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ABSTRACT In robotic manipulators, feedback control of nonlinear systems with fast finite-time conver-
gence is desirable. However, because of the parametric and model uncertainties, the robust control and
tuning of the robotic manipulators pose many challenges related to the trajectory tracking of the robotic
system. This research proposes a state-of-the-art control algorithm, which is the combination of fast integral
terminal sliding mode control (FIT-SMC), robust exact differentiator (RED) observer, and feedforward
neural network (FFNN) based estimator. Firstly, the dynamic model of the robotic manipulator is established
for the n-degrees of freedom (DoFs) system by taking into account the dynamic LuGre friction model.
Then, a FIT-SMC with friction compensation-based nonlinear control has been proposed for the robotic
manipulator. In addition, a RED observer is developed to get the estimates of robotic manipulator joints’
velocities. Since the dynamic friction state of the LuGre friction model is unmeasurable, FFNN is established
for training and estimating the friction torque. The Lyapunov method is presented to demonstrate the
finite-time sliding mode enforcement and state convergence for a robotic manipulator. The proposed control
approach has been simulated in the MATLAB/Simulink environment and compared with the system with
no observer to characterize the control performance. Simulation results obtained with the proposed control
strategy affirm its effectiveness for a multi-DoF robotic system with model-based friction compensation
having an overshoot and a settling time less than 1.5% and 0.2950 seconds, respectively, for all the joints of
the robotic manipulator.

INDEX TERMS Robotic manipulator, robust exact differentiator, feedforward neural network, fast integral
sliding mode control, LuGre friction model, autonomous articulated robotic educational platform.

I. INTRODUCTION
Researchers in academia and industry have shown a sig-
nificant deal of interest in robotic manipulators in recent
years due to scientific advancements and industrial needs [1].
In reality, robotic manipulators play a significant role in
the industry by lowering manufacturing costs, improving
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accuracy, quality, and efficiency, and offering more flexibility
than specialized equipment. They ought to be controlled and
operated smoothly, securely, and reliably to accomplish tasks
with higher throughput or productive exploration [2]. The
control of robotic manipulators is a complex task because
their dynamic behavior is exceptionally nonlinear, highly
coupled, and time-varying. Apart from that, uncertainties in
the system model, such as external disturbances, parame-
ter uncertainty, and nonlinear frictions, constantly exist and
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cause the unstable performance of the robotic system [3].
In the literature, several approaches have been proposed for
controlling the robotic systems, such as sliding mode control
(SMC) [4], H-infinity (H∞) control [5], optimal control [6],
PID control [7], adaptive control [8], model predictive
control (MPC) [9], and other nonlinear controls reported
in [10]–[12].

One of the main issues impeding the fast-tracking behavior
of robotic manipulators is friction, resulting in steady-state
tracking inaccuracy [13]. On the other hand, nonlinear fric-
tion often causes disturbances in a control system and may
even make it to unstable [14]. As a consequence, friction is an
intrinsically nonlinear occurrence that is hard to predict [15].
Therefore, friction should be modeled for better control
performance and efficiency. Various friction modeling tech-
niques are available in the literature, each describing and pre-
dicting improved and more accurate friction behavior [16].
Frictionmodels are, generally, categorized into static [17] and
dynamic [18] friction models. Static models merely illustrate
the direct relationship between actual velocity and friction.
They ignore the friction memory effect and hysteresis result-
ing in inaccuracy near zero velocity. In [19], an overview
of static model methods based on the Coulomb and Stribeck
effects is provided. Furthermore, the dynamic models capture
physical characteristics and reactions by adding up the extra
state variables. To put it simply, the static and dynamic fric-
tion models vary primarily in the predicted frictional effects,
computing efficiency, and implementation complexity [20].
A suitable friction model is a fundamental need for effective
compensation outcomes. A dynamic model known as the
LuGre model has been widely utilized because it provides a
fair balance of complexity and accuracy [21], [22]. A reason-
ably compact formula captures the significant friction phe-
nomena, such as Coulomb friction, viscous friction, stiction,
and dynamic brittle behavior at the contact surface.

Friction is a significant element influencing the accuracy
with which an actuator system places or positions itself.
The feedback linearization technique may be used to com-
pensate for known nonlinearities. In terms of friction com-
pensation, there are two types of schemes [23]: friction
model-based and friction non-model-based schemes. The
concluding methodology is employed when precise friction
modeling is complicated or unnecessary, such as for variable
structure control [24], PD control [25], and neural network
control [26]. The model-based methodology [27] may be
used if the friction parameter can be accurately identified
to a certain degree. For dynamic friction compensation with
backstepping control in [28], a robust observer for friction and
a recurrent fuzzy neural network (RFNN) were designed. The
generalized Maxwell-slip (GMS) friction compensation in a
two-DoF robotic manipulator utilized an online least-squares
estimator to estimate the friction force in each joint [29].
A proportional derivative (PD) controller was illustrated
in [30] with friction compensation. The adaptive sliding con-
trol (A-SC) algorithm with friction compensation for robotic
manipulator established on fuzzy random vector function is

described in [31]. The tracking control of robotic manipula-
tor is presented in [32], the proportional derivative adaptive
control approach is employed for the estimation of system
dynamics, and SMC is implemented for the unknown dynam-
ics of the robotic manipulator. A robust adaptive control
technique based on fuzzy wavelet neural networks (FWNNs)
dynamic structure is presented in [33]. Furthermore, using a
radial basis function (RBF) neural networks technique, [34]
proposed an amplitude saturation controller (ASC) that can
ensure the development of exclusively saturated unidirec-
tional attractive force for maglev vehicles on an elastic track.
This paper’s primary objectives and contributions are sum-
marized as follows:

• The robot’s dynamic model for the five-DoF AUTAREP
robotic manipulator is built using the dynamic LuGre
friction model. Under the uncertainties limited by cer-
tain positive functions, the velocity of each link is
obtained using the RED observer.

• The FFNN approximates the friction torque, using the
estimated velocities of joints obtained from the RED
observer. Furthermore, a FIT-SMC scheme is proposed
to achieve the desired trajectory tracking in finite time
in the presence of uncertainties.

• Henceforth, the Lyapunov method is utilized to
strengthen the robotic manipulator’s stability. Results
obtained from the proposed approach are illustrated
in the MATLAB/Simulink environment to validate the
FIT-SMC performance.

The contents in the remaining article are organized as fol-
lows: Section II presents a robotic manipulator state-space
model, including the LuGre friction model. In Section III, the
FIT-SMC approach is designed; RED observer, FFNN, and
Lyapunov stability analysis is provided. Simulated results are
provided in Section IV. Section V provides some concluding
observations and remarks. Finally, Section VI presents the
acknowledgment.

II. MATHEMATICAL MODELING
The effectiveness of robotic manipulators can be improved
by combining high motion accuracy with high speed. Feed-
back robot controllers have a challenging task to accomplish
this objective because they rely on the operating state with-
out taking into account the dynamic features of the robot
manipulator. In the last several years, certain model-based
controllers have been created, and the performance of
robot manipulators has been improved. The research in this
paper has been accomplished using the Autonomous Articu-
lated Robotic Educational Platform (AUTAREP) ED-7220C
robotic manipulator as shown in Fig. 1.

A manipulator is typically comprised of a kinematic chain,
and its dynamic model is influenced by various drawbacks,
such as coupling among the links, low rigidity, and unknown
parameters. Furthermore, nonlinear effects often induced by
the actuation mechanism include dead zone and friction.
Thus, a robotic manipulator’s motion is greatly influenced
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FIGURE 1. AUTAREP robotic manipulator ED-7220C.

by its dynamic modeling, which is an extremely important
consideration [35]. In order to implement control algorithms,
the mathematical system model is an essential requirement.
It is a five-DoF articulated robotic manipulator. Each joint
movement is operated by a single DC servo motor except for
the wrist joint, which is actuated by two motors for roll and
pitch movements. The joints’ location is provided through
optical encoders equipped on each joint actuator axis of the
robotic manipulator. Table 1 presents the robotic manipulator
parameters.

TABLE 1. AUTAREP robotic manipulator parameters.

A. DYNAMIC MODEL
The forces and torques that produce robot motion are the
subjects of research in dynamicmodeling of the robot system.
In this research, the Euler-Lagrange method is used for the
n-link robotic manipulator dynamic equation [36], and it is
illustrated by the following equation:

τrη = M
(
rη
)
r̈η + CF

(
rη, ṙη

)
ṙη + G

(
rη
)
+ TF

(
ṙη
)
, (1)

where for n joints, M (rη) ∈ Rn×n is the mass matrix,
G(rη) ∈ Rn×1 describe the gravitational matrix, CF (rη) ∈
Rn×n represents the centripetal and Coriolis forces, TF (ṙη) ∈
Rn×1 represents friction torques, and total torque of robotic
manipulator joints is denoted by τrη.
The characteristics of the robotic manipulator dynamics in

Eq. (1) are as follows.

1) PROPERTY I
The matrix of inertia M (rη) is symmetric, is positive defi-
nite, and satisfies the condition given in the following equa-
tion [37]:

�1Iη ≤ M (rη) ≤ �2Iη, (2)

where �1 and �1 are constants having positive value and Iη
is the identity matrix.

2) PROPERTY II
The CF (ri) centrifugal and Coriolis matrix in a dynamic
robotic manipulator model justifies the following equa-
tion [37]:∥∥CF (rη, ṙη)∥∥ ≤ �3

∥∥rη∥∥ , ∀rη, ṙη ∈ Rn, (3)

where �3 is the positive constant and ‖(.)‖ is the Euclidean
norm.

3) PROPERTY III
The term G in Eq. (1) is defined as a gravitational quantity
[38] bounded as

‖G‖ ≤ gb ∀rη ∈ Rn, (4)

where gb is defined as a positive function of rη.

4) PROPERTY IV
N (rη, ṙη) = Ṁ (rη) − 2CF (rη, ṙη) is a skew symmetric [39];
that is, the components ηjk ofN satisfy ηjk = −ηkj and assure
the following equation [38]:

xT
[
Ṁ (rη)− 2CF (rη, ṙη)

]
x = 0, ∀x ∈ Rn. (5)

B. DYANMIC LuGre FRICTION MODEL
Friction is also a significant factor in the performance of
control systems. Friction reduces the precision of positioning
and pointing systems, and it can also cause instabilities in the
system. Friction compensation can help mitigate the negative
impact of friction to a certain extent. It is beneficial to have
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simple models of friction that capture the essential properties
of friction for use in control applications. The LuGre friction
model [40], a nonlinear dynamic friction model widely used
in mechanical and servo systems, will be used to formulate
the dynamic friction TFη in this subsection [41]. The LuGre
model is defined as in Eq. (6) and Eq. (7) and Table 2
demonstrates the LuGre friction model parameters.

dzF
dt
= ω − σ0

| ω |

g (ω)
zF , (6)

TFη = σ0 zF + σ1żF + f (ω), (7)

TFη = σ0 zF + σ1żF + σ2ω, (8)

where TFη is the predicted friction torque, its internal state is
described by zF , ω is the velocity between the two surfaces
in contact, the function ω that changes with velocity is illus-
trated in Eq. (9), and σ1 and σ0 are coefficients for bristles.

gη(ω) = τcη +
(
τsη − τcη

)
exp− (|ω/ωs|), (9)

where τcη represents the Coulomb friction torque and τsη
describes the stiction torque. The ωs factor determines pre-
cisely how gη(ω) reaches the Coulomb torque τcη immedi-
ately.

TABLE 2. Parameters of the LuGre friction model.

III. CONTROL DESIGN AND MATHEMATICAL
PRELIMINARIES
Due to nonlinearities and uncertainties in robotic dynamical
models, adaptive control has been acknowledged as a viable
method for mechanical robotic controller design. An innova-
tive stable finite-time controller design for five-DoF robotic
manipulators is given in Fig. 2 that uses FIT-SMC-based law,
a variable-gain RED, and FFNN to achieve the ultimate aim.

The AUTAREP robotic manipulator system is presented in
Eq. (10) as a state-space model, where r1η is the state variable
of position, r2η is the velocity state variable, and rzη is the
friction state of the dynamic LuGre friction model.

ṙ1η = r2η
ṙ2η = M−1τr −M−1(CF r2η + Gr1η + σ0rzη
+σ2r2η + σ1ṙzη )

ṙzη = r2η − σ0

∣∣r2η∣∣
g
(
r2η
) rzη

 , (10)

where η = b(base/waist), s(shoulder), e(elbow),w(wrist).
The control law has three main phases. First, a robust

FIT-SMC is developed to guarantee and ensure the global

FIGURE 2. Block diagram.

boundness of the robot manipulator system in the occurrence
of uncertainty and disturbance. Secondly, the velocities of the
system are estimated by utilizing variable-gain REDobserver.
In the third phase, FFNN is applied to estimate friction torque
as the friction in the robotic manipulator model is not mea-
surable. In the recent literature, a fast TSMC technique has
been extensively used to achieve speedy finite-time stability.

A. VARIABLE-GAIN ROBUST EXACT DIFFERENTIATOR
A second-order nonlinear dynamics of the robotic manipula-
tor may be expressed as follows in order to demonstrate the
differentiator design:

˙̄r1η = r̄2η
˙̄r2η = Jr̄η (t, r̄η)+ Kr̄η (t, r̄η)Ur̄η (t, r̄η)

}
, (11)

where r̄η = [r̄1η, r̄2η] and η = b, s, e,w.

ψ1η = ˆ̄r1η − r̄1η, (12)

ψ2η = ˆ̄r2η − ˙̄r1η. (13)

TheREDobserver designwill provide the estimated/predicted
derivatives for the available positions. In other terms, every
r1η will provide r2η estimations. Moreover, the dynamics of
tracking error may be described as follows:

ψ̇1η = −3i1(t, r̄i)|ψ1η|
1/2sign(ψ1η)+ ψ2η,

ψ̇2η = −
3i2(t, r̄i)

2
sign(ψ1η)− r̈1η. (14)

To construct the control algorithm, most controllers need
all state variables. In reality, however, all state variables
are unavailable for measurement for various economic and
technological reasons. The high-frequency gain is boosted
by a differentiator (classical). The controller design requires
the whole state to be accessible; however, in this study, only
the measurements of position states are considered to be
available. As a result, to estimate its velocities, a smooth
differentiator is used as an observer. The proposed differ-
entiator has a unique feature that reduces high-frequency
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chattering compared to the conventional sliding mode-based
differentiators. The globally converging RED is taken into
account.

˙̂r̄1η = −γ1η(t, r̄η)|ψ1η|
1/2signψ1η + ˆ̄ri2, (15)

˙̂r̄2η = −
γ2η(t, r̄η)

2
signψ1η, (16)

where γ1η and γ2η are the variable gains of RED observer
expressed in Eq. (15) and Eq. (16), respectively:

γ1η(t, r̄η) = χi +
1
βi

[V 2
η (t, r̄η)

2εi
+ 2εi(βi + 4ε2i )

+ 4εiVη(t, r̄η)
]
, (17)

γ2η(t, r̄η) = 2εiγ1η(t, r̄η)+ βi + 4ε2i , (18)

where i = 1, 2, 3, 4, η = b, s, e,w and the arbitrary positive
constants are χi, εi, βi. It is worth noting that the error
dynamics are globally converged to zero in limited time with
the aid of this velocity observer. Now, the previously men-
tioned robust global convergence differentiator can be used to
estimate the derivatives of theAUTAREP roboticmanipulator
system.

For the waist (base) joint,

˙̂r1b = −γ1b|r̂1b − r1b|1/2sign(r̂1b − r1b)+ r̂1b,
˙̂r2b = −

γ2b

2
sign(r̂1b − r1b)

γ1b = δ1 +
1
β1

( V 2
1

2ε1
+ 2ε1(β1 + 4ε21 )+ 4ε1V1

)
,

γ2b = 2ε1γ1b + β1 + 4ε21


. (19)

For the shoulder joint,

˙̂r1s = −γ1s|r̂1s − r1s|1/2sign(r̂1s − r1s)+ r̂2s,
˙̂r2s = −

γ2s

2
sign(r̂1s − r1s)

γ1s = δ2 +
1
β2

( V 2
2

2ε2
+ 2ε2(β2 + 4ε22 )+ 4ε2V2

)
,

γ2s = 2ε2γ1s + β2 + 4ε22


. (20)

For the elbow joint,

˙̂r1e = −γ1e|r̂1e − r1e|1/2sign(r̂e1 − r1e)+ r̂2e,
˙̂r2e = −

γ2e

2
sign(r̂1e − r1e)

γ1e = δ3 +
1
β3

( V 2
3

2ε3
+ 2ε3(β3 + 4ε23 )+ 4ε3V3

)
,

γ2e = 2ε3γ1e + β3 + 4ε23


. (21)

For the wrist joint,

˙̂r1w = −γ1w|r̂1w − r1w|1/2sign(r̂1w − r1w)+ r̂2w,
˙̂r2w = −

γ2w

2
sign(r̂1w − r1w)

γ1w = δ4 +
1
β4

( V 2
4

2ε4
+ 2ε4(β4 + 4ε24 )+ 4ε4V4

)
,

γ2w = 2ε4γ1w + β4 + 4ε24


. (22)

B. NEURAL NETWORK-BASED APPROXIMATION
In recent years, controllers based on neural networks (NN)
have gained significant interest. The controller uses neu-
ral networks’ capabilities to learn nonlinear functions and
handle specific problems that need large parallel comput-
ing. This subsection discusses how to approximate friction
torque (TFη) using a FFNN and it is presented in Fig.3.
The network’s information flows exclusively in the forward
direction. It starts from the level of the input layer and later
flows to the level of hidden layers, if they are any. Finally,
it concludes at the output layer. The output of feedforward
networks is entirely dependent on the network input (and,
in some instances, the output is constant while the network
input is fixed).

FIGURE 3. FFNN for robotic manipulator.

The approximation function under consideration is a
three-layer feedforward neural network (TLFFNN). The
TLFFNN consists of one input layer with one hidden layer
and one output layer. The hidden layer of TLFFNN has
artificial neurons, N = 10. The artificial NN is primarily
trained and guided by mapping the input data to the output
data. As soon as the system has been trained, the estimated
model functions will adapt autonomously and then provide
the desired output under running conditions based on the
training data provided by the user. Optimization techniques
are used in the training of the artificial NN. It is worth noting
that the friction states rzη and ṙzη of the robotic manipulator
and the estimated velocity of the joints obtained from robust
exact differentiator functioned as inputs of TLFFNN. TFη is
considered a network output. Consider TFη = Jr :

PN = N 1
N

( N∑
n=1

Q1
N ,nX + d

1
N

)
= N 1

N

(
Q1T
N Xn + d1N

)
,

Ĵr = N 2
m

( m∑
N=1

Q̂2
Jr ,NPN

)
= Q̂2T

Jr PN


, (23)
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where n = 3 and m = 1 denote the number of network
inputs and outputs for a single joint of robotic manipulator,
respectively (for all joints, n = 12 and m = 4). The hidden
layer of neurons is N = 10 and M = 4 is the number of
output layer neurons.

The tan-sigmoid N 1
N ∈ Rn

→ RN and pure linear
activation N 2

M ∈ RM
→ Rm are functions of the hidden

layer neuron and output layer neuron, respectively. b1N ∈ Rn

demonstrate the network bias that are utilized to improve
learning speed during network training. The input vector is
described as X = [rzη ṙzη ṙ1η] ∈ Rn. T̂Fη is the
desired target output. Q1

N ∈ Rn and Q2
Jr are the hidden layer

and output layers weights vector, respectively. The suggested
NN’s output algorithm is as follows:

Jr = Q2T
Jr P+ eJ , (24)

where eJ describes the network approximation error.

J̃r = Ĵr − Jr = T̃Fη

= Q̃2T
Jr P− eJ (25)

Q̃2
Jr = Q̂2

Jr −Q2
Jr ,

˙̃Q2
Jr =

˙̂Q2
Jr . (26)

C. FIT-SMC SCHEME
The difference between the expected and reference trajecto-
ries in the controller that generates the control inputs is uti-
lized as a performance benchmark. The speed of the different
motors fluctuates and varies as the control inputs are supplied
to the actuator. As an outcome, the underlying system’s antic-
ipated motion is accomplished. The reference tracking errors
expressed for the said purpose are given in the following
equation:

eη = r1η − rdη,

ėη = ṙ1η − ṙdη,

ëη = r̈1η − r̈dη. (27)

In contrast to the conventional SMC-based designs, TSMC
has superior speedy and finite-time convergence characteris-
tics, which improves high-precision control performance by
increasing the convergence rate towards an equilibrium point.
Consider the sliding surface manifold design as described
in the following equation to accomplish the primary control
objectives:

δη = ėη + αηeη + βη

∫ t

0
|eη|γηsign(eη)dt, (28)

where δη ∈ Rn, αη, βη > 0, and 0 < γη < 1 is the positive
number. Henceforth, the time derivative of δη(t) is used to
retain the system on the integral terminal sliding surface
δη(t) = 0. The time derivative of Eq. (28) is determined as
follows:

δ̇η = ëη + αηėη + βη|ėη|γηsign(eη). (29)

The objective is accomplished in SMC by setting δ̇η = 0.
Using this value as a substitute in Eq. (29),

0 = ëη + αηėη + βη|ėη|γηsign(eη). (30)

Substituting the values of error dynamics from Eq. (27) into
Eq. (30),

0 = ṙ2η − r̈dη + αη(ṙ1η − ṙdη)

+βη|ṙ1η − ṙdη|γηsign(r1η − rdη), (31)

ṙ2η = r̈dη − αη(ṙ1η−ṙdη)− βη|ṙ1η − ṙdη|γηsign(r1η − rdη).

(32)

Replace the value of ṙ2η in Eq. (32) from Eq. (10). Therefore,
Eq. (31) after considering TLFFNN can be written as follows:

0 = M−1
[
τη−(CF r2η+Gr1η+T̂Fη )

]
−r̈dη + αη(ṙ1η − ṙdη)

+βη|ṙ1η − ṙdη|γηsign(r1η − rdη). (33)

Solving Eq. (33) for τη, we get

τη = M
[
r̈dη − αη(r1η − ṙdη)− βη|r1η − ṙdη|γη

+ sign(r1η − rdη)
]
+ CF r2η + Gr1η + T̂Fη (34)

The SMC law’s control input is divided into two components.
The equivalent control legislation (τηeq) is the first compo-
nent, and it is a continuous term. The signum function is used
in the second half of the discontinuous control legislation
(τηdis). The sliding phase drive system guarantees slide to
equilibrium, while the reaching phase drive system maintains
a steady manifold. Consider the robotic manipulator system’s
overall control law (τηt ) as follows:

τηt = τηdis + τηeq. (35)

The discontinuous function τηdis is defined in the following
equation to compensate for the dynamic model uncertainties.

τηd is = −ϒ1ηδη − ϒ2ηsign(δη). (36)

The equivalent control input τηeq can be described as in the
following equation:

τηeq = M
[
r̈dη − αη(r1η − ṙdη)

−βη|r1η−ṙdη|γηsign(r1η−rdη)
]
+CF r2η+Gr1η+T̂Fη .

(37)

By invoking the values from Eq. (36) and Eq. (37) into
Eq. (35), the total control effort τηt of robotic manipulator
system is given by the following:

τηt = M
[
r̈dη − αη(r1η − ṙdη)

−βη|r1η − ṙdη|γηsign(r1η − rdη)
]
+ CF r2η + Gr1η

+ T̂Fη − ϒ1ηδη − ϒ2ηsign(δη), (38)
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where ϒ1η and ϒ2η are constants with positive value. The
control input τηt will be used to execute the tracking task for
robotic manipulator joints.
The following theorem is presented to demonstrate sliding
mode enforcement and tracking errors convergence in finite
time.
Theorem 1: Consider the robotic manipulator dynamics

described by Eq. (10). In the presence of matched uncertain-
ties, the proposed Eq. (28), the reaching law Eq. (36), and the
robust control law Eq. (38) provide finite-time enforcement of
the sliding mode. Furthermore, the tracking errors converge
to the origin in a finite amount of time.

Proof: In order to prove the above statement theorem,
the Lyapunov function time derivative is given by function
Lr , along the dynamics Eq. (10), one gets

Lr =
1
2
δ2η, (39)

L̇r = δη δ̇η, (40)

L̇r = δη

[
M−1(τηt − (CF r2η + Gr1η + T̂Fη))

− r̈dη + αη(ṙ1η − ṙdη)

+βη|ṙ1η − ṙdη|γηsign(r1η − rdη)
]
. (41)

Substituting Eq. (38) in Eq. (41) and then re-arranging it, one
has

L̇r = δη
(
−ϒ1ηδη − ϒ2ηsign(δη

)
≤ −ϒ1ηδ

2
η − ϒ2η|δη|,

(42)

L̇r + 2ϒ1ηLr +
√
2Lrϒ2η ≤ 0, (43)

where ϒ̄1η = 2ϒ1η, ϒ̄2η =
√
2ϒ2η,

L̇r + ϒ̄1ηLr + ϒ̄2η
√
Lr ≤ 0. (44)

The numerical expression of the settling time is derived from
Eq. (44) in the following form:

TS ≤
1

2ϒ̄1η
ln

(
ϒ̄1η
√
Lr
(
δη (0)

)
+ ϒ̄2η

ϒ̄2η

)
. (45)

The finite-time FIT-SMC function defined in Eq. (28) is
ensured by the differential inequality in Eq. (44) with slid-
ing mode convergence time in Eq. (45). Now, it is abun-
dantly obvious that δη = 0 is obtained by ensuring sliding
modes along Eq. (28). To put that into perspective, when δη
approaches zero, one must deal with

ëη + αηėη + βη|ėη|γηsign(eη) = 0. (46)

The second-order differential equation is finite-time stable
in δη; i.e., δη −→ 0 in finite time. It is worth noting that
the estimation of frictional torque is done using FFNNs.
It is appropriate to address neural networks in the following
subsection at this stage.

D. STABILITY ANALYSIS WITH LYAPUNOV FUNCTION
For stability analysis, the enhanced Lyapunov function is
described as follows:

V =
1
2
δ2η +

1
2ζ1

Q̃2T
Jr Q̃

2
Jr . (47)

The Lyapunov candidate function derivative is computed
as follows:

V̇ = δη δ̇η +
1
ζ1
Q̃2T
Jr
˙̂Q2
Jr . (48)

By substituting the values of δ̇η from Eq. (33),

V̇ = δη

[
ṙ2η − r̈dη + αη(ṙ1η − ṙdη)

+βη|ṙ1η − ṙdη|γηsign(r1η − rdη)
]
+

1
ζ1
Q̃2T
Jr
˙̂Q2
Jr . (49)

By replacing the value of ṙ2η with estimated friction torque
Tzη, Eq. (49) after TLFFNN is

V̇ =δη

[
M−1(τηt−(CF r2η+Gr1η+T̂Fη))−r̈dη+αη(ṙ1η−ṙdη)

+βη|ṙ1η − ṙdη|γηsign(r1η − rdη)
]
+

1
ζ1
Q̃2T
Jr
˙̂Q2
Jr . (50)

The control input is built accordingly after evaluation of
TLFFNN is demonstrated as follows:

τηt=M
[̈
rdη−αη(r1η−ṙdη)−βη|r1η−ṙdη|γηsign(r1η−rdη)

]
+CF r2η + Gr1η + T̂Fη − ϒ1ηδη − ϒ2ηsign(δη). (51)

By inserting the value of control input from Eq. (51), we get

V̇ = δη

[
−ϒ1ηδη−ϒ2ηsign(δη)−CF r2η−Gr1η−T̂Fη−M (r̈dη

−αη(ṙ1η−ṙdη)−βη|ṙ1η+ṙdη|γηsign(r1η−rdη))
]

+
1
ζ1
Q̃2T
Jr
˙̂Q2
Jr . (52)

By solving Eq. (52) and taking Eq. (23) and Eq. (24) into
consideration, we get

V̇ = δη

(
−ϒ1δη−ϒ2sign(δη)−Q̃2T

Jr P+eJ
)
+

1
ζ1
Q̃2T
Jr
˙̂Q2
Jr ,

(53)

V̇ =−ϒ1δη
2
−ϒ2δηsign(δη)+δηeJ−δηQ̃2T

Jr P+
1
ζ1
Q̃2T
Jr
˙̂Q2
Jr ,

(54)

V̇ =−ϒ1δη
2
−ϒ2δηsign(δη)+δη(eJ )−Q̃2T

Jr

(
δηP−

1
ζ1

˙̂Q2
Jr

)
.

(55)

The predicted weight selected from the above Eq. (55) is as
follows:

˙̂Q2
Jr = ζ1Pδη. (56)
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The eJ elements are assumed to be norm bounded by a
constant 0α ∈ Rn having positive value. Therefore, Eq. (56)
can be written as follows:

V̇ = −ϒ1δ
2
η − ϒ2δηsign(δη)+ δη0α, (57)

V̇ ≤ −ϒ1δ
2
η −

[
ϒ2 − |0α|

]
|δη|, (58)

where ϒ1 is a constant with a positive value and if the gain
of controller ϒ2 is selected in such a manner that ϒ2 > |0α|,
then Eq. (58) can be written as Eq. (59). Therefore, Eq. (59)
would be negatively semidefinite:

V̇ ≤− ϒ1δ
2
η −1|δη|, (59)

where 1 in Eq. (59) is defined as 1 = min(ϒ2 −1,

ϒ2 +1). As approximation error eJ based on NN has a min-
imum value, the state of the system achieves an equilibrium
point in finite duration.

IV. SIMULATION RESULTS AND DISCUSSION
The proposed control technique has been simulated in
MATLAB/Simulink for AUTAREP five-DoF robotic manip-
ulator. A step signal is employed to the controller for the tra-
jectory control of the AUTAREP robotic manipulator. Fig. 4
demonstrates the trajectory control of robotic manipulator
joints with desired step input signal. The suggested control
methodology assures the closed-loop equilibrium conver-
gence in a finite time and has a fast convergence rate. The
conventional slidingmode’s asymptotic convergence of states
is overcome and it a better convergence feature than regular
SMC. The settling time of AUTAREP robotic manipulator
joints after implementing the control algorithm is approxi-
mately between 0.2 secs and 0.3 secs. Similarly, the percent-
age overshoot of the AUTAREP robotic manipulator joints is
below 1.5%. Table 3 presents the AUTAREP robot manipula-
tor joints’ performance parameters such as overshoot, settling
time, and rise time.

FIGURE 4. Step response of robotic manipulator joints.

TABLE 3. Performance parameters of robotic manipulator joints. The unit
of all the times is secs.

FIGURE 5. Control effort (τηt ) of the robotic manipulator joints.

The control input torque (τηt ) of the robotic manipula-
tor is illustrated in Fig. 5. Moreover, the control input for
the proposed control strategy is realistic, and there is no
switch function in FIT-SMC; therefore, the chattering issue
is avoided. In a finite time, the tracking error converges to
zero as presented in Fig. 6. The sliding mode enforcement is
achieved at the start of the process, and the global robustness
of the closed-loop system is ensured.

One of the most effective ways of tackling uncertain-
ties appears to be the SMC methodology. Sliding mode,
as widely known, is precise and insensitive to disturbances
[42], [43]. The joints friction torque of the robotic manip-
ulator is estimated and trained using FFNN, as depicted in
Fig. 7. However, in the dynamic model of a robotic manipu-
lator, the friction state is not measurable; therefore, FFNN is
implemented to estimate joints friction torque. Fig. 8 presents
the estimated velocities of the robotic manipulator through
variable-gain differentiator observer.

In this methodology, it is understood that merely the mea-
surements of position states of the robotic manipulator are
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FIGURE 6. Error signals of the robotic manipulator joints.

FIGURE 7. Friction torque (TF ) of the robotic manipulator joints.

accessible. The dynamics error under differentiators will con-
verge to zero after the convergence procedure. It means that
the estimated states reach the original states of the robotic
manipulator in finite time. Fig. 9 and Fig. 10 present the
step response of the waist and shoulder joints of the robotic
manipulator with the RED observer and without the RED
observer. The results obtained using the RED observer are
compared with those when velocities of waist and shoulder
joints are available for control design. Various parameters
have been identified for the performance achieved by the
controller. It is important to be as accurate and comprehensive
as possible; the comparative findings are summarized based
on the step input signal in Table 4. This table takes into
the consideration the characteristics, such as settling time,
maximum percentage undershoot and overshoot, rise time,
and peak time.

FIGURE 8. Estimated velocity of the robotic manipulator joints.

TABLE 4. Comparison of performance parameters. The unit of all the
times is secs.

FIGURE 9. Step response of the base joint of the robotic manipulator
with and without RED observer.

More crucially, due to the robust behavior and excel-
lent performance (compared to noisy information) shown
by the suggested RED, the control algorithm appreciably
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FIGURE 10. Step response of the shoulder joint of the robotic
manipulator with and without RED observer.

accomplished stable tracking performance asymptotically.
Hence, the newly proposed controller is chosen as the excel-
lent candidate in the most recent control approaches because
it eliminates the dependence on the corresponding sensors.
Therefore, it decreases the reliance on the sensor in case of
sensor failure.

V. CONCLUSION
In this article, an AUTAREP robotic manipulator of five
DoFs is, firstly, modeled using the dynamic LuGre friction
model. Then, a finite-time FIT-SMC is proposed for five-DoF
AUTAREP robotic manipulators, followed by a RED
observer and FFNN approach. As an observer, a variable-
gain RED is employed to estimate the velocity states of
five-DoF AUTAREP robotic manipulator joints, which are
vital for developing the suggested controller methodology.
The friction is considered an unmeasurable internal state
in the dynamic model of the AUTAREP robotic manipu-
lator; therefore, FFNN is developed in which the friction
torque is trained and approximated. The FIT-SMC method is
employed to the AUTAREP roboticmanipulator that provides
finite-time convergence to the equilibrium points and guar-
antees good trajectory tracking performance. Furthermore,
it enhanced the robust performance of the AUTAREP robotic
manipulator. The proposed approaches keep the benefits of
classic SMC, such as speedy response, ease of implementa-
tion, and robustness to disturbances/uncertainties, and allow
the system states to reach the objective control point in a
finite amount of time. The disadvantage of adopting a NN
model in the proposed technique development is that it is a
computationally complicated function that takes a long time
to execute. It can take time for a network to converge to
an optimum learning state with minimal error using conven-
tional personal computer hardware and the backpropagation
algorithm. Simultaneously, the Lyapunov candidate func-
tion is used to present the finite-time stability analysis. The

simulation findings and comparison of the proposed control
algorithm with RED and without RED observer validate the
effectiveness of the proposed scheme.
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