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ABSTRACT The use of laparoscopic images and videos to reconstruct abdominal tissue structure overcomes
the visual limitations of human eyes and provides great convenience for the detection and diagnosis of
medical diseases. The method described in this paper is based on contrast learning and ORB-SLAM
design. The contributions of this study are as follows. (i) A data preprocessing thread is introduced,
which includes data augmentation and input frame evaluation. (ii) Encoding global information to avoid
semantic information loss and eliminate mismatch by designing an improved U-NET network. (iii) The
improved U-NET network was used to introduce a dual-branched Siamese network and GPU-accelerated
intensive reconstruction thread. The dual-branched Siamese network structure was used to compute the
depth information of the feature points and optical flow information in parallel, and the dense depth
estimation was obtained without interrupting the original sparse reconstruction. (iv) An experimental system
was established to conduct three-dimensional reconstruction tests on laparoscopic/endoscope /UBE videos
of 186 patients. To effectively provide more accurate feature detection and matching support for the
application of combat scenes, the influence of lens distortion was considered. Compared with the current
mainstream three-dimension reconstruction and deep learning algorithms, the practicability and superiority
of laparoscopic three-dimension reconstruction based on contrastive learning are demonstrated in clinical
scenarios such as surgical navigation, auxiliary diagnosis, and surgical simulation.

INDEX TERMS Contrastive learning, laparoscope, endoscope, medical images, three-dimensional recon-
struction.

I. INTRODUCTION
The emergence and development of laparoscopy breaks
through the visual limitations of the human eyes and pro-
vides a lot of convenience for the detection and diag-
nosis of medical diseases. In Minimally Invasive Surgery
(MIS) systems, estimating depth information from laparo-
scopic images, restoring dense 3D information and accurately
calculating laparoscopic position is the basis for realizing
computer-aided guidance, which is also a research hotspot in
the medical field.

Because the traditional methods are mostly based on
original pixels or traditional eigenvectors, the sparse texture
areas are easily to be adversely affected, resulting in incorrect
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calculation and matching, which cannot solve the problems
well such as lighting and ghost exposure. Therefore, we intro-
duce a new method based on contrastive self-supervised
learning to extract dense features, calculate depth information
with stronger robustness to sparse textures, lighting, etc., and
perform dense three-dimensional (3D) reconstruction.

As digestive endoscopy does not provide stereoscopic
images, it is difficult to transfer these techniques from surgery
to digestive endoscopy. In addition, because the gastroin-
testinal tract is located deep inside the body, which is thin
and constantly moving, it is difficult to obtain the precise
space needed for a 3D image. In this work, the researchers
used VR in flexible digestive endoscopy by implementing
different image sources in the virtual laparoscopy operation
room.Digital magnification of the digestive endoscopy image
relative to the examiner’s position is the only one possibility
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FIGURE 1. Network architecture.

for integrating these new tracking devices, which can also
be integrated with electronic endoscopy. In addition, conven-
tional endoscopic images alone can transform light-intensity
information into 3D images. Other image sources that can be
used in the virtual endoscopic operation room include previ-
ous CT scans and vital signs of patients during sedation [1],
etc.

The main contributions of this paper are as follows.

• A dual-branch Siamese network on the basis of the
traditional framework of ORB-SLAM, the addition of
dense depth estimation network DepthNet and the use
of optical flow to estimate camera motion FlowNet,
to overcome the inconsistency of color luminance
between different frames at the same position in medical
images, occlusion and reflection areas in images.

• We propose an improved U-NET to implement
DepthNet and FlowNet functionality.

• Qualitative and quantitative analyses of medical images
from 186 patients were performed using modern deep
learning methods as well as modern 3d reconstruction of
medical images. Setup comparison study, cross-patient
studies, respectively, to prove the superiority of our
method.

II. RELATED WORK
When Several methods have been explored for depth esti-
mation and 3D reconstruction of laparoscopy. These can
be divided into traditional multiview stereo algorithms and
methods based on full supervised learning.

The work of Gary [2] in 2016 has set a precedent in this
respect. The network was divided into three parts. The first
part is an encoder based on a traditional convolutional neural
network (the author uses a full convolutional network with a
skip connection structure). The input of the full convolutional
network is the left image, and the corresponding prediction
depthmap is obtained through the network. In the second part,

the depth map is combined with the image on the right to
obtain an inverted image based on the corresponding distance
at which the image moves along the scan line. In the third
part, the optical flow error of the original left image and the
deformation image is taken as the objective function to match
the reconstructed image.

Liu et al. [3] proposed a monocular endoscope video dense
3D reconstruction based on self-supervised learning and a
traditionalmultiview stereo algorithm,which does not require
prior modeling of anatomy or shadows, and does not require
human interaction and patient CT during training and appli-
cation. In the cross-case study using CT scan as ground truth,
submillimeter mean residual error was obtained.The system
has four modules in training and application, namely depth
estimation, depth map fusion, fault detection and pose map
optimization. In the application phase, SfM is first run on
video to estimate the camera attitude and sparse point cloud,
and ends when 3D reconstruction is successfully generated.
The dotted arrows indicate the execution order of the threads.
Then Liu proposed another method based on deep learning
which is proposed to reconstruct dense and accurate 3D sur-
face model structures of sinuses from direct motion recovery
from endoscope video, and relevant parameters were mea-
sured in clinical experiments. The results of the 3D recon-
struction are in good agreement with those of CT.

Some scholars have studied the methods of 3D reconstruc-
tion based on SLAM. Engel et al. [4] proposed a monocular
SLAM algorithm based on the direct method, which can build
a large-scale and globally consistent environment map com-
pared to the current direct method. The method can not only
obtain highly accurate attitude estimation based on direct
image registration, but can also reconstruct 3D environment
maps into attitude maps of key frames and corresponding
semi-dense depth maps in real time. Mur-Artal et al. [5] pro-
posed that ORB-SLAM, which uses unified ORB features,
can help the SLAM algorithm achieve endogenous consis-
tency in feature extraction and tracking, key-frame selection,
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3D reconstruction, closed-loop detection and other steps.
Mahmoud et al. [6] proposed a novel dense SLAM method
for reconstructing a dense stomach surface for handheld
monocular endoscopy. He combined Zero Mean Normalized
Cross Correlation (ZNCC) and a gradient Huber norm reg-
ularizer to match dense maps between cluster frames and
compute them in parallel. It can outperform pure stereo
reconstructions because the frame cluster can provide larger
parallax from the motion of the endoscope.

III. PROPOSED APPROACH
This paper proposes a kind of three-dimensional (3D) recon-
struction method for abdominal tissue, which is based on
the contrast from the supervised learning by laparoscopically
obtaining two-dimensional image reconstruction. The pro-
posed model can reconstruct the 3D geometric structure of
the viscera from monocular image sequences of laparoscopy,
as is shown in Fig.1, from which we can optimize the oper-
ation to improve the success rate of laparoscopic surgery.
The proposed network can be used in clinical surgical nav-
igation systems and in the preoperative application of virtual
simulation training. We describe a two-branch Siamese net-
work method based on U-Net [7] and traditional ORB-SLAM
threads that train the input frames using monocular laparo-
scopic /endoscopy. The features extracted by the differences
between the two branches which could increase the density
of the feature points compared with the traditional method.
Based on this, the depth acquisition network DepthNet and
optical flow estimation network FlowNet were introduced
to increase the corresponding feature points. The obtained
sparse signals predicted the dense depth information by self-
monitoring method and carried out the dense 3D reconstruc-
tion of the organization. At the same time, the alignment
between sparse and dense images, local and global images,
and scale consistency were ensured.

In Section A, we explain the structural framework and
working principle of the 3D reconstruction model of a self-
supervised double-branch Siamese network system based on
the U-Net. Section B introduces the pre-processing stage of
the model data and the ORB-SLAM framework foundation.
In Section C, we introduce a two-branch Siamese network
structure based on U-Net. In addition, we provide the encod-
ing and decoding parts of the network structure in detail in
Section D. We introduce in detail the depth acquisition net-
work DepthNet and optical flow estimation network FlowNet
proposed in Sections E and F, respectively. Meanwhile, the
loss function is consistent with the optical flow and depth,
and the network is trained by backpropagation of useful
information in the form of a gradient, so that the network
can update parameters. Finally, an accurate 3D reconstruction
was obtained using dense depth information. The specific
methods are described as follows.

A. PROPOSED NETWORK ARCHITECTURE
This section introduces all these concepts. The SFM learner
of the monocular depth estimation training framework

represented cannot solve the problems of scale consistency
and dynamic objects. Therefore, the system uses a sparse
feature 3D reconstruction framework based on monocular
ORB-SLAM to introduce an improved U-NET dual-branch
Siamese network. We added the training network DepthNet
for dense depth information extraction and FlowNet for opti-
cal flow estimation (extraction) in the data-processing pro-
cess. The overall system architecture is illustrated in Fig. 1.
The original ORB-SLAM pipeline is composed of Tracking,
Local Mapping, Loop Closing and Full BA four threads,
which can extract sparse depth information to form a sparse
3D reconstruction model. The reasons for the difficulty in
dense stereomatching are as follows: the color and luminosity
are inconsistent between different frames at the same position
and there are occlusion and reflection areas in the image.
Moreover, there were repeated patterns and nontextured areas
in the image. The difference extraction feature of the two
branches of the Siamese network based on the improved
U-Net can increase the density of feature points more than
that of the traditional method. Based on this, the depth acqui-
sition network and optical flow estimation network were
introduced to increase the corresponding feature points. The
sparse signals obtained can predict the dense depth infor-
mation using a the self-supervised method. Subsequently,
the dense 3D structure is reconstructed. Simultaneously, the
alignment between the sparse and dense, local, and global
images is ensured. In addition, the scale consistency was
taken into account.

First, DepthNet uses a sparse depth map estimated by
ORB-SLAM to place pose constraints. Then it extracts
dense depth information from the self-supervised dual-
branch Siamese network. In addition, a patch-based method
(see Section E for more details) was introduced to fill in the
missing features such as reflection weak texture, forming a
dense depth Map to ensure global consistency, aligning the
sparse and dense depth map. Finally, the network enriches
the depth-feature points in the original ORB-SLAM. Simul-
taneously, it enhances the map matching FlowNet to extract
the camera pose through optical flow information. FlowNet
is used to optimize the pose estimation and optimization in
the original ORB-SLAM thread using a sparse depth map
calculated by ORB-SLAM. An Optical flow composite RGB
images were used as the self-supervised signals. FlowNet is
also used to estimate self-motion and depth maps which are
obtained by triangulation and serve as an auxiliarymonitoring
signal. Then, depth feature points (including corner points,
corner points, SIFT edge points, etc.) are added. Through
FlowNet and DepthNet, the self-supervised contrast learning
method proposed by us adds depth information and 3d struc-
ture feature points, and finally forms a dense 3D reconstruc-
tion structure.

B. PRE-PROCESSING AND ORB-SLAM
In the data preprocessing stage, the input frames were ran-
domly cropped, and the color was changed to increase the
dataset. The frames are then split into two parts by odd
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FIGURE 2. Training data generation pipeline.

and even frames. Simultaneously, the distortion coefficient
estimated by the correction frame is used to correct the frame.
Phase sparse tracking, sparse reconstruction and mapping are
the traditional main threads of ORB-SLAM, which are used
to estimate sparse reconstruction, camera pose and point vis-
ibility while ignoring the black invalid area within the frame.
At the same time, we compared the internal and external
neural responses of the missing regions, such as reflection
without texture due to luminosity inconsistency, to ensure
that the details of local small patches of texture inside and
outside the region were similar. In addition, we considered
outliers in sparse reconstruction and applied filters to refine
the data. Without affecting the traditional sparse reconstruc-
tion ideas, we introduced contrastive self-supervised learning
to extract dense ORB features in phase-dense reconstruction,
align depth maps, and reconstruct the dense tissue sur-
face photographed by monocular laparoscopy. Details of
the dense reconstruction training method are described in
Sections D, E, and F.

C. TWO-BRANCH SIAMESE NETWORK
We refer to Liu’s network structure [8]. The difference
lies in the fact that Liu et al. updated the network struc-
ture using SFM from a monocular endoscope, from which
the self-supervised sparse signals were extracted as well as
the estimated dense depth estimation. However, the train-
ing framework of monocular depth estimation represented
by SFM learners cannot solve the problems of scale con-
sistency and non-rigid surface reconstruction. Therefore,
we introduced an improved U-NET based on a double-branch
Siamese network, which is committed to solving the prob-
lems of scale consistency and non-rigid micro-deformation
while improving the feature point extraction ability. This
improves the performance of the depth feature extraction and
3D tissue reconstruction. Our two-branch Siamese network
system structure is shown in Fig. 2, which is divided into
DepthNet as the depth-estimation thread. DepthNet estimates
the depth information of an image. FlowNet predicts the

optical flow estimated of the input image, which was also
used to estimate the camera pose and self-motion. The depth
map was obtained using triangulation as an auxiliary moni-
toring signal. The proposed network automatically extracted
ORB feature points, dense depth maps, and sparse optical
flow using a calibration video by laparoscope. The feature
extraction and matching threads were calculated in real time
with GPU acceleration. The feature point lies in the center
of the image patch, which is considered to be significant
in multiple images of the same scene and can be detected
repeatedly. Our detector recognizes the position of the feature
point and codes the surrounding patches using descriptors.
We used a discriminator (anti-loss) to sharpen the fill area
to make the image clearer, inputting the fill area into the
discriminator (spoofed discriminator).

In the process of ORB feature extraction, a two-branch
Siamese network was introduced to share the weight of the
preprocessed odd-even sequence. A sparse depth map, cam-
era pose and intrinsic features were also provided.We consid-
ered the proportional consistency in geometric consistency
and evaluated it using the geometric consistency loss. Con-
sidering the non-rigid structure of human tissues and the
slight deformation caused by the contraction of the heart-
beat and laparoscopic contact, a soft mask was introduced
to correct used the photometric errors. The most commonly
used networks in the field of depth estimation are VGG and
ResNet. ResNet performs better than VGG, but more parame-
ters lead to longer training and prediction times. The encoder
was constructed using a new U-NET network with fewer
parameters and a faster operation. The traditional network
based on U-NET relies on a long connection structure to
realize image recovery. The network we produced used a
12-layer network based on U-NET to complete our depth-
estimation task, in which the encoding part has six layers
and the decoding part also has six layers, as shown in Fig. 3.
To solve the problem of information redundancy reducing
network accuracy, we adopted the LFU-NET [9] structure
proposed by Lei et al., which can fuse the information of
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FIGURE 3. New U-Net architecture.

FIGURE 4. Encoding structure.

different levels extracted by the decoding layer and control
the number of network parameters, which leads to a better
effects that can be learned with fewer parameters.

D. ENCODER AND DECODER
The connection between the Encoder and Decoder was used
by Decoder to repair details. It was found that increasing the

score can improve the output resolution, so we integrated
the idea of residual network and added a branch structure.
We added 3, 4, 4, 2, and 2 convolution layers to the U-Net
encoder part conv0-conv4 respectively. The decoder parts
decode1-decode5 were successively added with 2, 3, 3, 2,
and 2 convolution layers, and the Resize_Biliner layer was
introduced in decode6. The latest stereo matching methods
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FIGURE 5. Results of different steps of the proposed method.

used a deep training model to improve the reconstruction
accuracy, but the optimization results increased the compu-
tational cost, even though a medium GPU network may not
be suitable. When a model must be deployed on a device with
limited resources, it can break down or even fail. Therefore,
we propose a network training model that can reduce com-
plexity without sacrificing accuracy. The codec model of the
combined 2D convolution and 3D convolution was designed
according to the cost volume.

The coding part consists of the Central region and Sur-
round region, as shown in the Fig. 4. The downside box is
a schematic diagram of processing the images of the two
periods before and after the input. Conv is the convolution
operation and sub is the difference image. When images from
the Central region and Surround region are input to the coding
end of the improved U-NET two-branch Siamese network,
the depth information can be extracted with the help of image
differences.

Ssubi,Csubi =
∣∣ f1,i − f2,i∣∣ , i = 1, 2, 3, 4, 5, 6 (1)

where Ssubi and Csubi are the different images of the con-
volution layer of layer i surrounding the central region of
the region respectively. fi is the feature image obtained from
the images of the two periods in the convolution layer of
layer i. Then the band dimension feature fusion is performed
for the difference images between the central region and the
surrounding region of the universal convolution layer. The
fused image was considered as the feature image extracted
from the coding end.

We use 2D MobileNet blocks to extend it to 3D stereo-
vision applications, and propose new costs to improve the
3D model accuracy to make its performance close to the real

value. It not only reduces the network parameters, but also
improves the network learning ability. Our network consisted
of DepthNet and FlowNet. DepthNet can estimate the depth
information whereas FlowNet estimates the optical flow. The
deep network consisted of a debugging-link codec network
with a general U-NET architecture. We used ResNet18 as the
encoding network. The deep decoder was similar to using
sigmoid to output different scale (1/8, 1/4, 1/2, 1/1) depth
maps [10], using FReLU instead of depth decoding where
other places are exponential linear units (ELU) nonlinear.
Adding FReLU to the encoder can improve the detail of
the depth map, increase the attention to high-dimensional
features, and reduce noise in depth estimation. For the optical
flow network, we used lucas-Kanade (LK) [11] optical flow
method to represent the predicted optical flow. It then rep-
resents the pose and rotation of the camera through the axis
angle, similar to [12]. During monocular sequence training,
the network inputs two sequences and outputs a single 6-dof
relative pose using ResNet18.

The dense depth-estimation network mainly consists of
a detailed encoder and decoder network architecture. The
encoder-decoder learns to map data points from the input
domain to the output domain through a two-stage mecha-
nism in the network. In the first stage, the encoder function
f = f (x) represents the compression of the input into a
latent-space representation. The decoder function y = g(f )
predictes the output in the second stage. In the encoder,
MobileNet is used to decompose the CNN layer into depth
and point direction layers based on the depth decomposition
process. Each depth layer uses a filter function to extract
low-resolution or weak-texture features from an input image.
The extracted features are fed into a decoder that extracts,
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merges, and upsamples them to produce a dense output depth
map. In the second stage of the network, the decoder consists
of six upsamples and a singleton layer. Each upsampling layer
performs a 3× 3 CNN to reduce the number of channels in a
2:1 ratio. Three jump connections are applied to reconstruct
a more detailed secret-level information for the final depth
map. To minimize reconstruction errors, the mixed loss func-
tion measures the differences between the ground truth and
predicted depth.

E. DEPTHNET
We constructed the proposed self-supervised deep comple-
tion network based on a previous self-supervised deep-
learning framework. The main difference is the use of two
different depth-dependent monitoring signals. We relied on
the successful framework of ORB-SLAM [13] as the basic
framework. The entire network consist of DepthNet as a
dense depth network. The dense depth estimation network,
called DepthNet, is used to constrain the camera pose and
ensure the alignment of sparse and dense depth maps to main-
tain local and global consistency. An optical flow estimation
network was used to estimate the optical flow and self-motion
of the camera. We focused on the corner and edge points of
the monocular laparoscopic image sequence. In the process
of endoscopy moving in the body, according to the char-
acteristics of the motion speed of pixels at different depths
in the monocular image, pixels far from the camera move
slowly, while pixels close to the camera move fastly. Aiming
at a multi-scale feature detection scheme, we localized the
activation of each channel in the maximum stable extremum
region by detecting local maxima in the activation graph of
multiple activation layers. We matched the detection of the
feature points in the training image with the double-branched
Siamese network. Lens distortion was considered at the same
time. Using a group of laparoscopes as an example, we calcu-
lated the depth map of the input frame. The sequence of the
input frame is shown in Fig. 5 (a). The calculated Euclidean
distance map and depth map are shown in Figs. 5 (c) and (d),
respectively. The obtained depthmap of the comparison study
is shown in Figs. 7 (b) and (d). Fig.7 (b) shows the depth
score calculated by different methods for pre-selected feature
points and a comparison of the real depth. The results showed
that the comparison method proposed in [3] was high, but the
selection line was poor. Method [17] scored similarly to ours,
but it was easy to fall into a local optimum. Method [18]
also tended to fall into a local optimum with a low score.
Our method scored higher in terms of true depth and was
more selective. Fig. 7 (d) shows the average and median
depth values calculated using the endoscope keyframe
sequence. When the number of pixels of the screened cor-
responding feature points decreases, the consistency also
decreases.

First, we used short-range depth (SFM/ORB-SLAM/ mul-
tiview geometry) as the monitoring signal. ORB-SLAM
tracked the motion of the camera in the last frame. Then,
it internally extracts the key frames that are passed on to

the local and global mapping threads. Specifically, for pixels
where a depth measurement exists, we calculated the differ-
ence between DepthNet’s estimated depth of odd and even
frames. Let p be a pixel, D(p) denote an even frame depth
map, and D̂(p) represent an odd frame depth map. The loss
function is defined as follows:

Ldd =
1
|Md |

∑
p∈Md

∣∣∣D(p)− D̂(p)∣∣∣ (2)

Furthermore, 3D points corresponding to the optical flow
recovery were used as monitoring signals. Similar to the
camera attitude estimation, k pixels are used to corre-
spond and dual-view triangulation [14] is applied to obtain
the depth of these pixels. Because the camera’s attitude
is relative in proportion, the depth obtained by triangu-
lation is also relative. To align the depth ratio between
the depth Dt obtained by triangulation and the depth esti-
mated by DepthNet D, a single-scale factor s is intro-
duced. The depth was considered to be D = sDt .
Using s, which minimizes the error, we calculate the loss as
follows:

Ldt =
1
|Mt |

∑
p∈Mt

∣∣∣D(p)− D̂t (p)∣∣∣ (3)

To solve the problem of low texture and lack of information
in a uniform region, we adopted the depth-consistent loss
algorithm. The depth inconsistency of each pixel can be
described as

Ddiff (p) =

∣∣Dab (p)− D′b (p)∣∣
Dab (p)+ D

′
b (p)

(4)

However, the depth scale predicted by the network was
consistent for both frames and sequences. Therefore, through
the estimated pose transformation, pixel-level differences can
be directly compared in the same coordinate system, thereby
quantifying the scale consistency between and. To strengthen
the geometric constraint between the two independently pre-
dicted depth maps, a scale-consistent loss is introduced,
which is expressed as

Lds =
1
|V |

∑
p∈V

Ddiff (p) (5)

Above all, the loss function for DepthNet is defined as
follows:

Ldepth = ωd1Ldd + ω
d
2Ldt + ω

d
3Lds (6)

In the training, the five weights are respectively set as
(ωd1 , ω

d
2 , ω

d
3 ) = (0.5, 0.0001, 0.2).

F. FLOWNET
Optical flow allows the calculation of the correct amount
for each pixel to produce the relative motion between two
images. Ego-motion estimation is an important part of the
self-supervised learning in this system. The optical flow
network is trained in an unsupervised manner. Therefore,
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the entire process can be regarded as unsupervised learn-
ing. Lv et al. [13] proposed a CNN that uses optical flow
images as input and self-motion as output to improve the
depth estimation performance in an indoor environment.
Zhou et al. [12] showed that it is more effective to estimate
self-motion by calculating the basic matrix based on the
correspondence obtained from optical flow than by inputting
optical flow images into a CNN. In this study, we used a
corresponding-based self-motion estimation method. In this
study, we used a corresponding-based self-motion estima-
tion method. The obtained optical flow diagram is shown in
Fig. 5 (e).

The core idea is to obtain a reliable correspondence from
the optical flow. FlowNet is used to estimate the forward
and backward optical flows of the input image. The occlu-
sion mask [14] and the flow consistency score [10] were
calculated. We then randomly sampled k correspondences
in the top 20% of the unoccluded area consistency score.
Once the correspondence is found, the basic matrix is cal-
culated using the 8-point algorithm [15] and RANSAC [16].
The appropriate camera pose is estimated using geometric
verification.

Non-rigid bodies, occlusion, and inaccurate depth predic-
tion of complex regions all lead to a greater loss of geo-
metric consistency. To solve the problem of inconsistent
dynamic object mapping, a soft mask and optical flow loss
are introduced, so that a soft mask with the same propor-
tion of sparse and dense mapping can explain the difference
in error distribution of each point in the spherical SLAM
results, alleviating the influence of sparse 3D reconstruction
errors.

M =

{
1− α · e−

∑
i b
i
n/σ − β · Ddiff , if bin = 1

0, if bin = 0
(7)

Mask can be understood to mean that the current pixel-
predicted depth is not affected by the above three reasons,
which can reduce the adverse effects of dynamic objects and
occlusion on training. In network training, the ratio of losses
in this region to the weight of the total losses is reduced, thus
weakening the influence of back propagation on parameter
updating. It is also a detection map for dynamic object and
scene occlusion.

The sparse flow graph of two-dimensional position in
frame K is organized into a regular two-dimensional grid,
which can be expressed as

Fk =
(
Uk − U
W

,
Vk − V
H

)
(8)

As a regular grid, U consists of H rows and V consists of
W columns.

To generate the correct dense depthmap consistent with the
sparse reconstruction of ORB-SLAM, a sparse optical flow
loss training network is introduced to minimize the difference
between dense optical flow maps and sparse optical flow
maps, so as to solve the problem of data imbalance caused

by inconsistent scales.

Ldf =
1∑
Mj

∑(
Mj

∣∣∣F sj − Fk ∣∣∣)
+

1∑
Mk

∑(
Mk

∣∣F sk − Fj∣∣) (9)

The overall loss function for the network training from the
pre-processing data is

Lreconst = λ1Ldepth + λ2Lflow (10)

G. LIVE ALIGNMENT OF KEYFRAME DEPTHMAPS AND
BUNDLE ADJUSTMENT
We combined the dense depth maps from the SLAM map
into a single coordinate system to obtain a globally consistent
reconstruction. Odd frames were used as anchors to keep the
depth map aligned with the sparse SLAM map. Therefore,
any update of the depth distortion layer and compact depth
mapmay result in a rearrangement of the compact depth map.
Various alignment methods have been studied extensively.
The RANSAC algorithm is widely used to align two images
and determine the necessary matrices. The geometric features
of each 3D point are encoded using feature vectors. The
FPFH can fully express the 3D features of points without
occupying excessive computing resources. Feature points that
do not meet the geometric constraints can be disqualified. All
matching points were recorded and returned. This monocular
scale recovery was computed only once for each sequence.
It was then used to scale all keyframe depth maps from the
same sequence. The Euclidean distances between all pixels
from the two reconstructions are shown in Fig. 5(c).

We used [20] to fuse depth data, which is achieved by
minimizing the energy function, including the depth infor-
mation error and optical flow information error. The depth
was the most accurate when the error function was min-
imized. Abdominal densification was calculated by itera-
tion and minimization of the total loss. After each BA of
SLAM, the attitudes of the sparse points and keyframes
are refined. This refinement may result in a misalignment
of the density depth map with respect to the SLAM map.
Such improvements may involve not only rotation and trans-
lation, but also scale changes. Therefore, we aligned each
depth map by using the method proposed in [9]. In addition,
in order to improve the alignment efficiency, we propose a
mixed attention mechanism to optimize our network with the
help of [9], and fine-tune the loss function of the unsuper-
vised 3D reconstruction algorithm. The intrinsic parameters
of the camera were extracted via camera calibration, and
the external parameters were calculated using ORB-SLAM.
These parameters are input into two multiview stereo vision
methods, and the results of the two methods are com-
pared to obtain better reconstruction results than unstructured
datasets. The monocular-to-stereo reconstruction alignment
results are shown in Fig. 5 (b). The final 3D reconstruction
results are shown in Fig. 5 (f).
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IV. EXPERIMENTS AND EVALUATION
A. DATA COLLECTION AND PRE-PROCESSING
1) DATASETS
Endoscope images were obtained using a discontinuous opti-
cal amplification endoscope series (GIF-HQ 290 model)
and a CV-290 video system (Olympus Medical System).
In addition to the open dataset from the Hamlyn Center
Laparoscopic/Endoscopic dataset [15], the dataset was used
for training and testing the model proposed in this paper.
In addition, medical image video data approved by anony-
mous patients were obtained from the Peking University
BinHai Hospital, including 73 cases of liver laparoscopic
video (46 cases with CT images of corresponding posi-
tions) and 52 cases of gastroscopy video (without CT).
12 patients underwent sinus endoscopic video (without CT)
and 49 patients underwent Unilateral Biportal endoscopy
(UBE) video (all patients had CT [16] or MR [17] images
at the corresponding position). We mainly used open datasets
and liver laparoscopic video sequences from hospital patients
to train, evaluate and test the model proposed in this paper.
We used gastroscopy, sinus scopy, and UBE video as a com-
parative study of the reconstruction effect of the model.

The system was implemented using C++ and OpenCV.
The workstation uses two Nvidia Tesla M60 GPU, each with
16GB of memory, and an Intel(R) Core i7 CPU with 3.4GHz.
This method uses PyTorch. In order to facilitate calculation
comparison, we sampled all frame resolutions to 1084 ×
1084 in training and testing, which were recorded the average
time consumpting of each step in Table 1. Sparse Tracking
and Reconstruction, KeyFrame Selection, Pose Estimation,
Bundle Adjustment, Computation of loss function by GPU
and CPU, Depth Map, Flow Map, Alignment of KeyFrame
time (in seconds) Time comparison was made with the lower
sampling resolution of 640× 640 and 320× 320 respectively.

The higher the resolution, the greater is the computation and
time consumption.Meanwhile, the reconstruction effect dete-
riorates with the feature loss. Among them, the calculation
amount of the dense depth map mapping step was the largest,
and the time-consuming was the longest. The calculation
of the dense depth map of the input frame with 1084 ×
1084 resolution reaches 425s, while when the input framewas
sampled to 320 × 320, the time consumption was reduced to
93s. The fastest step was the sparse tracking portion, which
could reach as fast as 0.025s, owing to the mature traditional
ORB-SLAM threads and the fast and efficient ORB feature
points.

Simultaneously, we reconstructed the key steps in the
results listed in Fig. 5. Fig. 5. (a) denotes the input sequence of
frames, and (b) aligned for the monocular stereo reconstruc-
tion process, the green marked as camera path and posture,
(c) shows the Euclidean distance map, (d) was the depth map,
blue to red indicate the distance from the camera, (e) is the
light flow diagram, and (f) is the reconstruction result. The
effective key frames for 3D reconstruction for each patient
ranged from 1705 to 4322 frames, except for frames that were
blurred or too bright/weak to extract feature points.

2) PRE-PROCESSING
None of the training data is marked. We corrected the frames
by using the distortion coefficients estimated from the cor-
responding calibration video. Then randomly crop frames,
change colors, and sharpen to add datasets and enhance the
features. The new extended frames are then divided into
odd and even frames. They were then trained using the self-
supervised double-branch connected network described in the
data training section. Simultaneously, the distortion coeffi-
cient estimated by the correction frame is used to correct
the frame. The frames contain similar luminosity and texture

TABLE 1. Average processing time (in seconds).

TABLE 2. Reconstruction error of different methods.

TABLE 3. Reconstruction error in proposed framework of different surface.
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information. Private and invariant feature extractors are used
to absorb orthogonality and similarity, reduce the negative
effects of interference items (lighting, etc.), and helping to
obtain a better depth map. At the same time, odd-even infor-
mation and depth maps were efficiently estimated by mini-
mizing the photometric loss.

B. EXPERIMENTAL SETUP
A retention training model was used, in which data from one
patient were used for testing and data from other patients
for training. The experimental group was also evaluated by
three primary laparoscopists, who had performed more than
2,000 endoscopies. The original figure and the reconstruction
results are presented in Fig. 6. The top line represents the orig-
inal frame image input. [3], [17], [18], respectively, the cur-
rent 3d reconstruction method of endoscopic images; the fifth
act is the reconstruction result of our method; [19]–[21] are
the reconstruction results of the computational network in
this model replaced by other deep learning methods. Since
the model proposed by [3], [17] and [18] was designed and
trained for endoscopic images, the reconstruction results were
better than those of [19], [20] and [21], but some key feature
points were still missing. Our reconstruction results could
better extract most of the feature points, and the reconstruc-
tion effect was good. In our method, endoscope has the
best effect, because the model is trained according to the
data of endoscope, and our method has the worst effect of
arthroscopy reconstruction. Owing to the weak texture of the
arthroscope, the imaging quality is reduced because of the
operation in normal saline, and some feature points cannot
be effectively extracted.

1) FREE PARAMETERS
In the model training, FlowNet and DepthNet are trained with
a batch size of 64 using the Adam Optimizer (beta1 = 0.9,
beta2= 0.999). The learning rate was set to 0.001, reduced to
20 epochs, and then to 0.0007, 0.0002 and 0.0001.We studied
the effects of different epoch settings on MSE, as shown
in Fig. 7(a). The Epoch significantly improved the training
accuracy between 20 and 40, but when the epoch was set to
80 or more, the accuracy improvement was not obvious.

In order to verify the actual performance of the algorithm,
except for special instructions, the parallax graph used in
this study was the initial parallax graph without any parallax
refinement and post-processing. The error limit of the com-
parison experiment was 3 pixels, that is, when the difference
between the matching result and the real parallax map was
more than 3 pixels, the point was considered to be mis-
matched. Themain sensitive parameter is the overlap between
cluster frames controlled by and. For experimental indica-
tors, we used the following indicators to evaluate our depth
information and 3D reconstruction methods: sqRel, Mae,
RMSE and log RMSE(the smaller the better). We compute
the accuracy of δ < 1.25, δ < 1.252, and δ < 1.253 respec-
tively. We quantitatively compared the reconstruction results
of the different methods, and the endoscopic reconstruction

of different sites is shown in Tables 2 and 3. The detailed
procedures are presented in Section C.

C. COMPARISON STUDY
Weconducted a comparative studywith the 3D reconstruction
method proposed in [19]–[21] by other scholars recently, the
deep learning method and the application of our method in
medical endoscopy videos of different parts, respectively,
to evaluate the performance of the model quantitatively and
qualitatively. For quantitative evaluation, MAE, MRE, MSE
and RMSE were used to test the effect of the reconstruction.
The reconstruction results of the different methods are shown
in Fig. 6. We also used CT images of the same patients for
the registration observation of the feature point clouds, and
the qualitative comparison results are shown in Fig. 8.

1) 3D RECONSTRUCTION METHODS
We compared the 3D reconstruction results of our method
with those proposed by other scholars recently introduced
in [3], [17] and [18]. Fig. 6 shows the qualitative com-
parison results of the liver greater omental membrane
obtained by laparoscopy, gastric fundus taken by gastroscope,
sinus and UBE respectively. The average render parallax is
12.4 degrees. The proposed system and [18] produce similar
accuracy, both presenting higher monocular parallax than
the stereoscopic method, but the proposed system is several
orders of magnitude faster. [18] took 4.5 min for intensive
reconstruction and 1.5 min for subsequent filtering.

The method introduced in [17] designed a patch embed-
ding network based on Multiview Stereo(MVS) algorithms,
projected each candidate image onto other images in the
sequence, used a patch embedding network to map each
image patch into a compact embedding, and measured the
matching score. Finally, the candidate with the highest score
is selected for each pixel. The reconstruction result is valid
and complete, but there’s a disadvantage of which the speed is
too slow. Themodel training timewas 21minutes 38 seconds,
and themodel could not be used in real-time. [18] Themethod
is based on a U-NET convolutional neural network structure
to extract carotid artery features and segment them, which
is sensitive to contour structures. However, it is insensitive to
the non-contour parts of the viscera with weak texture, result-
ing in sparse model results. [3] Methods Based on patient-
specific learning, sinus surface anatomy was reconstructed
directly and only from endoscopic videos. Inheriting the char-
acteristics of SFM, this method is not ideal for fuzzy images
or tissue deformation.

2) COMPARISON WITH EXISTING DEEP LEARNING
METHODS
We used the contrastive learning method proposed in this
paper to conduct a comparative study on the reconstruction
results of other recent deep learning methods. We used the
network structure proposed by [19], [20] and [21] respec-
tively to replace the double-branch network proposed in
this study to extract the features of the frame sequence
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and perform 3D reconstruction calculations. The results are
shown in Fig. 6. As the comparison method [19]–[21] is not
a model training method for medical images, although it has
high computational accuracy in their respective scenes, it is
not suitable for medical endoscopic images. Therefore, the
reconstruction results are not good.

In the method in [19], a pre-trained encoder is intro-
duced on the basis of U-NET, and the decoder part is
redesigned. The transpose convolution operation is replaced
by an upsampling operation based on Nearest Neighbor (NN)
interpolation. However, this method exhibits insufficient
performance in identifying scenes and feature point types.
The 3D reconstruction of human endoscopy is still sparse.
This is not robust to artifacts. [20] Methods VGG-19 was
replaced with a deeper residual neural network (RESNET-50)
as the feature extraction tool. A more robust target rep-
resentation feature was obtained by the fusion of special
additional layer structures and convolution layer features in
RESNET-50. Subsequently, the feature result and filter are
correlated to the filter. The target location is determined
based on themaximum response value. However, the effect of
3D reconstruction of the laparoscopic endoscopy application
scene needs to be improved owing to increased significance
monitoring and increased computation. The feature extrac-
tion method in [20] is based on the multitasking network
and real-time monitoring of the depth of the feature points
learning (visual SLAM system, with the simplified design
of CNN network detection feature point and the descriptor
instead of the traditional feature extraction. Its test based on
the indoor scene, has the obvious characteristic, in view of
the weak texture, the micro-deformation characteristics of the
laparoscopic scene effect remain to be improved, and there is
still a gap in real time.

In view of the above comparative study, we performed the
reconstruction of the proximal jejunum of liver in Laparo-
scopic by methods introduced in [3], [17]–[21], calculated
MAE, MRE, Sq Rel, RMSE, RMSE-log, and the accu-
racy of δ < 1.25, δ < 1.252, δ < 1.253 respec-
tively, and recorded the results in Table 2. In addition,
we performed 3D reconstruction of jejunum in the prox-
imal liver of Laparoscopic, and calculated the scores of
different methods with an average depth of 0.85mm to
1.15mm, that is, the accurate probability of depth character-
istic information, as shown in Fig. 7(b). The results show
that the depth score of our method is more selective in the
real value when extracting a certain feature point, whereas
other methods have no obvious advantage in the nearby
range.

Fig. 7(c) shows that the accuracy of different methods
decreases with an increase of keyframe determination books
in the sparse tracking thread, but the accuracy of our method
is more advantageous than other methods. By extracting the
depth of all feature points, the average and median values
were calculated respectively as shown in Fig. 7(d), which
shows that consistency was negatively correlated with the
number of feature points. Comparative data show that the

proposed method can obtain better results on an existing
basis.

3) COMPARISON OF 3D RECONSTRUCTION OF DIFFERENT
BODY PARTS
We applied the proposed training model to 3D reconstruction
of gastroscopy, sinus and UBE. Then a comparative study is
conducted on the above reconstruction results. The results
showed that the model trained in this study had a good
reconstruction effect on different parts of the human body.
As shown in Fig. 4. The reconstruction effect is affected
by frame sequence resolution, lighting, texture, contrast, and
sharpness, etc. At the same time,MAE,MRE, Sq Rel, RMSE,
RMSE-log, and we also calculated the accuracy of δ < 1.25,
δ < 1.252, δ < 1.253. The quantitative comparison results
are presented in Table 3. Since the proximal jejunum of the
liver in laparoscopic surgery was used for training in our
model, the reconstruction effect was better in laparoscopic,
which is shown in Fig. 6. The reconstruction result also
depend on the quality of the video frames. Sinus image
quality was better in the sinus mirror, depth data quality was
better, and therefore showed better reconstruction.

4) QUALITATIVE EVALUATION COMBINED WITH CT
CT images of the same patient were used to register obser-
vation of feature point clouds. CT selected a window of
77 and a window width of 2202. A fault image at−130mm to
−158mm in height, because this position was consistent with
the position of the proximal jejunum that we selected for 3D
reconstruction. Methods [3], [17] and [18] were respectively
used to conduct qualitative comparisons with the reconstruc-
tion results of the method proposed in this paper. It was found
that the feature points and depth information extracted by
the proposed method can well fit the patient CT model well.
In contrast, [3] extracted the fewest feature points, but it can
still better fit the real organ of the patient CT. [3] extracted
more feature points, but there will still be a large number of
feature point interferences outside the target organ, whichwill
further interfere with the final reconstruction effect. Through
qualitative comparison, it was proved that the model pre-
sented in this paper has high accuracy and anti-interference
performance. The fitting results are shown in Fig. 6.

D. CROSS-PATIENT STUDY
In addition to the open dataset from the Hamlyn Center
Laparoscopic dataset [15], In addition, medical image video
data approved by anonymous patients were obtained from
Peking University BinHai Hospital, including 73 cases of
liver laparoscopic video (among which 46 patients had CT
images of the corresponding positions) and 52 cases of
gastroscopy video. There were 12 sinus endoscopic videos
and 49 UBE videos (all patients underwent CT or MR images
of the corresponding position). In this case crossover study,
images of 46 laparoscopic patients with CT scan sequence
data from 49 UBE patients were qualitatively evaluated.
To demonstrate the generality of our method, we performed a
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FIGURE 6. Comparition study of different methods.
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FIGURE 6. (Continued.) Comparition study of different methods.

FIGURE 7. Quantitative comparison curve.
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FIGURE 8. Qualitative comparison with fitting CT.

3D reconstruction experiment on four images. We included
95 patients during the evaluation training. As shown in
Table 3, we can see that our method has achieved submillime-
ter residuals for all test reconstructions. The results showed
that this method is effective for different patients.

E. ABLATION STUDY
In order to evaluate the effect of each loss component, i.e.,
consistent scale and depth estimation, only using consistent
scale and depth to train the network, we conducted compu-
tational tests on all the medical image video data obtained
from Peking University BinHai Hospital with consent of
anonymous patients. ORB-SLAM introduces the optical flow
estimation network FlowNet and depth estimation network
DepthNet. The system introduces FlowNet andDepthNet net-
work model calculation comparisons. The average accuracy
was calculated using the averageMAE,MRE, SqRel, RMSE,

log RMSE(the smaller the better), δ < 1.25, δ < 1.252

and δ < 1.253 respectively. The quantitative results are
presented in Table 4. The results show that the proposed
method is complete and the reconstruction quality is high
by introducing the optical flow network FlowNet and depth
information extraction network DepthNet which are trained
with uniform loss of scale and uniform loss of depth.

V. CONCLUSION
In this paper, a 3D reconstruction from laparoscope images
method is presented, based on contrastive learning. It can
produce a high-quality dense reconstruction in the surgical
scene, establish medical school training programs based on
existing models, and document postoperative case analysis.
It has been validated and evaluated on abdominal tissue
sequences and is robust to various illumination changes and
different scene textures. The trained model was tested and
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validated by gastroscopy, sinus endoscopy, and UBE. Eval-
uations such as the stereo methods provide a similar measure
of the accuracy in the laparoscope pose estimation on the
surface. Compared with the same type of medical image 3d
reconstruction method and the latest deep learning method,
it has several advantages. The accuracy of the camera rotation
and translation with respect to the estimated surface was
tested mainly in this study. The model we designed model
was proven to be superior to other methods in terms of
reconstruction accuracy.

Although much progress has been made in depth esti-
mation and 3D reconstruction of monocular laparoscopic
images, there is still much work remains to be done in the
future. Firstly, the use of monocular image depth estimation is
limited, a big reason is that there is no good algorithm to deal
with the scene matching problem of weak texture features.
Most of these methods are limited to data from a single com-
mon dataset. In particular, for scenes with complex lighting
and weak textures, the generalization ability of the algorithm
must be improved simultaneously. In addition, we should
consider improving the accuracy and speed of calculations.
Secondly, local constraints are extracted according to the
features of the pixels. Globally consistent constraints need to
be optimized to obtain a ground-way fit or additional infor-
mation as well as real data, resulting in increased network
complexity and computation. Therefore, it is necessary to
explore a more efficient deep learning neural network and a
monocular endoscope suitable for clinical medicine to obtain
a real-time dense depth map.

Based on our early feasibility data, 3D reconstruction of 2D
images facilitates flexible examination and surgical naviga-
tion using the existing laparoscopic equipment. The proposed
method can be applied to medical VR scenarios in the future
to help digestive laparoscopists perform real laparoscopic
interventions.
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