparsity
adaptive channel estimation and feedback scheme was pro-
posed. The authors developed a compressive sensing scheme
that exploits the sparse nature of the downlink channels in
the angular domain for reliable downlink CSI estimation and
feedback with significantly reduced overhead. The authors
in [6] also proposed a channel feedback algorithm based on
compressive sensing to reduce the feedback load without
degrading the quality of channel reconstruction at the BS.
They exploited the correlation of CSI to design a quasi-signal-
independent dictionary to enhance the quality of CSI recovery
at the BS. In [7], the authors exploited the hidden joint
sparsity structure in the multi-user MIMO channel matrix
by presenting a joint multi-user MIMO channel recovery at
the BS. Multiple users fed back distributed channel measure-
ments to the BS to recover the channel matrix using a joint
orthogonal matching pursuit algorithm. A robust closed-loop
pilot and CSI feedback resource adaptation scheme was pro-
posed in [8], which exploits the joint sparsity of themulti-user

massive MIMO channels in order to improve the CSI estima-
tion. Additionally, the framework can minimize the needed
pilot and feedback resources for successful CSI recovery.
In [9], the authors were able to estimate the users’ downlink
channel covariance matrix from the uplink pilots using the
fact that the angular scattering function of the user channels is
invariant over frequency bands. They proposed a novel sparsi-
fying precoder, based on the covariance information, to max-
imize the effective sparsified channel matrix’s rank when the
sparsity of each effective user channel is not larger than some
desired downlink pilot dimension, resulting in reducing the
downlink training and the CSI feedback overhead. In [10],
the user first compresses the CSI, based on some compressive
sensing approach, then the BS reconstructs the CSI using
a deep neural network. A real-time CSI feedback architec-
ture based on a long-short-term memory (LSTM) was pro-
posed in [11] using deep learning CSI sensing and recovery
network.

There is also much work on feedback codebook design
for massive MIMO systems. For example, a codebook was
proposed in [12] for compressed channel feedback for cor-
related massive MIMO channels. This codebook can quan-
tize and feedback the compressed low-dimensional CSI with
reduced overhead. A reduced-dimensional subspace code-
book for lens antenna array aided massive MIMO systems
was proposed in [13]. By leveraging the concept of angle
coherence time, large-dimensional vectors in the channel
subspace are first generated. Based on these vectors, the
reduced-dimensional subspace codebook is created by con-
sidering both the lens and the beam selector. The equiva-
lent channel is quantized and fed back to the BS using this
codebook. The authors of [14] proposed a novel dual-stage
Grassmannian product quantization approach suitable for
high-dimensional CSI. This method works efficiently when
the channel can be decomposed in the angular domain, where
efficient discrete Fourier transform (DFT) codebooks can be
exploited for CSI compression. In [15], the authors proposed
a scheme to extrapolate the channel frequency response from
the uplink channel estimates to the downlink frequency range.
This approach completely removes the need for any feedback
from the users’ side to the BS. However, the price for this is a
degradation in the quality of the downlink channel estimates,
due to a downlink spectral efficiency reduction.

In the aforementioned works, the compressive sensing
and channel statistics-based feedback techniques suffer from
high complexity to provide high-quality channel estimates
and reconstruction accuracy at the BS without significantly
decreasing the spectral efficiency. In contrast to the above
works, an angle of departure (AoD)-adaptive subspace code-
book for channel feedback was proposed in [16]. The paper
utilized the idea that the angles of departure vary much
slower than the channel gains, which results in a significant
reduction in the required feedback overhead. This is because
the channel vector is constrained in a lower-dimensional
subspace of the full M -dimensional space (where M is the
number of transmitting antennas at the BS) during the angle
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TABLE 1. Related reviewed works.

coherence time. Table 1 categorizes the related reviewed
works along with their main distinctive characteristics so as
to better position this paper’s work by difference.

B. CONTRIBUTIONS
In contrast to existing work, this paper designs and stud-
ies an AoD-adaptive channel feedback framework in mas-
sive MIMO systems when the users have multiple antennas,
which, to the best of our knowledge, has never been addressed
before.1 Different from the above-mentioned channel statis-
tics codebooks, the AoD based massive MIMO channel feed-
back leverages the concept of angle coherence time in the
millimeter-wave (mmWave) channel model. The AoDs infor-
mation can be estimated with low overhead only once every
angle coherence period using the sparse downlink channel
estimates at the users. Then, only the low-dimensional chan-
nel gains of the resolvable paths of each receive antenna are
fed back during the angle coherence period, whichwe address
in this work. As the number of receive antennas increases, the
channel feedback overhead increases, which could exhaust
the network resources. To overcome this, we propose a
feedback scheme that jointly reports the CSI of the receive
antennas to the BS resulting in a massive reduction in the
required feedback overhead. More specifically, we do not
quantize and feed back the channel vector of each receive
antenna independently, instead, we quantize and report the
subspace spanned by these vectors to the BS which results
in a significant rate improvement per each user. To achieve
this, we use BD [17] for precoding. Two different design
cases are considered; in one, the number of streams intended
for a user equals the number of antennas at that user, and
in the other case, the number of streams is less than the
number of antennas. Since BD involves simultaneous trans-
missions of multiple data streams to each user while can-
celing the interference from other users, it only needs the
channel subspace of each user’s channel matrix at the BS,
which requires fewer feedback bits compared to reporting

1In the multiple receive antenna case, the proposed scheme is based on
quantizing and feeding back subspaces not vectors as in the single receive
antenna case, where we use Grassmannian subspace packing to design the
quantizer. Moreover, to be able to only feed back the channel subspace not
the whole matrix, zero-forcing block diagonalization (BD) is used as the
interference canceling scheme instead of the regular zero-forcing (ZF) as
in the single antenna case. As a consequence, the feedback scheme design is
different and all of the derived analytical bounds that evaluate the rate loss
of our proposed feedback scheme are different from the single antenna case
and provide insights that cannot be drawn from the simpler, single antenna
users case.

the actual channel matrix. Furthermore, optimally designed
subspace codebooks to quantize the subspace of each user’s
channel matrix are devised. The main goal is to design low
overhead feedback schemes while minimizing the system
rate loss due to channel quantization. In addition, this paper
extends our previous work in [18], [19] by providing detailed
mathematical analysis to quantify the rate loss resulting from
the proposed subspace based quantization scheme for the
two considered cases. Moreover, a vector quantization based
codebook design, based on water-filling and optimal line
packing on the Grassmannian manifold, is proposed for the
low signal-to-noise ratio (SNR) region, and it is shown to
enhance the downlink spectral efficiency. The contributions
of this paper can be summarized as follows:

1) We propose an efficient and structured feedback
BD-based AoD-adaptive codebooks using optimal
subspace packing on the Grassmannian manifold
for massive MIMO systems with multiple antenna
users.

2) A channel feedback scheme for two distinct design
cases is proposed; in one case the number of streams
intended for a user equals the number of antennas at
that user, and in the other, the number of streams is less
than the number of receive antennas.

3) Detailed performance analysis for the two considered
cases is provided to quantify the rate gap between the
system with perfect CSI and our proposed scheme,
in which we prove that the required number of feed-
back bits to achieve a constant rate gap scales linearly
with SNR.

4) A vector quantization codebook, based on optimal line
packing on the Grassmannian manifold, is proposed to
enhance the per-user rate in the low SNR region when
power allocation (water-filling) across multiple data
streams is used, where it is shown that vector quantiza-
tion codebooks outperform subspace-based codebooks
in the low SNR region, while the situation is reversed
in the high SNR region.

The rest of the paper is organized as follows. In Section II,
the adopted system model is presented, while in Section III,
the design of BD-based beam-forming matrices for the two
considered scenarios is described. The AoD adaptive sub-
space codebook used for channel quantization is presented
in Section IV. Throughput degradation due to digital chan-
nel feedback is analyzed in Section V. The water-filling-
based channel quantization and feedback are discussed in
Section VI. Simulation results and conclusions are given in
Sections VII and VIII, respectively.
Notation:Matrices and vectors are written in boldface let-

ters; matrices are capital letters while vectors are lower-case
letters. The transpose and conjugate transpose (Hermitian)
of a matrix are denoted by (·)T , (·)H , respectively. |x| is
the absolute value of a scalar. The notation (x)+ means that
(x)+ = 0 when x ≤ 0, while (x)+ = x when x > 0.
E[·] denotes the expectation operator. Finally, IP denotes the
identity matrix of size P× P.
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FIGURE 1. The ray-based channel model.

II. SYSTEM MODEL
A. DOWNLINK MASSIVE MIMO CHANNEL MODEL
In this paper, we consider the mmWave massive MIMO
broadcast (downlink) system with a single BS communi-
cating with K multi-antenna users as shown in Fig. 1.2

The BS has M transmitting antennas while the kth user,
∀k ∈ {1, 2, · · · ,K }, has Nk receiving antennas. The typical
massive MIMO model is used in our system model where
the number of transmitting antennas is much higher than
the number of users (or users’ antennas in our case), i.e.,
M �

∑
k Nk (typically M is in the range of hundreds

in massive MIMO). We adopt the narrowband ray-based
downlink channel model, which was explained in detail in
Chapter 7 of [23] and was adopted in [16] for the case
of single receive antenna, for the downlink channels. The
number of resolvable paths seen by the BS to the kth user,
Pk , depends on the scatters around the BS, which are few
typically ranging from 2 to 8, and each path has a different
AoD from the BS as shown in Fig. 1. The receive anten-
nas are located in a local multi-path fading environment
with many reflectors around it as shown in Fig. 1, hence,
the resolvable paths are received at each receive antenna
after passing through a multiplicative fading channel. Conse-
quently, each path is multiplied by a complex Rayleigh fading
coefficient gi ∼ CN (0, 1). Therefore, the overall channel
vector seen at the jth receive antenna of the kth user is given
as

hj,k =
Pk∑
i=1

gj,ia(θk,i), (1)

2The mmWave channel with non line of sight (NLOS) was investigated
and compared against the line of sight (LOS) case in [20], where the authors
conducted extensive propagation measurement campaigns at 28 GHz and 38
GHz ranges to study the statistical characteristics of mmWave propagation.
Other realistic field measurement campaigns, where the NLOS case was
extensively studied, at 28 GHz and 73 GHz in New York City (USA) [21],
and at 10 − 100 GHz in Berlin (Germany) [22] were held, and the results
were so promising. In light of the previous measurements, the authors in [16]
assumed the mmWave channel model in massive MIMO with two-hop
scattering with NLOS, where they considered the case of single antenna
users.

where parameter θk,i(1 ≤ i ≤ Pk ) represents the AoDs of the
ith path of the kth user. The transmitting antennas at the BS
form a uniform linear array (ULA) [1], where a(θk,i) ∈ C1×M

is a steering vector that represents the antenna response of the
ith resolvable path of the kth user, and it can be written as

a(θk,i) =
[
1, e−j2π

d
λ
sin (θk,i), · · · , e−j2π

d
λ
(M−1) sin (θk,i)

]
, (2)

where λ is the signal wavelength, d is the spacing between
every two successive antennas at the BS. Although the receive
antennas of the same user k see the same AoDs from the BS,
they experience different and independent complex path
gains. The reason for this is that the receive antennas of
the kth user are spatially well-separated so they see com-
pletely independent path gains in their local multi-path fading
environment. In the mmWave range, it is feasible to have
sufficient separations between the few receive antennas as the
signal wavelength is already small. Therefore, the channel
matrix of the kth user, Hk ∈ CNk×M , can be expressed
as3

Hk = GkAk (θk,1, θk,2, · · · , θk,Pk ), (3)

where the matrix Ak (θk,1, θk,2, · · · , θk,Pk ) ∈ CPk×M is
defined as

Ak (θk,1, θk,2, · · · , θk,Pk ) =


a(θk,1)
a(θk,2)
...

a(θk,Pk )

 . (4)

The row-space of Ak is called the channel subspace through-
out this paper. The jth row of Gk ∈ CNk×Pk contains the
complex Rayleigh path gains of the jth antenna at the kth user
(i.e., the entry Gk (j, i) represents the complex gain of the ith
path of the jth antenna at user k). The complex path gains
in Gk are independently and identically distributed (i.i.d.),
as explained earlier, circularly-symmetric complex Gaussian
random variables with zero mean and unit variance. Please
note that we considered the use of ULAs in this paper for
simplicity of presentation. The proposed feedback scheme
can work, using the same procedure, with uniform planar
arrays (UPA) of antennas with M1 horizontal antennas and
M2 vertical antennas, where Ak (φk,i, θk,i) is a function of
the azimuth, φk,i, and the elevation, θk,i, AoDs of the ith
path of the kth user [16]. However, the channel matrix of
the kth user is kept the same as Hk = GkAk (φk,i, θk,i),
hence, the proposed channel feedback technique can also be
considered.

3It should be noted that there will be an angular spread for each scattering
cluster; however, the reflected angles within this interval are usually mod-
elled as discrete angles in literature which represent the resolvable paths.
Overall, a narrowband clustered channel representation (based on extended
Saleh-Valenzuela model) is proposed for mmWave massive MIMO channel,
as it allows accurate capturing of the characteristics of mmWave channels.
Under this clustered model, the narrowband channel matrix H is assumed to
be the sum of the contributions of P propagation paths [24]–[26]. Based on
this, the channel model we adopts in this paper is widely used in the literature,
see for example [16], [27]–[31].
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The BS sends mk streams to user k , where mk ≤ Nk . Let
dk ∈ Cmk×1 contain the mk data symbols to be transmitted
simultaneously to the kth user such that

dk = [uk,1uk,2 · · · uk,mk ]
T . (5)

Before transmitting the users’ data symbols, the kth user
symbol vector is multiplied by the precoding matrix Fk ∈
CM×mk . Thus, the transmitted vector x ∈ CM×1, which
contains data symbols intended for all the users, is given by

x =
K∑
j=1

Fjdj, (6)

and the received signal at the kth user can be written as

yk = Hkx+ nk = HkFkdk +Hk

K∑
j=1,j6=k

Fjdj + nk , (7)

where nk ∈ CNk×1 is a circularly symmetric complex Gaus-
sian noise vector at the kth user with a zero vector mean and
identity covariance matrix.

The second term in (7) represents the summation of the
interference, from the signals intended to all other users in
the cell, at user k . The users’ precoding matrices, Fk ’s, are
unitary matrices (i.e., FH

k Fk = Imk ), and in order to adhere
to the power constraint, we have E

[
‖dk‖2

]
=

γ
K ,∀k ∈

{1, 2, · · · ,K }, where γ is the total transmit power at the BS.

B. PARTIAL CSI FEEDBACK
In this subsection, we present the CSI feedback elements
of the considered channel model that was presented in the
previous section. We assume in this paper that each user
knows its own downlink CSI.4 Then, the obtained downlink
CSI at each user, Hk , is quantized and fed back to the BS to
perform downlink precoding.

The channel matrix, Hk , is composed of two parts; the
matrix, Ak , which is a function of the AoDs, and the path
gains matrix Gk . We assume throughout the paper that the
AoDs are perfectly known at both the user and the BS. This
assumption is justified by the fact that the users can estimate
the AoDs from downlink channel estimates they already have
using the standard multiple signal classification (MUSIC)
algorithm [35]. Precisely, the kth user calculates the correla-
tion matrix of the channel vector of the jth receive antenna
as Rk = E[hHj,khj,k ]. The kth user estimates the previous
expectation using the sample average technique computed
over various channel estimates within the angle coherence
time. Therefore, AoDs can be estimated at user k based on
Rk using the traditional MUSIC algorithm. Then, the users
quantize and feed back the AoDs, θk,i, to the BS so it can

4In FDD systems, the downlink channel matrixHk is estimated at the user
side through downlink channel training. The training overhead for the down-
link channel estimation in FDD massive MIMO systems is greatly increased
due to the large number of antennas at the BS. However, several effective
downlink training methods were proposed to address this problem [5], [27],
[32]–[34] by utilizing the angular domain sparsity in the massive MIMO
channel model.

generate Ak . With reasonably designed number of AoD
quantization bits, B0, the channel sub-spaces, Ak , can fairly
assumed to be the same on both sides, without a significant
mismatch.

The AoDs are fed back only once every angle coherence
time of θk,i. The coherence time of the AoDs, θk,i, is relatively
very large compared to the coherence time of the path gains
in Gk . Consequently, we focus in this paper on studying the
quantization and feedback overhead of the path gains matri-
ces, Gk , since it constitutes most of the feedback overhead
compared to the relatively insignificant feedback overhead
of the AoDs. Therefore, the BS only needs to know the low
dimensional path gains matrix Gk ∈ CNk×Pk in order to
generate the actual channel matrix Hk .

We assume, before Sec. VI, that the power allocated to each
user is uniformly divided across its multiple data streams.
Hence, in order to perform BD, which will be discussed thor-
oughly in Sec. III-A, the BS only needs to know the spatial
direction of each user’s channel matrix. The spatial direction
of the kth user, H̃k ∈ CNk×M , is defined as the row-space of
the channel matrix, Hk . The rows of H̃k are orthonormal and
its row-space represents the spatial direction. In the case of
massive MIMO channel model described earlier, the spatial
direction can be represented as H̃k =

1
√
M
G̃kAk , where the

rows of G̃k ∈ CNk×Pk are orthonormal and its row-space
represents the row-space ofGk . It was proved in [16] that the
rows of the channel subspace, Ak , are asymptotically orthog-
onal, i.e., AkAH

k ≈ MIPk , as M → ∞. Since Ak is known
at the BS, G̃k can be a low-dimensional representative of the
spatial direction and its quantization represents the quanti-
zation of H̃k . The quantization of G̃k , say Ĝk ∈ CNk×Pk ,
is chosen from the codebook Ck = {Ck,1,Ck,2, · · · ,Ck,2B},
that consists of 2B low-dimensional quantization sub-spaces
in CNk×Pk , where B is the number of feedback bits for each
user and the rows of Ck,i are orthonormal. The details of
the beam-forming matrix design and the codebook design are
discussed in Sec. III and Sec. IV, respectively. The kth user
quantizes the row-space of its path gains matrix, G̃k , to a
quantization subspace, Ĝk = Ck,Zk , where the index Zk is
calculated as

Zk = argmin
i∈[1,2B]

d2(G̃k ,Ck,i), (8)

where d(G̃k ,Ck,i) is the distance metric between the two
matrices G̃k and Ck,i. In this paper, we adopt the chordal
distance as our distance metric [36], which is given by

d(G̃k ,Ck,i) =
√
sin2 φ1 + sin2 φ2 + · · · + sin2 φNk , (9)

where the φj’s are the principal angles between the two
row-spaces of the matrices Gk and Ck,i [36]. The rows of
each matrix Ck,i ∈ Ck are orthonormal (i.e., Ck,iCH

k,i =

IPk∀ Ck,i ∈ Ck ), and each Ck,i represents a quantization sub-
space in the codebook. The chordal distance can be calculated
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as follows

d(G̃k ,Ck,i) =
[
Nk −

∥∥∥G̃kCH
k,i

∥∥∥2
F

]1/2
, (10)

where the values of this distance range between 0 and
√
Nk .

Note that no channel magnitude feedback is needed at BS
in the case of uniform power allocation across the data
streams. The BS can hence generate the channel matrix as
Ĥk =

1
√
M
ĜkAk .

III. DESIGN OF BD BASED BEAM-FORMING MATRICES
In this section, the procedures of the BD precoding scheme
are presented, and the corresponding per-user data rates are
stated. The design procedures of the users’ beam-forming
matrices Fk are presented for the two considered design
cases. Additionally, the corresponding feedback information
required for each case will be highlighted.

A. DESIGN OF USERS’ BEAM-FORMING MATRICES
BD is considered in this paper as a linear precoding technique
that is applied at the BS to serve multiple users in the massive
MIMO cell. BD is a precoding technique that completely
nulls the interference at each user from other users. In light of
the BD procedure, each precodingmatrix,Fk , is chosen under
the constraint of havingHjFk = 0, ∀j 6= k . This requires the
column space of the precoding matrix to be in the null space
of the matrix formed by stacking all {Hj}j6=k matrices, hence
nulling the interference terms in (7) at each user. However,
zero interference cannot be achieved practically as the BS
does not have perfect knowledge of {Hk}

K
k=1. In the case of

limited feedback, the BS only knows the subspace quantiza-
tion of the row-space of each Hk , namely, Ĥk . Then, the BS
performs the BD procedure using the quantized subspaces,
Ĥ1, Ĥ2, · · · , ĤK , to generate the practical precoding matri-
ces, F̂1, F̂2, · · · , F̂K .
The number of receive antennas at user k , Nk , is assumed

in this paper to be smaller than the number of resolvable
paths Pk , (i.e., Nk < Pk ). This makes the channel vectors of
the receive antennas of user k be linearly independent since
they see Pk independent paths with independent path gains
(i.e., entries ofGk are independent). In the following, the two
cases we consider when designing the precoding matrices F̂k
are presented.

1) CASE I, Nk = mk
In this case, the number of antennas of user k , Nk , is assumed
to be equal to the number of data symbols, mk , transmitted to
this user. DefineWk as

Wk =
[
ĤT

1 · · · Ĥ
T
k−1Ĥ

T
k+1 · · · Ĥ

T
K

]T
, (11)

where Ĥk , k ∈ {1, 2, · · · ,K }, is the quantized feedback
version of the original spatial direction H̃k of the kth user.
The precoding matrix, F̂k , of the kth user is forced to lie in the
null space of Wk to achieve the zero interference constraint.
Since the AoDs differ from one user to another, the channel

subspaces of the users, Ak , are also independent from each
other as they depend only on the AoDs of the users. Then,
we can infer that the spatial directions of the users, Ĥk ,
are linearly independent as well as they lie in the channel
subspaces. The rank of Wk is L̃k = rank(Wk ) = NR − Nk ,
where NR is the total number of receive antennas and M �
NR. Define the singular value decomposition (SVD) ofWk as

Wk = Uk6k

[
V(1)
k V(0)

k

]H
, (12)

whereV(1)
k holds the first L̃k right singular vectors, whileV

(0)
k

have the remaining (M − L̃k ) right singular vectors. Hence,
V(0)
k forms an orthonormal basis for the null space ofWk , and

therefore, its columns are candidates for the columns of the
kth user precoding matrix, F̂k .

The effective channel of the kth user is the product, ĤkV
(0)
k .

As long as interference from other users is canceled, the
precoder selection problem now is equivalent to the single-
user MIMO capacity maximization problem. Consequently,
the best precoder is the right singular vectors of that effective
channel [37]. The rank of the effective channel, ĤkV

(0)
k , is L̄k ,

and it is upper bounded as L̄k ≤ min{Lk , L̃k}, where Lk is the
rank of the quantized channel, Ĥk . Hence, the SVD of the
effective channel of user k is given as

ĤkV
(0)
k = Qk

[
3k 0
0 0

] [
R(1)
k R(0)

k

]H
, (13)

where 3k is L̄k × L̄k and the columns of R(1)
k are the

first L̄k singular vectors. Finally, the product V
(0)
k R(1)

k forms
an orthonormal basis of dimension L̄k , and it represents
the precoding matrix that maximizes the capacity of the
kth user while achieving zero interference. Hence, the pre-
coding matrix is written as

F̂k = V(0)
k R(1)

k . (14)

2) CASE II, Nk > mk
In this case, the number of antennas at the kth user, Nk ,
is assumed to be greater than the number of data symbols,
mk , transmitted to that user. Adding more receive antennas
enhances the diversity gain at the users. Since the number
of receive antennas at the user k is greater than the number
of data streams intended to it, feeding back the whole spatial
direction, H̃k ∈ CNk×M , as in case I, is not needed. For case II,
only the subspace spanned by the first mk right singular
vectors of the channel matrix Hk is needed to be fed back
to the BS. Let the SVD of the channel matrix Hk of the
kth user be

Hk = Uk6kVH
k , (15)

where Uk ∈ CNk×Nk and Vk ∈ CM×M are unitary matrices,
and6k ∈ CNk×M is a rectangular matrix that has the singular
values on its diagonal. LetVk,mk be a matrix that contains the
first mk columns of Vk . The column-space of Vk,mk needs to
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be quantized and fed back. Taking the Hermitian operator on
both sides of (15), we get

HH
k = Vk6

H
k U

H
k . (16)

From (16), as long as the off-diagonal elements of 6H
k are

all zeros, we can notice that each column of HH
k is a linear

combination of the firstNk columns ofVk . Thus, the subspace
spanned by the firstNk columns ofVk is equivalent to column
space of HH

k ∈ CM×Nk . Consequently, we can conclude that
the column-space of Vk,mk always lies in the column-space
of HH

k as mk < Nk . As long as the column space of HH
k

always lies in the column-space ofAH
k , then the column-space

of Vk,mk always lies in the column-space of AH
k ∈ CM×Pk

too. This is important since Ak is assumed to be already
known at the BS. Therefore, a low-dimensional codebook,
to be designed in Sec. IV, can be used to quantize Vk,mk .
In [38], the columns of Vk,mk was proved to be isotropically
distributed on the subspace in which they lie. Consequently,
a Grassmannian subspace packing based codebook can be
used to quantize Vk,mk , which will be presented in Sec. IV-B.
Let the quantized version of Vk,mk be V̂k,mk ∈ CM×mk .

Now, let Sk ∈ CM×(M−
∑K

i=1,i6=k mi) represent the orthonor-
mal basis of the null space ofWk , where

Wk =
[
V̂1,m1 · · · V̂k−1,mk−1V̂k+1,mk+1 · · · V̂K ,mK

]H
. (17)

The effective channel of the kth user will be the prod-
uct V̂H

k,mkSk . The SVD of this product is given by

V̂H
k,mkSk = Qk3k

[
R(1)
k R(0)

k

]H
, (18)

where R(1)
k represents the first mk right singular vectors.

Finally, the product, SkR
(1)
k , forms an orthonormal basis of

dimension mk , and it represents the precoding matrix F̂k ∈
CM×mk that maximizes the capacity of the kth user while
achieving zero interference. The precoding matrix F̂k is given
by

F̂k = SkR
(1)
k . (19)

Hence, the received vector yk ∈ CNk×1 at user k becomes

yk = Hk F̂kdk +
K∑

j=1,j6=k

Hk F̂jdj + nk . (20)

The received vector yk , in (20), is finally left multiplied
by UH

k,mk , where Uk,mk ∈ CNk×mk is the matrix that contains
the first mk columns of the matrix Uk given in (15).

B. THE PER-USER RATE
The BS uses the quantized feedback, Ĥk , to compute the
precoding matrices, F̂k , and perform downlink precoding on
the transmitted data vector of user k , dk ∈ Cmk×1. BD is
a linear precoding scheme that cancels the interference at
each user due to all other users as discussed in Sec. III-A.
Therefore, the interference term in (7) is completely canceled
in the case of perfect CSI knowledge at the BS, i.e., Ĥk ≡ H̃k .

Then, the per-user ergodic rate for both cases I & II is given
by [17], [38]

RCSIT(γ ) = E log2

∣∣∣∣IN + γ

Kmk
HkFkFH

k H
H
k

∣∣∣∣, (21)

where uniform power allocation across the multiple data
streams is adopted.

In practical systems, the BS cannot have ideal downlink
CSI information because the feedback is limited with B bits
per user. Consequently, the second term in (7), which repre-
sents the interference at user k due to all other users, cannot
be totally canceled because the row-space of Ĥk is not exactly
the same as the true spatial direction of the channel, i.e., the
row space of H̃k . Hence, some residual interference power
will remain due to subspace quantization of the channel, and
hence the per-user rate for both cases I & II is given as [39]

RQUANT(γ ) = E log2

∣∣∣∣∣∣IN + γ

Kmk

K∑
j=1

Hk F̂jF̂H
j H

H
k

∣∣∣∣∣∣
−E log2

∣∣∣∣∣∣IN + γ

Kmk

K∑
j=1,j6=k

Hk F̂jF̂H
j H

H
k

∣∣∣∣∣∣,
(22)

where the term Hk F̂k F̂H
k H

H
k represents the useful signal

intended for user k and,
K∑

j=1,j6=k
Hk F̂jF̂H

j H
H
k represents the

multi-user interference at user k . It should be noted that (21)
and (22) are optimistic ergodic rates since we assume that
the receiver has perfect knowledge of the combined channel
matrix, HkFk , and also of the whole interference covariance
matrix. This can be approached by pilot schemes in the
downlink streams.

IV. AoD-ADAPTIVE SUBSPACE CODEBOOK
The AoDs of the ith path of user k , θk,i, which were defined
in (3), depend on the obstacles that surround the BS. These
obstacles change their physical positions very slowly com-
pared with the channel path gains coherence time. On the
other hand, the path gains in Gk depend on the scatterers
that surround user k . Therefore, the path gains inGk , changes
much faster than the path AoDs, θk,is, [16], [40]. Hence, the
coherence time of the AoDs of a resolvable path is much
longer than the coherence time of its path gains. However,
the size of Gk is much lower than the size of the channel
matrix, Hk , which substantially reduces the feedback over-
head. The spatial direction of the user k , H̃k , is asymptoti-
cally isotropically distributed in its channel subspace, i.e., the
row-space ofAk (θk,1, · · · , θk,Pk ), during the angle coherence
time. As in (3), we can see that each row of the channel
matrix, Hk , is a linear combination of the Pk resolvable
paths of user k , where Ak is determined by the AoDs. H̃k
is asymptotically isotropically distributed in the row-space of
Ak because the rows of Ak , i.e., steering vectors, are asymp-
totically orthogonal to each other, i.e., AkAH

k ≈ MIPk [16],
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Algorithm 1: Feedback Summary

1 Input: Ak , Gk ;
2 if Case I then
3 Quantize Gk to Ĝk = Ck,Zk , where Zk is calculated

as in (8);
4 The index Zk is fed back to the BS;
5 end
6 if Case II then
7 Calculate Vk,mk as in Sec. III-A2;
8 Decompose Vk,mk as Vk,mk =

1
√
M
AH
k Jk ;

9 Quantize Jk to Ĵk = CII,k,ZII,k , where ZII,k is
calculated as in (23);

10 The index ZII,k is fed back to the BS;
11 end

and the path gains in Gk are modeled as i.i.d. circularly sym-
metric complex Gaussian random variables with zero mean
and unit variance. This makes the spatial direction of each
user to be asymptotically uniformly distributed in its channel
subspace during the angle coherence time, and this justifies
the use of subspace packing based channel quantizer to quan-
tize and feedback the channel matrices. The number of paths,
Pk , is greatly less than the number of transmit antennas, M ,
at the BS because of the limited scattering of mmWave [20].
Hence, the row-space of Ak is a low-dimensional subspace
of the full M -dimensional ambient space. As long as the
BS knows the AoDs, only the row-space of the path gains
matrix, Gk ∈ CNk×Pk , needs to be quantized and fed back
to the BS. Then, for case I, Ĝk ∈ CNk×Pk , is chosen from
the codebook Ck = {Ck,1,Ck,2, · · · ,Ck,2B}, that consists of
2B low-dimensional quantization sub-spaces inCNk×Pk . Ĝk is

chosen from the codebook according to (8). The rows of Ĝk
are orthonormal, and its row-space is isotropically distributed
over the complex Pk -dimensional space.
For case II, since the column-space of Vk,mk lies in the

column-space of AH
k , as proved in Sec. III-A2, then Vk,mk

can be represented as Vk,mk =
1
√
M
AH
k Jk , where Jk ∈

CPk×mk is a unitary matrix. As long as the BS knows Ak ,
we can only quantize and feed back the column space of
the low-dimensional matrix Jk . Hence, a low-dimensional
codebook CII,k = {CII,k,1,CII,k,2, · · · ,CII,k,2B}, that consists
of 2B low-dimensional quantization sub-spaces in CPk×mk ,
can be used to quantize Jk in case II. The matrices CII,k,i ∈

CPk×mk are unitary and represent the quantization subspaces

of case II AoD-adaptive subspace codebook. Then, Ĵk =
CII,k,ZII,k ∈ CPk×mk is chosen from CII,k according to

ZII,k = argmin
i∈[1,2B]

[
mk −

∥∥∥JHk CII,k,i

∥∥∥2
F

]
. (23)

The column-space of Ĵk is isotropically distributed over the
complex Pk -dimensional space. Algorithm 1 summarizes the
feedback procedures for both cases I & II.

A. RANDOM SUBSPACE QUANTIZATION CODEBOOKS
Generally, obtaining optimal quantization codebooks is not
an easy task, especially when the number of quantiza-
tion subspaces is large. Therefore, the performance of such
codebooks can be studied by averaging over random code-
books [41]. Analyzing the performance of random codebooks
is much easier, providing us with some useful performance
bounds for structured codes. In our subspace quantization
problem, a set of 2B mk -dimensional subspaces is randomly
picked in the ambient Pk -dimensional Euclidean space. The
infinite set containing all subspaces of dimension mk in
the Euclidean Pk -dimensional space is called Grassman-
nian manifold, which is denoted by GPk ,mk . The 2B random
quantization subspaces in our random quantization code-
book are uniformly distributed over the Grassmannian man-
ifold GPk ,mk . We can pick a quantization subspace over over
GPk ,mk at randomby generating amatrix of dimensionmk×Pk
whose all entries are i.i.d. complex Gaussian. Then, using
QR decomposition, an orthonormal basis for the row-space
of the generated random matrix is obtained to represent the
randomly picked quantization subspace. Then, the average
quantization error can be calculated by averaging over many
random codebooks. However, random codebooks cannot be
used in practical systems.

B. GRASSMANNIAN SUBSPACE PACKING
As long as the row and column spaces of Ĝk and Ĵk respec-
tively are isotropically distributed over GPk ,mk , we can solve
a subspace packing problem in the Grassmannian manifold
to obtain a structured codebook to be used in practical sys-
tems. The subspace packing problem is defined by finding 2B

subspaces in a higher dimensional space where the minimum
distance between any two subspaces in the set is maximized.
The chordal distance, defined in (10), is used in this paper
as the distance metric between the subspaces. By solving
the subspace packing problem and finding a good set of
2B quantization subspaces, we can construct a Grassmannian
subspace codebook. An iterative algorithm in [36] is used
to solve the subspace packing problem. When the number
of subspaces in the codebook, 2B, is lower than P2k , the
minimum inter-distance between the subspaces in the Grass-
mannian codebook reaches an upper bound called the Rankin
bound [36]. This upper bound is the maximum attainable
theoretical distance that can be achieved.

V. THROUGHPUT ANALYSIS
In this section, we calculate the rate gap between the ideal rate
and the rate using a random subspace quantization scheme.
The rate gap is calculated assuming that all users have the
same number of receive antennas, i.e., Nk = N , the same
number of data streams, i.e., mk = m, and the same number
of resolvable paths, i.e., Pk = P. Then, an expression for the
required number of feedback bits to achieve some constant
rate gap is derived, where we prove that the number of bits
scales linearly with the transmit power γdB in dB.
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A. RATE GAP CALCULATIONS
The per-user rate of the ideal CSI case is given by (21), and
the per-user rate of the quantized CSI case is given by (22).
Both cases I & II follow the same analysis in calculating the
rate gap because the channel feedback in both cases, Ĥk and
V̂k , has the same isotropic distribution [38] in the channel
subspace Ak . Then, the same BD procedure is applied in
both cases to calculate the precoding matrices. Following
Theorem 1 of [39], which gives an upper bound for the rate
gap in Multi-User MIMO systems, we derive an expression
for the per-user rate gap due to limited feedback in our
massive MIMO system model.

The per-user rate gap 1R(γ ) is bounded as follows

1R(γ ) = RCSIT(γ )− RQUANT(γ ) (24)
(a)
≤ E log2

∣∣∣IN + γ

Km
HkFkFH

k H
H
k

∣∣∣
−E log2

∣∣∣IN + γ

Km
Hk F̂k F̂H

k H
H
k

∣∣∣
+E log2

∣∣∣∣∣∣∣∣IN +
γ

Km

K∑
j=1
j6=k

Hk F̂jF̂H
j H

H
k

∣∣∣∣∣∣∣∣ (25)

(b)
= E log2

∣∣∣∣∣∣∣∣IN +
γ

Km

K∑
j=1
j6=k

Hk F̂jF̂H
j H

H
k

∣∣∣∣∣∣∣∣ (26)

(c)
= E log2

∣∣∣∣∣∣IN + γ

Km
H̃k

∑
j6=k

F̂jF̂H
j

H̃H
k βk

∣∣∣∣∣∣ (27)

(d)
≤ log2

∣∣∣∣IN + γMPNKm
(K − 1)E

[
H̃k F̂jF̂H

j H̃
H
k

]∣∣∣∣
(28)

Here, (a) follows by neglecting the positive semi-definite
interference terms in the quantity

E log2

∣∣∣∣∣∣IN + γ

Km

K∑
j=1

Hk F̂jF̂H
j H

H
k

∣∣∣∣∣∣. (29)

Following the BD procedure, both Fk and F̂k are asymptoti-
cally isotropically distributed, and they are chosen indepen-
dent ofHk . This means that the first two terms in (25) are the
same and hence gives (b). By writing HH

k Hk = H̃H
k βkH̃k ,

where the rows of H̃k ∈ CN×M forms an orthonormal basis
for the subspace spanned by the rows of Hk , and βk are the
N non-zero and unordered eigenvalues of HH

k Hk . Step (c)
follows using the fact that |I+ AB| = |I+ BA| for matrices
A and B. Finally, (d) follows from Jensen’s inequality due to
the concavity of log, noting that E[βk ] = MPN IN [39].

The value E
[
H̃k F̂jF̂H

j H̃
H
k

]
is computed as follows. First,

the channel subspace H̃k can be decomposed as lemma 1
in [39] as follows

H̃k = YkTkĤk + ZkMk , (30)

where Tk ∈ CN×N is unitary and uniformly distributed over
GN ,N , Zk ∈ CN×N is lower triangular with positive diagonal

elements and satisfies tr(ZkZH
k ) = d2(Hk , Ĥk ), Yk ∈ CN×N

is lower triangular with positive diagonal elements satisfying
YkYH

k = IN − ZkZH
k , and the rows of Mk ∈ CN×M form

an orthonormal basis for an isotropically distributed complex
N dimensional subspace in the M − N dimensional right
nullspace of Ĥk . Moreover, the matrices Yk , Ĥk and Tk are
independent of each other, as are the pairZk andMk . By right
multiplying both sides of (30) by F̂j, we get

H̃k F̂j = ZkMk F̂j, (31)

for k 6= j due to the fact that Ĥk F̂j = 0 by the BD procedure.
Therefore,

E
[
H̃k F̂jF̂H

j H̃
H
k

]
= E

[
ZkMk F̂jF̂H

j M
H
k Z

H
k

]
. (32)

The inter-user interference in (32) can reach its upper bound
in an extreme case, where the channels of all the K users
are strongly correlated. In this case, K users share the same
clusters around the BS in the ray-based channel model, i.e.,
P1 = P2 = · · · = PK = P and A1 = A2 = · · · = AK = A.
Thus, we can omit the subscript k of Pk and Ak in this proof.
As discussed earlier in Sec. IV, the row-spaces of both the
feedback channel matrix, Ĥk , and the spatial direction, H̃k ,
of user k are distributed in the row-space of A. Since the
row-space of H̃k can be orthogonally decomposed along the
row-spaces of Ĥk and Mk as in (30), Mk should also be
distributed in the row-space of A. Hence, by utilizing the
asymptotic orthogonality among the row vectors of A when
M → ∞, Mk can be expressed as Mk =

1
√
M
PkA,

where the rows of Pk ∈ CN×P are orthonormal. As long
as the row-space of the quantized channel matrix Ĥk lies
in the row-space of A, and according to Sec. III, then
the column-space of the precoding matrix F̂j lies in the
column-space of AH. Consequently, utilizing the orthogonal-
ity among the column vectors of AH when M → ∞, the
precoding matrix F̂j can be expressed as F̂j = 1

√
M
AHEj,

where Ej ∈ CP×m is a unitary matrix whose columns are
orthonormal. Hence, substituting in (32), the interference
term can be calculated as

E
[
H̃k F̂jF̂H

j H̃
H
k

]
= E

[
ZkPk

AAH

M
EjEH

j
AAH

M
PH
k Z

H
k

]
= E

[
ZkPkEjEH

j P
H
k Z

H
k

]
(33)

where the second equality follows from the result AAH
=

MIP whenM →∞.
Lemma 1: In the extreme case that all K users are strongly

correlated and share same clusters around the BS, i.e., P1 =
P2 = · · · = PK = P and A1 = A2 = · · · = AK = A,
we have E

[
ZkPkEjEHj P

H
k Z

H
k

]
=

N
P−N E

[
ZkZHk

]
=

N
P−N

D
N .

Proof: As previously discussed, we have that Mk =
1
√
M
PkA and, from Sec. IV, the feedback channel matrix

can be expressed as Ĥk =
1
√
M
ĜkA. Considering that the
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row-space of Mk is distributed in the right null space of Ĥk
as shown in (30), we have

ĤkMk
H
=

1
M

ĜkAAHPkH = ĜkPkH = 0. (34)

Therefore, the row-space of Pk is distributed in the right null
space ofXik . On the other hand, as previously mentioned, the

BD precoding matrix can be expressed as F̂j = 1
√
M
AHEj.

Since the column-space of the BD precoding matrix F̂j is
orthogonal to the row-space of Ĥk , i.e.,

Ĥk F̂j =
1
M

ĜkAAHEj = ĜkEj = 0. (35)

Therefore, the column-space of Ej is isotropically distributed
in the right null space of Ĝk . Now we have proved that both
the row-space of Pk and the column-space of Ej are isotropic
sub-spaces in the null space of Ĝk . Based on [39], we have

E
[
ZkPkEjEH

j P
H
k Z

H
k

]
=

N
P− N

E
[
ZkZH

k

]
=

N
P− N

D
N
IN

(36)

whereD is the average subspace quantization error which, for
case I, is given by

D = E
[
d2(H̃k , Ĥk )

]
, (37)

while for case II, D is given by

D = E
[
d2(Vk , V̂k )

]
, (38)

where d(., .) is the chordal distance defined in (10). �
Hence, the interference term is given as

E
[
H̃k F̂jF̂H

j H̃
H
k

]
=

D
P− N

IN (39)

Consequently, the rate gap can be upper bounded using the
following equation

1R(γ ) ≤ N log2

(
1+

γ (K − 1)MPN
Km(P− N )

D
)
. (40)

B. QUANTIZATION ERROR
In this subsection, we calculate the quantization error, D,
of the spatial direction of user k when the AoD-adaptive
subspace codebook is used for both cases I & II.

For Case I, we have, from Sec. IV, that Ĥk =
1
√
M
ĜkAk .

Also, the spatial direction of the kth user, H̃k , can be repre-
sented as H̃k =

1
√
M
G̃kAk as previously discussed in II-B.

Hence, the quantization error, for case I, can be given as

D = E
[
N −

∥∥∥H̃kĤH
k

∥∥∥2
F

]
= E

[
N −

∥∥∥∥ 1
M

G̃kAkAH
k Ĝ

H
k

∥∥∥∥2
F

]
(41)

(a)
≈ E

[
N −

∥∥∥G̃kĜH
k

∥∥∥2
F

]
. (42)

Step (a) is true due to AkAH
k ≈ MIP. Both G̃k and Ĝk

are isotropically distributed subspaces on the complex

P-dimensional space. Then, the distortion or error that results
from the quantization of can be bounded as [42]

D ≤ D̄ =
0( 1T )

T
(CPN )−

1
T 2−

B
T , (43)

where T = N (P− N ) and CPN = 1
T !

∏N
i=1

(P−i)!
(N−i)! .

For case II, from Sec. IV, we have that Vk,m =
1
√
M
AH
k Jk

and V̂k,m =
1
√
M
AH
k Ĵk , where Jk ∈ CP×m is a unitary matrix.

Hence, the quantization error, for case I, can be given as

D = E
[
m−

∥∥∥VH
k,mV̂k,m

∥∥∥2
F

]
= E

[
m−

∥∥∥∥ 1
M

JHk AkAH
k Ĵk

∥∥∥∥2
F

]
(44)

≈ E
[
m−

∥∥∥JHk Ĵk∥∥∥2F
]
. (45)

The column-spaces of both Jk and Ĵk are distributed on
the P-dimensional space. Then, the quantization error D, for
case II, can be bounded as

D ≤ D̄ =
0( 1T )

T
(CPm)−

1
T 2−

B
T , (46)

where T = m(P− m) and CPm = 1
T !

∏m
i=1

(P−i)!
(m−i)! .

C. FEEDBACK BITS
Now, we discuss the required number of feedback bits B that
results in a constant rate gap. After bounding the quantization
error by D̄, the rate loss can be bounded as

1R(γ ) ≤ N log2

(
1+

γ (K − 1)MPN
Km(P− N )

D̄
)
. (47)

Let the rate gap be such that 1R(γ ) ≤ log2(b) bps/Hz, and
substituting for D̄ from (43), then the number of feedback bits
that guarantees this rate loss is given by

B = 3.32 T log10(γ )− T log2

[
(b

1
N − 1)

Km(P− N )
(K − 1)MPN

]
+T log2

(
0( 1T )

T

)
− log2(C), (48)

where C = CPN and T = N (P − N ), for case I, while
C = CPm and T = m(P − m), for case II. It is noticeable
that B scales linearly with the transmit power γdB in dB.

VI. WATER-FILLING BASED CHANNEL QUANTIZATION
AND FEEDBACK
Due to limitations of the zero-forcing techniques in gen-
eral when the system noise is high, BD based precoding is
sub-optimal at low SNR region. Consequently, in this section,
we introduce a quantization scheme that is based on opti-
mal power allocation (water-filling) across the multiple data
streams to maximize the system’s total sum rate at low SNR
region. In the case of uniform power allocation, as discussed
in the previous sections, only the row-space of Hk , i.e. (the
spatial direction of user k) is needed at the BS. However,
in order to perform power allocation across data streams,
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more information about the channel matrix, Hk , is needed at
the BS. Therefore, in this section, we present a quantization
and feedback scheme of the channel matrix, Hk , which is
needed when optimal power allocation (water-filling) across
the multiple data streams is intended. The water-filling algo-
rithm needs to know the direction of each channel vector of
user k , i.e., the direction of the rows of Hk , as well as the
magnitude information of each direction, i.e., the Frobenius
norm of each row of Hk . Consequently, we cannot use the
subspace quantization codebook that we used in the previous
sections, but instead, we shall quantize and feedback each of
the Nk channel vectors separately to maintain the direction
information in each of them. We will discuss the proposed
channel quantization scheme first in the next subsection, then
the power allocation scheme is presented in the following
subsection. Later, we will show that water-filling is very
useful at low SNR regions.

A. PROPOSED CHANNEL QUANTIZER FOR
WATER-FILLING
Now, the proposed quantization technique of the channel
matrix Hk of the kth user is discussed. The total number
of bits, B, allocated for quantizing Hk is equally distributed
among the rows ofHk . As discussed in Sec. IV, we only need
to feedback the path gains matrix Gk because the channel
subspace of each user Ak is assumed to be known at the BS.
Hence, each row of the path gains matrix Gk ∈ CNk×Pk is
quantized separately using vector quantization. The quantiza-
tion of the ith row, gk,i ∈ C1×Pk , of the path gainsmatrixGk is
chosen from the codebook Ck,i = {ck,i,1, ck,i,2, · · · , ck,i,2B∗ },
where ck,i,j ∈ C1×Pk is the jth quantization vector in the
codebook and B∗ is the number of bits used to quantize
each row, gk,i, of Gk . The kth user quantizes its Gk to
Nk quantization vectors that form the quantized path gains
matrix Ĝk , where Ĝk is defined as

Ĝk =

[
ĝTk,1, ĝ

T
k,2, · · · , ĝ

T
k,Nk

]T
, (49)

and ĝk,i = ck,i,Zk,i is chosen from the codebook Ck,i, where
the index Zk,i is calculated such that

Zk,i = argmin
j∈
[
1,2B∗

] 1−
∣∣∣gk,icHk,i,j∣∣∣2 . (50)

Additionally, the squared Frobenius norm of the ith row
of Gk , ‖gk,i‖2F , is quantized and fed back to the BS. The
magnitude information of the channel vectors does contribute
in the power allocation solution because it affects the calcu-
lation of the singular values of the effective channel, HkFk ,
of User k , where Fk is the precoding matrix. We show next,
in Sec. VI-B, the procedures of the power allocation solution
and how it is computed using the singular values of HkFk .
The squared frobenius norm ‖gk,i‖2F has an Erlang distriution
with parameters (Pk , 1) because the entries of gk,i ∈ C1×Pk

are modeled as complex Gaussian random variables with zero
mean and unit variance. Hence, we can quantize ‖gk,i‖2F ,

FIGURE 2. Performance comparison between BD with subspace
quantization (4 bits/channel subspace) vs. the proposed vector
quantization (VQ) without water-filling (2 bits/channel vector), with
Nk = 2, P = 3, K = 8, and M = 128.

using Lloyd-Max scalar quantizer [43], based on Erlang dis-
tribution and number of quantization levels equals to 2Bnorm ,
where Bnorm is the number of bits allocated for quantization
of ‖gk,i‖2F . Although the frobenius norm information is useful
in performing the water-filling process at the BS, we will
show in the simulation results section that allocating all the
feedback bits in quantizing the direction information of the
channel vectors is more useful than allocating a portion of the
bits for direction information and another for quantizing the
norm information. This reflects that the direction information
is more sensitive for enhancing the per-user rate using water-
filling than the norm information.

The proposed channel quantizer in this section is sub-
optimal when uniform power allocation among the users’
data streams is adopted. The subspace quantization proposed
in Sec. IV is better than this quantizer when the BD with
uniform power allocation is used. The reason for this is that
the BD procedure does not require the direction information
of each row vector of Hk but only the spatial direction of
it as discussed in Sec. II-B i.e. (the subspace spanned by
the rows of Hk ). Hence, the subspace quantization performs
better because it assigns all the bits in quantizing the channel
matrix’s spatial direction H̃k . However, we show next that the
proposed vector quantizer in this section, combinedwith opti-
mal power allocation across the data streams, outperforms
subspace quantization at low-to-mid SNR regions.

Fig. 2 compares the performance of the two different quan-
tizers when uniform power allocation across the data streams
is adopted. The figure shows that subspace quantization out-
performs the proposed vector quantization in all SNR ranges.
This indicates that subspace quantization of Hk is always
better than vector quantization when using BD with uniform
power allocation strategy.
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B. POWER OPTIMIZATION ALGORITHM
In this subsection, a power optimization technique, which
aims to maximize the system’s total sum rate at low SNR
region, is discussed. Power optimization across the data
streams is discussed under both perfect and limited CSI feed-
back cases.

1) POWER OPTIMIZATION ASSUMING IDEAL CSI AT THE BS
Here, the power optimization algorithm based on ideal CSI at
the BS is discussed. We are interested in finding the power
allocation diagonal matrices 1k ,∀k ∈ {1, 2, · · · ,K } that
maximize the sum rate of the whole system. Hence, the
precoding matrix at the BS for user k becomes Fk1

1/2
k . When

considering the BD based linear precoding at the BS, the
inter-user interference is totally cancelled and the sum rate
of the system assuming perfect CSI knowledge at the BS
becomes

Rtot = E

{
K∑
k=1

log2
∣∣∣INk +HkFk1kFH

k H
H
k

∣∣∣} , (51)

where Fk is the precoding matrix at user k and the diagonal
elements of 1k scale the power transmitted into each of the
columns of Fk . Because of the nature of the BD structure, the
BS sees every user as a point-to-point MIMO link. Therefore,
the sum information rate of the system can be calculated as

Rtot = E

{
K∑
k=1

log2
∣∣∣INk +32

k1k

∣∣∣} , (52)

where 3k is a diagonal matrix whose elements σk,i are the
singular values of the effective channel, HkFk , of user k and
1k is a diagonal matrix whose elements δk,i are the power
values transmitted into each of the Nk data streams of user
k . Now, the power allocation problem that maximizes the
sum-rate can be rewritten as

max
δk,i

K∑
k=1

Nk∑
i=1

log2
(
1+ σ 2

k,iδk,i

)

s.t.
K∑
k=1

Nk∑
i=1

δk,i ≤ γ,

where γ is the total transmitted power at the BS. The above
problem is clearly a convex optimization problem and it can
be solved using the standard solutions. The solution of this
problem is well known and it has a closed form expres-
sion [37] when solved using the Lagrange multiplier method.
The power allocation solution of the above problem is given
as

δ∗k,i =

(
1
α
−

1

σ 2
k,i

)+
. (53)

The value of α is determined such that the total power
constraint at the BS is satisfied. Hence, α is the solution of

Algorithm 2: Power Optimization Across the Data
Streams
1 User k quantizes Gk into Ĝk based on vector

quantization and send it to the BS
2 The BS calculates Ĥk = ĜkAk
3 The BS performs the BD procedures and generates the

precoding matrices F̂k
4 The BS computes the singular values, 3k , of the

effective channel, Ĥk F̂k , of user k
5 The BS calculates the value α that satisfies this equation

K∑
k=1

Nk∑
i=1

(
1
α
−

1

σ̂ 2
k,i

)+
= γ

6 The BS calculates the optimal power scaling values, δ̂k,i,
according to

δ̂∗k,i =

(
1
α
−

1

σ̂ 2
k,i

)+
7 The final scaled precoding matrix of user k becomes

F̂k1
1/2
k

the following equation

K∑
k=1

Nk∑
i=1

(
1
α
−

1

σ 2
k,i

)+
= γ. (54)

2) POWER OPTIMIZATION ALGORITHM CONSIDERING
VECTOR QUANTIZATION OF CSI AT THE BS
Now, the power optimization algorithm when considering
limited feedback of CSI at the BS is discussed. We shall
use the proposed vector quantizer as discussed in Sec. VI-A.
The path gains matrix Gk is first quantized to Ĝk at the kth
user then fed back to the BS. Then, the BS uses Ĝk to form
Ĥk and hence going through the BD procedure to generate
the precoding matrices F̂k as discussed in Sec. III-A1. Then,
power optimization accross the data streams is adopted at
the BS. Algorithm 2 summarizes these steps in an easy way.

Due to limited feedback of CSI at the BS, the interference
on user k due to signals of other users is not totally canceled.
Because of this residual interference, we cannot express the
information rate of user k as in (52). Hence, the per-user rate
considering limited feedback of CSI and power optimization
across the data streams is given by

Rlimited,k (1k ) = E log2

∣∣∣∣∣∣INk +
K∑
j=1

Hk F̂j1jF̂H
j H

H
k

∣∣∣∣∣∣
−E log2

∣∣∣∣∣∣INk +
K∑

j=1,j6=k

Hk F̂j1jF̂H
j H

H
k

∣∣∣∣∣∣.
(55)
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FIGURE 3. BD vs conventional ZF: case I with Nk = mk = 2.

It should be noted that Algorithm (2) uses the quantized chan-
nels Ĥk and the precoders F̂k to solve a water-filling problem
only on the leading term of (55) ignoring the interference
term; the interference is taken into the rate expression as
a consequence. Therefore, Algorithm (2) can be considered
as a simplified approach to solve our water-filling problem
without optimizing the whole rate, which is in general a
very difficult problem to find a closed-form solution or to
optimally solve using a low complexity numerical method.

VII. SIMULATION RESULTS
In this section, the performance of the proposed feedback
system and codebook design is examined and verified. The
system parameters are set as follows. The number of antennas
at the BS is M = 128, the number of users in the system
is K = 8, the number of antennas at each user is Nk =
N = 2 for case I, while N = 3 for case II. The number
of data streams transmitted simultaneously to each user is
mk = 2 and the number of resolvable paths isP = 3. The path
AoDs of the users are independent and uniformly distributed
in
[
−

1
2π,

1
2π
]
. The simulation parameters of our simulation

setup are collected in Table 2.

A. BD BASED SUBSPACE QUANTIZATION (CASE I & II)
Fig. 3 compares the performance of BD against the con-
ventional ZF scheme, in which the multiple antennas of the
same user are orthogonally precoded, in Case I with Nk =
mk = 2. Fig. 3 also compares the performance of the ideal
case, where perfect CSI is assumed available at the BS, and
the limited feedback case where quantized CSI is fed back to
the BS with B = 2 and 4 per user. Note that in the case of
conventional ZF scheme, the channel vector of each antenna
at the kth user is separately quantized and fed back to the BS;
therefore, the feedback bits for each user are divided among

FIGURE 4. BD vs conventional ZF: case II with Nk = 3, mk = 2.

TABLE 2. Simulation parameters.

its receive antennas in this case. This is because in the case of
conventional ZF, any user antenna is used to receive a single
stream, and all other streams must be nulled, including the
streams intended for the same user, which is not the case
in BD. In Fig. 3, we plot the per-user rate using the AoD-
adaptive codebook with both random subspace quantization
and using Grassmannian subspace packing based codebook.
From this figure, we can easily see the BD approach’s per-
formance gains compared to the conventional ZF approach.
It can also be noticed that Grassmannian codes are always
better (or slightly better) than random codes. Finally, it is
clear that increasing the number of feedback bits enhances
the system performance, and we can get arbitrary close to the
performance of the ideal system with perfect CSI at the BS.
Remark: It should be noted that the random subspace

quantization scheme does not correspond to a fixed quantizer
that is picked randomly and used in all iterations. Random
quantization here means that in each iteration, we generate a
quantizer whose quantization subspaces are drawn randomly
from a uniform distribution over the space. Then, the per-user
rate is averaged over all the iterations assuming that the
quantizer is known at both the user and BS side. By aver-
aging over a large number of iterations, some good quantiz-
ers might equalize the bad performance of some other bad
quantizers. Indeed, random quantization is impractical to be
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FIGURE 5. Rate gap analytical upper bound in (47) vs simulated rate gap
as the number of BS antennas M increase, downlink SNR = 10 dB.

implemented in any practical system and it is only here used
to evaluate the feedback scheme and for comparison purpose.
In contrast, Grassmannian codes are structured, which deem
them suitable for practical implementation in real systems as
they are designed according to some specific design criteria
with some performance guarantees.

Fig. 4 compares the performance of BD with ideal and
quantized CSI against the ideal and quantized CSI of the
conventional ZF scheme for case II withNk = 3,mk = 2with
B = 2 and 4 per user. The same observations mentioned
above while commenting on the results of Fig. Fig. 3 apply
in this case as well. Moreover, it is noticeable that case II
has a higher per-user rate than case I for the same number
of user streams. This is since in case II, we assume more
receiving antennas at each user than the number of streams,
which introduces diversity gain at the users.

Then, we assess the derived analytical rate gap upper bound
in (47) versus the number of BS antennas M . The number of
feedback bits B is set as (48) with b = 3 and the downlink
SNR at the users is fixed at 10 dB. Fig. 5 shows the the-
oretically derived upper bound on rate gap in (47) and the
simulated rate gap of the proposed feedback scheme, which
is calculated by 1R = RCSIT − RQUANT . The graph shows
that the analytical rate gap becomes tighter as the number of
BS antennas increases. This observationmakes sense because
the assumption that AkAH

k ≈ MIPk , which we used to derive
the theoretical upper bound, becomes more valid.

In Fig. 6 and Fig. 7, we present numerical results for
the practical per-user rate when using a random quantiza-
tion codebook for both cases I and case II respectively. The
required number of feedback bits is scaled as in (48) to
guarantee a maximum rate gap of log2(b), where we show
the results for b = 2 and 4. We notice in Fig. 6 and Fig. 7 that

FIGURE 6. Ideal vs quantized CSI, case I, with scaled B as in (48).

FIGURE 7. Ideal vs quantized CSI, case II, with scaled B as in (48).

the rate gap, between the ideal case (perfect CSI at the BS)
and the practical case, does not increase as the SNR increases;
this is due to scaling the number of feedback bits B with the
transmitted power γdB as explained above. It is clear that the
rate gap at any SNR does not exceed the maximum value
of log2(b), which validates the expression in (48) for both
cases I & II.

B. BD WITH WATER-FILLING BASED VECTOR
QUANTIZATION
In this subsection, the derived power allocation scheme’s per-
formance based on the proposed vector quantizer is examined
and verified. Also, we compare the power allocation scheme
based on vector quantization with the subspace quantization
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FIGURE 8. Performance of BD with and without WF for both ideal and
quantized cases with B = 4, 8 bits/user.

FIGURE 9. Performance of BD-subspace quantization vs. BD-VQ
combined with WF at low SNR region with 8 bits/user.

technique discussed in Sec. IV. The number of antennas at
each user,Nk = N = 2, is equal to the number of data streams
transmitted simultaneously to each user, mk = 2.

In Fig. 8, the performance of the BD schemewithout power
optimization is compared to the performance of BD with
power optimization for both ideal and quantization cases.
We use a total of B = 8 and 4 bits per user, whether
for subspace quantization or vector quantization. The graph
clearly shows that ideal BD with power optimization (water-
filling) outperforms the regular ideal BD for all SNR ranges.
However, the gap between both schemes decreases in higher
SNR regions. The reason for this fact is that water-filling
resists the system noise. Hence, at high SNR values, the

FIGURE 10. Performance comparison of BD-VQ combined with WF when
only quantizing the direction information vs. quantizing both directions
and norms.

system noise nearly becomes insignificant, and the regular
BD approaches BD with water-filling.

Fig. 8 also shows a trade-off between both schemes in
the case of limited feedback (quantization). In the low SNR
regime, water-filling with the proposed vector quantization
scheme is better than the regular BD with subspace quan-
tization. The reason for this trade-off is that we have two
sources of noise, in that case, the system noise and the quan-
tization noise. At low SNR, the system noise is more dom-
inant than the quantization noise, hence using water-filling
along with vector quantization is more useful as it is more
immune to the system noise. However, at high SNR, the
noise resulted from the quantization ofHk is more dominant.
Hence, no gain is added from using the water-filling solution,
and subspace quantization, which is the better quantizer when
no water-filling as in Fig. 2, resulted in better performance.

As long as BD based power optimization scheme is useful
at the low SNR regime, Fig. 9 shows a comparison of both
schemes in the range from SNR = −2dB to SNR = 2dB
with B = 8 bits/user. The graph shows that BD based
water-filling using the proposed vector quantization clearly
outperforms the regular BD based subspace quantization at
these low SNR levels. There is nearly a gain of 1dB in SNR
when using water-filling with vector quantization. This gain
is moderately good at these low SNR levels. Fig. 9 also shows
the effect of having the ideal Frobenius norms of the channel
vectors gk,i on the water-filling solution at the BS. It is clear
that this norm information does enhance the BD based vector
quantization with water-filling because it affects the calcu-
lation of the singular values of the effective channels of the
users as discussed before. However, the performance of the
water-filling scheme is still better than the regular BD based
subspace quantization if all the bits are put in quantizing only
the directions of gk,i and no information is fed back about the
norms of gk,i.
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Finally, we show in Fig. 10 that there is no gain of quan-
tizing the Frobenius norms of gk,i when we have a limited
number of feedback bits per user, but we shall put all the
bits in quantizing only the directions. As previously discussed
in Sec. VI-A, we used the Lloyd-Max algorithm to quantize
‖gk,i‖2F which has an Erlang distribution. The performance
of BD based vector quantization with water-filling is better
when we allocate the total B = 8 bits for quantizing the
directions of gk,i than allocating 4 bits for the directions and
another 4 bits for the squared norm values.

VIII. CONCLUSION
In this article, we have considered the problem of channel
feedback in FDD massive MIMO systems with multiple
antennas at the users. We devised a channel feedback scheme
using low-dimensional codebooks to reduce the required
feedback bits. The rate gap between quantized channel feed-
back and the case with perfect CSI at the BS has been math-
ematically quantified for the considered cases. A systematic
approach to design the channel feedback codebooks, in which
the codebook design is formulated as a subspace packing
problem over the Grassmannian manifold, was proposed.
It was shown that using vector quantization, combined with
water-filling, can outperform BD-based subspace quantiza-
tion in the low SNR region. However, in the high SNR region,
the situation is reversed, and the performance of BD-based
subspace quantization becomes better where the effect of
receiver noise is less significant, while the effect of the quan-
tization noise becomes dominant.

For future directions of this research, we may consider
studying and analyzing the use of analog feedback for the
path gain matrix Gk and compare it to the digital subspace
quantization proposed in this paper. It is expected to have
some trade-off between both schemes in the high/low SNR
regions that needs to be investigated.
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