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ABSTRACT The substitution box (S-box) is one of the major components of cryptographic algorithms.
An important issue for cryptographic algorithm designers in ensuring sufficient security from linear crypt-
analysis, one of the most powerful attacks, is finding an S-box with a sufficiently low linear spectrum.
However, to the best of our knowledge, most of the published S-box analysis tools cannot generate linear
approximation tables for large S-boxes, such as 16-bit S-boxes. Even tools that support the generation
of 16-bit linear approximation tables using parallel processing, such as Eval16BitSbox, require a long
time. We used bitslice, which can efficiently process bitwise operations in parallel by taking advantage of
independent operations, for generating a linear approximation table. In this study, the linear approximation
table generation method implemented using the element unit operation of the existing S-box was upgraded
to a vector unit operation in a bitslice manner. This improved method enabled the immediate creation of
tables, even for 16-bit S-boxes. This approach allows cryptographic algorithm designers to consider a wider
variety of S-boxes.

INDEX TERMS Large size S-box, bitsliced implementation, linear approximation table.

I. INTRODUCTION
For post-quantum security, block ciphers with large block
sizes are required. If the block size of the block cipher is
large, but small-size components are used, a large number
of round functions must be used to ensure adequate security.
The complexity in one round may increase if the compo-
nent size is increased. Therefore, large-size components are
required for secure and efficient encryption while reducing
rounds [1]–[5]. However, the security measurement becomes
more complicated as the size of components increases. A sub-
stitution box (S-box) is a representative nonlinear function
used in cryptographic algorithms.

The S-box has various security properties, including dif-
ferential uniformity, linearity (or non-linearity), algebraic
degree, and strict avalanche criteria. When an S-box is used
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for an encryption algorithm, cryptanalysis is usually per-
formed using these security properties of the S-box.

Differential cryptanalysis and linear cryptanalysis are the
most significant and powerful attack techniques [6]–[11].
Differential cryptanalysis is an analysis technique that
exploits the effect of differences in the inputs and outputs
of each round. When using an S-box for a nonlinear func-
tion, this attack uses a difference distribution table (DDT) of
the S-box. The DDT is a chart of how often a difference
in the input bit makes a difference in the output bit. Linear
cryptanalysis uses an equation generated by a linear approxi-
mation of the relationship between the input and output bits of
the S-box. Such an approximation can be achieved using a
linear approximation table (LAT) of the S-box.

Cryptanalysis largely utilizes these two tables. Finding
an S-box for which both properties are secure is therefore
an important issue for cryptographic algorithm designers.
S-box analysis tools, such as PEIGEN, SAGE, SET, BSAT,
etc., generally provide facilities for the generation of DDT
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and LAT [12]–[15]. However, as the bit size of the S-box
grows to around 16 bits, most tools do not support LAT
generation, or the generation process is not finished. In the
most widely used table generation method for an n-bit S-box,
22n computations are required to generate the DDT, and
23n computations are required to generate the LAT. Hence, for
a 16-bit S-box, the DDT requires 232 computations, and the
LAT requires 248 computations. The amount of computation
necessary for LAT generation is difficult to perform on a typi-
cal computer. To the best of our knowledge, papers proposing
a 16-bit S-box suggested a theoretical security boundary or
used Eval16BitSbox [1]–[3], [5]. For example, in the case of
MISTY, the boundary of security was presented through the
structural proof of the S-box, but a concrete security was not
presented. A tool, calledEval16BitSbox, generates the LAT of
16-bit S-boxes using parallel processes [16]. Using a parallel
programming, the amount of resources used (the number of
workers) can speed up the generation of the LAT, but for most
computers, the computational resources required are still too
large, at 23n divided by the number of workers. To the best of
our knowledge, there is no tool that can perform this amount
of computation and generates an LAT for a 16-bit S-box in a
short time.

We searched for a universal and easy way to generate LATs
for large S-boxes, and found a solution in bitslice. A feature of
bitslice proposed by Kwan, is that it can efficiently parallelize
bitwise operations [17]. This feature is often used to effec-
tively implement cryptographic algorithms [18]–[20]. It is
also used to process parallel S-boxes in mobile and embedded
platforms because of its efficient parallel processing and
constant operation speed [21], [22]. A characteristic feature
of algorithms using bitslice is that independent operations are
grouped into registers for effective parallel processing. In this
study, we applied bitslice to LAT generation. We computed
the LATs and the linear spectrums for 16-bit S-boxes. This
approach solved the problem of the large amount of computa-
tion required to generate LATs, and could effectively generate
a 16-bit LAT in a few seconds.

The contributions of this study are as follows:
1) Our proposed high-speed LAT generation method per-

forms operations in units of vector by bitslice. The
amount of computation is reduced by pre-computation.
Our proposed tool reduces the n-bit S-box LAT gen-
eration time to approximately O(n2) from O(n3).
The resulting 16-bit S-box LAT is generated in less
than 3s.

2) We generated 8- and 16-bit S-box LATs based on
our method and others and compared them. We found
that the LAT generation time of an S-box in a single
core was 65–1,200 times faster than that of existing
algorithms.

3) For the first time, we presented the whole of the linear
spectrum and the linearity of MISTY’s 16-bit S-box
based on our improved LAT generation method.

4) We expect our method to help cryptographic algorithm
designers to create a wider variety of S-boxes.

II. PREVIOUS LINEAR APPROXIMATION TABLE
GENERATION METHODS AND GENERATION
SPEED LIMITATIONS
The LAT of an S-box is a table that lists the linear biases
between the input and output masks. For input 3a and output
3b masks, the LAT of the n-bit S-box (Sn) is defined as
follows:

LAT (3a, 3b) = {x ∈ Zn2|x ·3a = Sn(x) ·3b} − 2n−1

for 3a, 3b ∈ Zn2.

The maximum absolute value of the LAT, excluding the
(0, 0) entry, is called linearity. The count of the number of
biases in the LAT is a linear spectrum. Low linearity and a
small number of high biases in the linear spectrum make lin-
ear cryptanalysis difficult. Algorithm 1 is the most basic LAT
generation algorithm known, based on the abovementioned
definition [12]–[15].

Algorithm 1 Basic Algorithm for Generating LAT
Require: bit size n, Sn
1: for 3a in range(2n) do
2: for 3b in range(2n) do
3: LAT[3a][3b] = −2n−1

4: for x in range(2n) do
5: LAT[3a][3b]+ = (x ·3a)⊕ (Sn[x] ·3b)
6: end for
7: end for
8: end for
9: return LAT

A rough calculation based on the dot product of input and
output masking indicates that the basic algorithm requires
an operation of O(n3) for an n-bit S-box. The previous LAT
generation algorithm requires an additional eight times oper-
ation whenever the S-box size increased by 1 bit; hence, it is
not suitable for the LAT generation of large S-boxes, such as
16-bit S-boxes. Eval16BitSbox processes these algorithms in
parallel to improve the speed of execution.

III. NEW METHOD FOR GENERATING LINEAR
APPROXIMATION TABLES WITH A BITSLICED
IMPLEMENTATION
A. APPLICATION OF THE KEY IDEA
The application of bitslicing to an n-bit S-box S is to
see the S-box as an n-tuple of component functions S =
(S0, S1, · · · , Sn−1) and encode the Boolean functions Si :
GF(2n) → GF(2) to the truth table of its every outputs as
a 2n-bit vector [23], [24]. For example, the identity permu-
tation I over GF(24) would be represented as the 4-tuple of
16-bit words (0×00FF, 0×0F0F, 0×3333, 0×5555). In this
paper, we denote the bitsliced f as f̃ .
Line 4 of Algorithm 1 can be operated in parallel, because

it independently computes x for the masks, 3a and 3b. The
key concept of our study is to compute line 4 using bitslice.
First, we changed the x · 3a bitslice representation and
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FIGURE 1. LAT calculation example.

considered ‘‘x’’ ‘‘I (x)’’. Next, we obtained the value tin by
XORing the components corresponding to3a. Subsequently,
we calculated S̃ and acquired the tout value by XORing the
components corresponding to 3b. Finally, the bias for masks
3a and 3b was computed as the Hamming weight (HW) by
XORing tin and tout . Fig. 1 shows an example. In the data, the
top is the most significant bit (MSB), and the bottom is the
least significant bit (LSB).

Algorithm 2 is a non-optimized bitsliced implementation
of the LAT, reconstructed based on the abovementioned
methodology. Ñ indicates bitsliced data N . I is the identity
permutation of GF(2n) indicating Sn input.

Algorithm 2 Generating LAT With Bitsliced
Implementation(1)

Require: bit size n, S̃n
1: for 3a in range(2n) do
2: for 3b in range(2n) do
3: tin = 0; tout = 0
4: for k in range(n) do
5: tin = tin ⊕ (̃I [k] ∗ ((3a� k)&1))
6: tout = tout ⊕ (S̃n[k] ∗ ((3b� k)&1))
7: end for
8: LAT[3a][3b] = HW (tin ⊕ tout )− 2n−1

9: end for
10: end for /∗ HW returns hamming weight ∗/
11: return LAT

B. ALGORITHM IMPROVEMENT
Algorithm 2 has room for improvement with respect to speed.
We analyzed the LAT generation process and improved the

speed by reducing the loops and pre-computing the tin and
tout operations.

1) PRE-COMPUTATION PROCESSES
To improve the performance, we pre-computed and tabulated
the data generated by S-box independent operations before
the LAT generation process. The S-box dependent operations
were also pre-computed when the LAT generation process
was started. With these pre-computations, the main opera-
tions (lines 5 and 6 in Algorithm 2) in the LAT generation
were changed to O(1) and O(n), respectively, requiring only
simple table references and HW calculations. The generation
algorithm of the LAT was divided into three operations:
tin generation; tout generation; and an XOR of the results. The
first operation, tin, is dependent only on Ĩ and 3a. We can
produce the table Min by pre-computating it before gener-
ating the LAT. The amount of computation can be reduced
by making and using Min for each S-box size. The second
operation, tout , does not have any dependency on 3b. We can
remove tout from the loop and generate table Mout by pre-
computation, aswith tin. For the final operation, the innermost
loop becomes two table references and a simple XOR.

2) SEPARATION OF THE LAT MASK
We separated the mask to reduce the amount of computation
involved in Min, Mout and the storage space of all tables by
half. In this process, each loop was reduced by half, but the
innermost operation was quadrupled. We considered each
group when the MSB of the n-bit mask was 0 and 1. The
groups were identical, except for the MSB. Thus, when the
MSBof themaskwas 0, the LAT valuewas computed, and the
LAT value, including the MSB, was naturally computed by
XORing the I[0] S[0] corresponding to the MSB. For exam-
ple, in the case of an 8-bit S-box S8, for the twomasks3a and
3b < 128, we first computed LAT [i][j] = HW (some t)−128
according to line 8 of Algorithm 2. We then computed the
following terms for each 3a and 3b:

LAT [3a|128][3b]=HW (some t ⊕ Ĩ [0])− 128

LAT [3a][3b|128]=HW (some t ⊕ S̃8[0])− 128

LAT [3a|128][3b|128]=HW (some t ⊕ Ĩ [0]⊕ S̃8[0])−128

This procedure cuts the memory required and the amount of
computation needed for the pre-computation by more than
half. Algorithm 4 is an improved bitsliced implementation for
LAT generation.

A rough calculation based on the innermost loop, suggests
that the improved algorithm requiresO(n2) operations for an
n-bit S-box.

IV. COMPARISON WITH PREVIOUS METHODS
We investigated various tools used to analyze the S-box
properties, to evaluate the performance of the proposed algo-
rithm. We used a personal computer with an INTEL core
i7-11700K Processor@ 3.6 GHz, NVIDIA GTX 1080ti,
64 GB RAM, and MSI MAG Z590 TORPEDO mainboard
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Algorithm 3 Pre-Computation Process
Require: bit size n
1: for 3a in range(2n−1) do
2: t = 0
3: for k in range(n) do
4: IN [3a][k] = (3a� k)&1
5: t = t ⊕ (̃I [k] ∗ IN [3a][k])
6: end for
7: Min[3a] = t
8: end for
9: return Min, IN

Algorithm 4 Generating LAT With Bitsliced
Implementation(2)

Require: bit size n, S̃n, Min, IN (from algorithm 3)
1: for 3b in range(2n−1) do
2: t = 0
3: for k in range(1, n) do
4: t = t ⊕ (S̃n[k] ∗ IN [3b][k])
5: end for
6: Mout [3b] = t
7: end for
8: IS = Ĩ [0]⊕ S̃n[0]
9: for 3a in range(2n−1) do
10: for 3b in range(2n−1) do
11: m = Min[3a]⊕Mout [3b]
12: LAT [3a][3b] = HW (m)− 2n−1

13: LAT [3a|2n−1][3b] = HW (m⊕ Ĩ [0])− 2n−1

14: LAT [3a][3b|2n−1] = HW (m⊕ S̃n[0])− 2n−1

15: LAT [3a|2n−1][3b|2n−1] = HW (m⊕ IS)− 2n−1

16: end for
17: end for /∗ HW returns hamming weight ∗/
18: return LAT

for our experiments. For the 8-bit S-boxes, we collected cases
inwhich the source codewas released together with an article.
We excluded cases in which the tool did not work properly,
or in which the LAT generation result was incorrect. The
tool language was divided into C/C++ or Python, but the
LAT generation tool implemented in Python was treated as
C/C++ because it was implemented as ctypes, a C com-
patible library. Thus, for Python, the basic algorithm was
implemented and compared. Finally, we selected the S-box
analysis tools PEIGEN [12], SET [13], and SAGE [14] as
the LAT generation time comparison groups for the 8-bit
S-boxes. We measured the average of the LAT generation
times of 10,000 random 8-bit S-boxes using each tool,
except for the basic algorithm implemented in Python. This
basic algorithm was used to measure only 100 random 8-bit
S-boxes, because of the problem of execution time. In the
case of 16-bit S-boxes, the LAT generation time was com-
pared with that of Eval16BitSbox, an LAT generator that sup-
ports multi-core-based parallel processes through the Parallel
Java 2 Library [25]. Due to the generation speed problem,

TABLE 1. Comparison of LAT generation speed with existing tools and
our study.

Eval16BitSbox estimated the time based on the bias gener-
ation time of the output masks corresponding to the random
3as at randomly generated 16-bit S-boxes. Table 1 shows the
experimental results.

Among the tools implemented for an 8-bit or less S-box
in Table 1, PEIGEN was the best performing tool based on
the C/C++ language, taking 12 milliseconds to generate an
LAT. The slowest tool was SAGE, because it utilized the
C library in python. We also tested other tools shared on
GitHub, as well as the tools in Table 1, but we could not find
any tool with a better performance than PEIGEN. Ourmethod
took 182 microseconds to generate the LAT, an over 65×
performance improvement. In the case of Python, the LAT
generation method implemented using Algorithm 1 required
more than 1 minute. The rapid generation of LATs in Python
requires the use of a C library through ctypes, such as SAGE.
However, our method, implemented in Python, took 50 mil-
liseconds to generate an LAT, an over 1,200× performance
improvement. When generating LATs for a 16-bit S-box,
the performance was improved by over 174×. The notation
[workers] in Table 1 means the threads used, and the time
was measured based on a single thread. Our method was
effective even with a single thread, but parallel programming
it is was more effective, due to the use of bitslice. As a result
of parallel programming using CUDA, it took up to 3 seconds
to generate an LAT for a 16-bit S-box. PEIGEN, SAGE and
SET did not work for the LAT generation of a 16-bit S-box
due to the large size of the S-box.

V. CONCLUSION
Our study has widened the size of S-boxes that can be inves-
tigated in the future, and it is expected to be valuable to
designers of cryptographic algorithms using large S-boxes.

In this study, we developed a method of generating LATs
using a bitsliced representation. The amount of computa-
tion was reduced to approximately 22n by pre-computing
tin and tout . Our algorithm was faster than other tools, and
the LAT of a 16-bit S-box could effectively be generated
in a short time. Our study widened the size of S-boxes that
can be investigated in the future. We expect our method
to be valuable to cryptographic algorithm designers using
large S-boxes.
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