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ABSTRACT In today’s Telecom market, Telecom operators find a big value in introducing valuable services
to users based on their location, both for emergency and ordinary situations. This drives the research for
outdoor localization using different wireless technologies. Long Term Evolution (LTE) is the dominant
wireless technology for outdoor cellular networks. This paper introduces DeepFeat: A deep-learning-based
framework for outdoor localization using a rich features set in LTE networks. DeepFeat works on the mobile
operator side, and it leverages many mobile network features and other metrics to achieve high localization
accuracy. In order to reduce computation and complexity, we introduce a feature selection module to choose
the most appropriate features as inputs to the deep learning model. This module reduces the computation
and complexity by around 20.6% while enhancing the system’s accuracy. The feature selection module uses
correlation and Chi-squared algorithms to reduce the feature set to 12 inputs only regardless of the area size.
In order to enhance the accuracy of DeepFeat, a One-to-Many augmenter is introduced to extend the dataset
and improve the system’s overall performance. The results show the impact of the proper features selection
adopted by DeepFeat on the system’s performance. DeepFeat achieved median localization accuracy of
13.179m in an outdoor environment in a mid-scale area of 6.27Km?. In a large-scale area of 45Km?, the
median localization accuracy is 13.7m. DeepFeat was compared to other state-of-the-art deep-learning-based
localization systems that leverage a small number of features. We show that using DeepFeat’s carefully
selected features set enhances the localization accuracy compared to the state-of-the-art systems by at least
286%.

INDEX TERMS Data augmentation, deep learning, long-term-evolution localization, multi-features
localization, outdoor localization.

I. INTRODUCTION

Outdoor localization services have become very important
and requestable nowadays. The demand for robust and
far-reaching localization services has increased recently in
different domains [1]. Recently, many systems were devel-
oped to fulfill all localization applications’ requirements.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.
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Such systems have become commonly used for indoor and
outdoor applications [4]-[9]. In the literature, four main
system categories can be used for localization. The first
category is the Global Positioning System (GPS) that is
considered the standard system for outdoor navigation world-
wide [10]-[12]. However, it requires a Line of Sight (LOS)
to satellites, and it is considered a power-hungry system
because of battery drainage [13]. The second category is a
WiFi-based system that utilizes WiFi signals received from
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Access Points (APs) [14]-[17]. The advantage of this system
is the broad deployment of WiFi APs. On the other hand,
the weakness of this system is the lack of availability of
WiFi AP outdoors. The third category relies on sensors
deployed in smartphones, such as the compass, gyroscope,
and accelerometer sensors [18]-[22]. This system category
results in acceptable localization accuracy, but the required
sensors are not available in low-end phones. Besides, sensors
with low cost are usually noisy.

Therefore, previously mentioned system categories have
disadvantages and limitations that limit their capabilities in
the achievable localization accuracy. On the other hand, the
fourth system is a cellular-based localization system. There
are plenty of localization systems that depend on cellular
signals for both indoor and outdoor environments [23]-[31].
Fingerprint-based localization systems enjoy several strengths
that enable them to yield better performance. First, the
cellular signal is an available resource to any User Equipment
(UE). Therefore, no special hardware requirement in the
case of using the cellular signal for localization. Second,
no additional power requirement or heavy battery drainage
is expected since there is no further hardware requirement
Also, a substantial benefit of fingerprint-based localization is
giving the operator the capability of estimating UE location
from the regular measurement reports. Accordingly, this
localization system category offers high localization accuracy
and high power efficiency, making fingerprint-based localiza-
tion a very realistic and efficient choice [1].

Fingerprint-based localization techniques consist of two
main phases: offline and online [24]. The basic idea of the
offline phase is capturing the signatures representing cellular
signals received from different Base Stations (BS) towers
within the area of interest, and those signatures are called
fingerprints. Later, during the online phase, the cellular signal
received by the user is matched with the already pre-defined
fingerprints. Finally, the best match will be used to locate the
user [27].

Some techniques use traditional classifiers, such as Sup-
port Vector Machine (SVM) [25] or K-nearest Neighbor
Classifier (KNN) [23]. Other traditional cellular-based local-
ization methods estimate users’ locations using probabilistic
techniques that try to learn the distribution of the received
signal from each cell tower [24], [32]. It is assumed that
different cell towers are independent so that the impact of
the dimensionality problem remains insignificant. However,
limiting the dimensionality problem means limiting the
correlation between the received signals from different cell
towers, decreasing the overall accuracy of those systems.
Accordingly, deep-learning techniques are recently employed
for cellular-based localization to overcome such limita-
tions [27]-[29].

Mobile networks have existed since the 1980s, with a
new generation launching almost every decade. A generation
refers to a collection of network standards that have been
developed. The speed of those networks improves with each
generation. In the early 1980s, the first-generation (1G)
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began to gain prominence around the world. The second-
generation (2G) was beginning to appear in the early 1990s.
This second-generation used digital signals instead of analog
signals, followed by 3G and 4G releases to increase data
transmission. Currently, the fifth generation (5G) is the
latest generation of mobile networks. Notably, 5G-enabled
technologies are designed to accelerate data even more
while lowering latency, increasing power and reliability, and
ensuring accuracy and efficiency. Although 5G networks
are being deployed worldwide, LTE technology will remain
the backbone of cellular technology, which is expected to
handle 4.4 billion subscriptions by 2025. Moreover, Voice
over LTE (VoLTE) will be the foundation of voice services
on LTE and 5G devices, so that VOLTE subscriptions are
expected to reach 6 billion subscriptions by 2025. Also, LTE
and 5G adoption will be driven by the shutdown of 2G and 3G
networks. On the other hand, 4G network build-out is ongoing
rapidly to cover 90% of the population by 2025 instead
of 80% during 2019 and increased network capacity and
speed [41]. In addition, when reviewing the literature, most of
the research that addresses the outdoor localization problem
was designed to work on 3G systems [27], [29], [30], [40].
On the other hand, few models are designed to work on
4G [5], [6]. All the above reasons support the selection of
LTE as the target technology for our proposed model.

This paper introduces DeepFeat, an outdoor localization
system that utilizes a deep-learning-based technique for
outdoor localization on LTE networks. DeepFeat uses a
deep neural network (DNN) model to achieve high local-
ization accuracy. Moreover, DeepFeat needs no extra energy
consumption compared to the normal phone operation.
Therefore, DeepFeat is an energy-efficient replacement for
other localization systems that use the phone’s sensors, such
as WiFi and GPS. The main contributions of our work are
summarized below:

o We introduce a new set of LTE network features as
an input for the model, based on practical experience,
which noticeably enhances the localization accuracy.

« We propose a new model for feature selection using
Chi-squared and correlation methodology.

o We introduce a technique for increasing the number of
data samples to avoid overfitting and increase the deep-
model generalization. It is called the One-to-Many data
augmenter technique.

o We introduce a deep learning model with a smaller
number of N features as input, a lower input set
relative to the literature systems that use a larger number
of Received Signal Strength (RSS) signals coming
from M towers as inputs. This design approaches
the computational requirements and accuracy of the
proposed model.

o We propose a new bench-marking technique with other
state-of-the-art systems. This technique considers all
aspects to show the model superiority, based on two
metrics: number of cells and number of samples per
area size. The best system has the lowest localization
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accuracy (in meters) considering the mentioned two
metrics. Our model superiority was at least 286% better

than the state-of-the-art systems.
The rest of the paper is organized as follows: Section II

presents previous related work. Section III presents an
overview of the system. Section IV gives the details of
the DeepFeat system. We then present the evaluation of
the system performance in Section V. Finally, Section VI
concludes the paper.

Notation: throughout the paper, we use the following
acronyms, as shown in Table 1.

Il. RELATED WORK

This section discusses related work that addresses localiza-
tion in telecom networks. According to the literature, there are
three main methods: measurement-based statistical method,
fingerprint-based method, and deep-learning-based method.

A. MEASUREMENT-BASED STATISTICAL METHOD

This method depends on using point-to-point distance or
angle estimates using the Measurement Report (MR) to
estimate location [33]. The method is very traditional, which
relies on some parameters such as Angle of Arrival (AOA),
Time of Arrival (TOA), and RSS [34]. Thus, UE’s location
is estimated according to the distance between UE and BS
without requiring complex calculations. However, this needs
extra equipment to be deployed to the telecom network.
Moreover, this method results in unsatisfactory localization
accuracy [6].

B. FINGERPRINT-BASED METHOD

The fingerprint-based method divides the area of interest
into small virtual grids, and each grid has its unique
fingerprint [6]. The data relating to each sample, such as
latitude, longitude, and cell towers IDs, is mapped to one
specific grid cell according to the sample’s coordinates. For
example, Cellsense [24] and Crescendo [35] systems use the
Radio Signal Strength Index (RSSI) distribution of the mobile
devices located within the grid to be the unique fingerprint for
every grid.

C. MACHINE-LEARNING-BASED METHOD
Recently, several techniques that utilize deep learning for
cellular-based outdoor localization were proposed. These
techniques employ neural network models from the sample
inputs. Multi-Layer Perceptron (MLP) [37] is one of the
well-known algorithms that should be mentioned in this
context. This algorithm is based on feed-forward artificial
networks that contain multiple successive layers. Each layer
consists of some nodes in a directed path with a Fully-
Connected (FC) layer to the next layer. Each node is called
a neuron with a nonlinear activation function except for the
input nodes.

Random Forest (RF) [36] is another algorithm that utilizes
the signal measurements in MR data as input features to
estimate UE location. It constructs decision trees at training
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time and then predicts each tree’s location by using Machine
Learning (ML) model. Finally, it averages the predictions to
get one RF prediction.

Deep-learning models enhanced outdoor localization sig-
nificantly. As aresult, several systems were proposed recently
based on deep learning models. For example, DeepLoc [27]
employs a feed-forward deep neural network model. The
received signal strength transmitted from cell towers within
the area of interest and received by a user at an unknown
location is the only input to the system. It then estimates
the user’s location. Several data augmentation techniques are
used to increase the number of data samples and decrease
the noise effect. DeepLoc enhanced the localization accuracy
with a resultant median value of 18.8 meters in an urban area
and 15.74 meters in a rural area.

On the other hand, WiDeep [9] is a deep-learning-based
indoor localization algorithm that relies on Wi-Fi signals
from different APs to find the complex relationship between
mobile/APs location and power received. WiDeep uses a
hybrid model that blends deep-learning-based algorithms and
traditional probabilistic methods. WiDeep outperforms the
other indoor localization algorithms such as Horus [38] and
DeepFi [39], which depend on probabilistic techniques in
terms of robust accuracy against noise variations, and user
equipment heterogeneity. WiDeep achieved a better average
localization accuracy by at least 29.8%.

The authors in [29] proposed MonoDcell, a deep-learning-
based cellular indoor model based on Long Short Term
Memory (LSTM) architecture capturing the sequential cor-
relation between cell tower readings. The authors used 2G
cellular parameters only. As a result, MonoDcell achieved
a competitive location accuracy compared with Wi-Fi-based
indoor localization proposed in [9] and CellinDeep intro-
duced in [28]. However, MonoDcell model depends on a
high-density fingerprint, which is not realistic in large-scale
areas. Moreover, the model inherits several augmentation
techniques, which might affect system performance in
real-time.

OmniCells [30] is another system that targets the mobile
device’s diversity problem and aims to mitigate device
heterogeneity and its impact on model performance. The
author showed that OmniCells provided a consistent median
when tested using several devices, unlike the other systems.
Other deep-learning-based systems use the Convolutional
Neural Network (CNN) model. For instance, StoryTeller [40]
is a deep-learning-based system, a 3D localization system
used for floor prediction in any building.

A comprehensive comparison of different previously
mentioned systems is shown in Table 2. It shows that most
of the state-of-the-art systems use only two features for
the localization problem. These features are the Physical
Cell ID (PCI) and the RSSI. PCI identifies the cell, while
RSSI represents the total power measured by UE over the
entire band. RSSI is the strength of a non-demodulated
signal, which the UE can calculate without the need for
synchronization or demodulation.
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TABLE 1. Table of abbreviations.

Abbreviation Explanation Abbreviation Explanation

LTE Long Term Evolution dBm Decibels to One Milliwatt

GPS Global Positioning System RSRQ Reference Signal Received Quality
LOS Line of Sight dB Decibels

AP Access Point SINR Signal to Interference and Noise Ratio
UE User Equipment 3GPP Third Generation Partnership Project
BS Base Station CQI Channel Quality Indicator

SVM Support Vector Machine TAC Tracking Area Code

KNN K-nearest Neighbor Classifier VoLTE Voice over LTE

RSS Received Signal Strength MR Measurement Report

AOA Angle of Arrival TOA Time of Arrival

RSSI Radio Signal Strength Index MLP Multi-Layer Perceptron

FC Fully-Connected MME Mobility Management Entity

RF Random Forest TAs Tracking Areas

ML Machine Learning TX-Power Transmission Power

LSTM Long Short Term Memory CID Cell Identity

CNN Convolutional Neural Network RS Reference Signal

PCI Physical Cell ID BW Bandwidth

DFNN Deep Feed-forward Neural Network S-RSRP Serving cell RSRP

eNodeB Evolved Node B N-RSRP Neighboring cell RSRP

BTS Base Transceiver Station S-RSRQ Serving cell RSRQ

FDD Frequency Division Duplex N-RSRQ Neighboring cell RSRQ

TDD Time Division Duplex S-PCI Serving cell PCI

OFDMA Orthogonal Frequency Division Multiple Access N-PCI Neighboring cell PCI

RSRP Reference Signal Received Power RNN Recurrent Neural Network

Unlike the other systems, DeepFeat considers all available
LTE features. However, some of the features may not be
useful for the localization problem. Thus, as shown in Table 2,
DeepFeat applies a feature selection module to choose the
features that greatly influence localization accuracy.

Ill. SYSTEM OVERVIEW

This section introduces the main blocks of the DeepFeat
system and its operational model. According to Figure 1,
which shows the system structure, there are two modes
of operation: offline and online. Various LTE features are
collected via intensive drive test in a large-scale area using
the Data Collection module during the offline mode. The
DeepFeat model includes a feature selection module that
uses Chi-Squared and correlation methods to rank and select
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the features according to their impact and relevance to the
localization problem. Moreover, DeepFeat is armed with
the proposed one-to-many data augmenter to extend the
number of samples and reduce the noise impact. Furthermore,
the area of interest was divided into small areas using the
grid generator module to apply the desired classification
technique. Finally, DeepFeat uses a Deep Feed-forward
Neural Network (DFNN) model, and the most influential
collected features are used for training this model. During
the online mode, the desired features are collected from the
UE. Then, we use the weights of the trained model for the
prediction. The mobile device location is then estimated using
the trained model to predict the grid where the mobile device
is located. In the following sections, system blocks will be
explained in details.
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TABLE 2. Comparison between different localization systems.

System Localization Type Area Size Model Features Median  Localization
Accuracy (m)
CellSense [24] Outdoor Rural: 1.958Km? Probabilistic RSSI and PCI Rural: 105.11m
Urban: 5.45Km? fingerprinting-based Urban: 30.05m
technique
DeepLoc [27] Outdoor Urban area: 0.2km? Feed-forward deep | RSSIand PCI Urban area: 18.8
Rural area: 1.2km? neural network Rural area: 15.74
WiDeep [9] Indoor University: 629m? Stacked denoising au- | RSSI and PCI University: 2.64
Apartment: 65.25m? toencoders Apartment: 1.21
MonoDcell [29] Indoor Testbed A: 132m? LSTM network RSSI and PCI Testbed A: 0.95
Testbed B: 629m? Testbed B: 1.42
OmniCells [30] Indoor Apartment: 132m? Autoencoders RSSI and PCI Apartment: Minimum
Building Floor: 629m? improvement of 111.90%
Building Floor: Minimum
improvement of 100.98%
StoryTeller [40] Floor prediction | Building 1: 22570m? | Convolutional Neural | RSSI and PCI Estimate the user’s floor
in multi-story Building 2: 2725m? Network (CNN) at least 98.3% within one
buildings Building 3: 7114m?2 floor
DeepFeat (Large Area) Outdoor 45Km? Feed-forward deep | 12 selected fea- | 13.7m
neural network tures in Section
11I-B
DeepFeat (Small Area) Outdoor 6.27Km? Feed-forward deep | 12 selected fea- | 13.179m
neural network tures in Section
1II-B

A. LTE FEATURES

In LTE networks, users are served by Evolved Node B
(eNodeBs), which are also known as Base Transceiver
Stations (BTSs). Each eNodeB consists of several sectors,
and each sector serves a different area using sectorized
antennas. Those eNodeBs provide access to the LTE network
via Frequency Division Duplex (FDD) and Time Division
Duplex (TDD). Orthogonal Frequency Division Multiple
Access (OFDMA) is the multiple access technique used by
eNodeB to provide access to users over the physical layer.
In OFDMA, eNodeB allocates radio resources spanning
the time and frequency dimensions. Consequently, eNodeB
transmits the data to the users via downlink frames, where
each frame contains a set of reference signals [42].

When a mobile moves from one cell to another cell,
it performs cell selection and handover based on the
signal strength and quality of serving and neighboring
cells. Therefore, several LTE measurements can be used to
identify the location of the mobile device. We use these
LTE measurements as the input features for DeepFeat,
and we call them LTE Features, which are summarized
below.

1) PHYSICAL CELL ID (PCI)

It is an identification of a cell in the physical layer. This
feature is used for discriminating the received signal from
different serving and neighboring cells.
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2) REFERENCE SIGNAL RECEIVED POWER (RSRP)

It defines the average power received for the reference
signal (RS) transmitted from a cell in LTE networks.
Typically, UE calculates RSRP for a specific cell at a
given location by averaging the received power of multiple
resource elements used to transfer the reference signal within
the measured frequency bandwidth. RSRP is measured in
decibels to one milliwatt (dBm) [43]. RSRP is used to
compare the strengths of signals received from different cells
in LTE networks.

Moreover, RSRP is used as an indicator for cell coverage
in LTE networks, which differs from one grid or area to
another for several reasons: cell density per area, transmitted
cell power, area topology, or cell type (indoor cell or outdoor
cell). Thus, coverage footprint will be the crucial component
for fingerprint per grid. Accordingly, RSRP for serving
and neighbor cells will be one of the DeepFeat model
inputs.

3) REFERENCE SIGNAL RECEIVED QUALITY (RSRQ)
It defines the purity of the signal within the system
bandwidth. It is a ratio measured in decibels (dB) as follows
Np x RSRP .
RSSI ) M
where RSSI represents the measured average total received
power over Np resource blocks that carry the reference
symbols [43]. The mobile device measures RSRQ from

RSRQ = 10 log,, (
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FIGURE 1. DeepFeat system architecture.

all sources, including co-channel serving cell, non-serving
cell, adjacent channel interference, and thermal noise. Thus,
RSRQ is an indication of RS signal quality for the serving
cell. It is considered an extension for RSRP, and it also reflects
the load per cell. This load differs from one cell to another
depending on several factors such as PCI clashes and the
area’s nature. Hence, RSSI can be considered as a unique
component for fingerprint per grid.

4) SIGNAL TO INTERFERENCE AND NOISE RATIO (SINR)

It is another measurement of signal quality. However,
it is defined by the UE vendor and not in the Third
Generation Partnership Project (3GPP) specifications. It is
the ratio of the power of the desired signal to the power
of unwanted noise and interference signals. The undesired
signals consist of all external interference and the noise
generated by the interior. SINR then can be calculated as
follow

SINR = 10 log,, ( )

I—i—N)

where S is the power of measured desired signals, I is
the average interference power measured from other cells,
and N represents the noise Power. As the number of users
increases, uplink interference increases, and thus resource
element utilization increases, which directly impacts the
user’s throughput. Accordingly, SINR can also be a relevant
identification for the area or the grid cell.

VOLUME 10, 2022

5) CHANNEL QUALITY INDICATOR (CQl)

It is an indicator containing information to know how
good/bad the quality of the communication channel is.
UE sends CQI information to eNodeB to report current
channel quality. Thus, CQI is a parameter that represents
channel quality in the localization problem, which also differs
from one area to another.

6) TRACKING AREA CODE (TAC)

A tracking area is a logical concept where the user can move
around without updating the Mobility Management Entity
(MME). The network assigns a list with one or more Tracking
Areas (TAs) to the user. Each eNodeB then transmits a unique
TAC to denote to which tracking area the eNodeB belongs.

7) USER TRANSMISSION POWER (UE TX-POWER)

User transmission power, in dBm, is a vital parameter to the
localization problem that changes according to the nature of
the area. UE increases its transmitting power to compensate
for any increase in path loss. In addition, area topology
affects the power of user’s transmission, such as rural areas,
where the UE transmits higher power compared to an indoor
environment.

8) DOWNLINK/UPLINK CHANNEL BANDWIDTH

It is the bandwidth assigned for the downlink and the uplink
carriers per cell. It indicates the capacity per site. When
channel bandwidth increases, the connection becomes faster,
which means higher data rates.

9) LTE FREQUENCY BAND

The 3GPP developed the LTE standard as well as the
frequency bands. In various countries around the world,
different frequency bands are assigned to LTE. FDD and TDD
are the two types of LTE Frequency Bands. FDD band has
two frequencies, one for uplink and the other for downlink.
TDD only needs a single band that is used for both uplink and
downlink communications.

The majority of the state-of-the-art systems depend on
serving Cell Identity (CID) and RSSI as the used features
in the localization problem. Unlike them, we select the
measurements mentioned above to be the features that assist
the DeepFeat model in identifying the user’s location more
accurately. According to Table 3, all available features cover
several network identifiers such as (RS), the base station,
channel quality, interference effect, and user location.

B. FEATURES SELECTION

Extracting all features in the data collection phase ended up
with 19 features which are the previously mentioned nine
features in Table 3 but considering the serving and three
neighboring cells. Therefore, these nine features result in the

19 features as follows:
« PCI, RSPR, and RSRQ included the serving cell and

three neighboring cells: 3 x 4 = 12 features.
« UL Bandwidth, and DL Bandwidth: 2 features.
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TABLE 3. Telecom features in LTE networks collected by drive tests and
the reason behind selecting this feature.

Feature Reason Behind Selection

RSRP Indication of coverage for serving and
neighbour cells

RSRQ Indication of RS quality for the serving cell

PCI Indication of serving and neighbour cells
identification

SINR Represents the load per cell

CQI Indication for uplink channel quality

TA Indication for geography

UE TX Power Indication for UE position from the serving
cell

Channel Bandwidth | Indication for capacity per site

Frequency Band Indication for offered coverage layers
within the area

o SINR, UE TX-Power, Band, TAC, and CQI: 5 features.

The more features the model used, the larger dataset
needed to train the model and the higher computational
power [44]. That is why the feature selection module is vital
to identify irrelevant or low-impact features on localization
accuracy. Moreover, sometimes these features, without a
selection module, cause high noise in the model and result
in misleading outputs.

In this paper, we use three different techniques of feature
selection:

1) Technology-intuitive method: We rely on our Telecom
experience to select the most relevant LTE features
from drive test data. The features that directly impact
the localization problem were selected and used as the
inputs to the DeepFeat model. For instance, serving cell
identity and power are more influential than frequency
band and bandwidth (BW). As a result, this method
concentrates on signal signatures metrics as RSRP,
RSRQ, SINR, CQI, UE TX-Power, and cell identity.

2) Correlation method: We employ a cross-correlation
between all features. Accordingly, we identify the
redundant features that have a high correlation, and
we then exclude them. Figure 2 shows the heat map
of the correlation matrix for all features. For example,
as shown in the figure, UE TX-Power is —70%
correlated with Serving cell RSRP (S-RSRP). This
result was expected since the UE’s power increases
as the distance between the mobile device and the
serving base station increases. Hence, the BS’s power
decreases.
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3) Chi-squared test: The two previously-mentioned meth-
ods indicate which metric can be omitted due to
its high correlation with another metric. However,
there is no sufficient information about the influence
of each metric on the model’s performance. Hence,
the role of the Chi-Squared test is to provide such
missing information [2], [3]. The Chi-squared test is
a univariate statistical test used to select those features
with the most influence on the output variable. The test
determines if there is a significant relationship between
each feature and the output. It calculates Chi-squared
score (x2) from the observed and expected value of the
output per feature according to the below equation:

. E)2
2oy OB )

E.
i=1 !

where V is the number of measurements, E; is the
expected value of the i feature assuming indepen-
dence between the feature and the output, O; is the
observed value of the i’ feature based on the output,
and x? represents the Chi-squared score. We calculate
this quantity for each feature to get a corresponding
score that indicates the feature’s influence on the
output. A high score for a specific feature means that it
has a significant influence on localization accuracy.
When the feature and the output are independent, the
observed value is so close to the expected value, which
results in a lower Chi-squared score (x2). A high
Chi-squared score indicates that the hypothesis of
independence is incorrect, and the output is then more
dependent on the feature. Accordingly, this feature
can be selected for the model training. Therefore, if a
feature is independent of the output, it is uninformative
for classifying the output and excluding it from the
input set.

Considering the DeepFeat case, there is a mix of cate-
gorical and continuous features. For example, serving cell
RSRP is a continuous variable, while serving cell identity is
categorical. Besides, DeepFeat returns a categorical output
which is the grid number. The Chi-squared statistical test
is used to rank the features according to their scores, but
we first apply two data cleansing steps before using the
Chi-squared test. First, convert all categorical features into
discrete numeral values. Then, ensure that all features’ values
are non-negative ones. Following the data cleansing phase,
Chi-Squared is used as a scoring function. A low score means
that the corresponding feature is independent of the output.
In contrast, a high score means that the feature is strongly
affecting the output and is most likely to provide important
information.

As shown in Table 4, the scores of the features are ranked in
descending order. The highest scores mean a strong influence
on the output. The serving and neighboring cells’ RSRP
and identity have the highest scores. Consequently, these
features have the highest impact on the output, matching
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FIGURE 2. Correlation coefficients among all the 19 LTE features.

the past research that uses only RSSI and CID as the
model features. However, using the Chi-Squared algorithm
for feature selection, some features were found to have
a relatively strong impact on localization, such as SINR,
UE TX power, and CQI. Furthermore, RSRQ metrics have
a fair impact on localization accuracy.

Our final feature selection module is a hybrid model
between all mentioned techniques. We rely on features with
the below characterization:

1) The unique signature is applied whenever correlation
with other features is less than 70%, eliminating
redundant features with the same impact on output (i.e.,
UE Tx power is redundant of serving cell RSRP).

2) Features with a Chi-squared score higher than the
median value are selected to ensure that all the features
with a solid contribution to the model are included
(i.e., DL/UL BW and TAC excluded due to their low
scores).

3) The final and most crucial step is utilizing our Telecom
background experience to include some numerically
neglected features. However, technically they have a
high contribution (i.e., RSRQ metric of the serving BS
included to assure including traffic load in the model).

This hybrid model results in 12 features which are the
inputs to the DeepFeat, as defined below:

« PCI, RSRP, RS SINR, RSRQ, CQI for serving cell:

5 features.
o PCI, RSRP for 3 Neighbor Cell: 6 features.
« RSRQ for the first neighbor cell: 1 feature.

IV. DEEPFEAT SYSTEM MODEL

In this section, we present all the details about the DeepFeat
system. Starting with the offline training phase, followed by
the online tracking phase. Table 5 shows different notations
that are used in this section.

VOLUME 10, 2022

TABLE 4. Chi-squared statistical test: Ranked features with
corresponding chi-squared scores for selecting non-redundant ones.

Poor Low Average High Excellent
S.pCI Score=534600
N1-PCI Score=516310
N2-RSRP  Score=22280
RS SINR  Score=22110
N2-PCI Score=21680
N3-PCI  Score=21270
S-RSRP  Score=21040
N3-RSRP  Score=20590
N1-RSRP Score=17140
TX Power Score=11140
Band Score=8765
N2-RSRQ  Score=5314
CQI  Score=4720
N3-RSRQ Score=4249
ULBW Score=3973
NI1-RSRQ Score=3321
DLBW Score=3072
S-RSRQ  Score=1282
TAC Score=234
TABLE 5. Table of notations.
Symbol Description
K Number of augmented samples.
n Distance between original sample and corre-
sponding augmented sample.
N Number of features used as input to the deep
neural network model.
F; Input feature to the model, where 1 <7 < N.
Number of grid cells in the area of interest.
G; The j** grid cell, where 1 < j < M.
Pg; Probability of the input sample to be in the jt"
grid cell.
g Estimated grid cell.
G The set contains all grid cells.
P(g|F) Probability of receiving a signal vector F' at
gridcell g € G.
i Estimated user location.

A. OFFLINE TRAINING PHASE

The deep forward neural network is trained during the offline
phase after collecting the data, feature selection module, data
augmentation, and generating the grid.
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FIGURE 3. One-to-many proposed Augmenter.

1) DATA AUGMENTATION

Deep learning models need more training data to achieve
better and accurate performance [13]. Data augmentation
is one of the most popular techniques used to increase the
number of data samples needed for the training phase. It is
also used to reduce the noise effect in the training data for
both GPS and cellular data [27]. Thus, data augmentation
enhances the system’s performance by handling the noise and
creating new data samples, making the system more robust.

DeepFeat uses a new augmenter called One-to-Many
augmenter, which will be explained later, to increase the
number of samples and reduce the noise effect.

One-to-Many Augmenter: Generally, GPS has inherent
errors that can range within a few meters, in some cases,
up to tens of meters [46]. Moreover, sample values measured
during the data collection phase shall remain the same with a
few meters at relatively low speeds like our case.

In the DeepFeat system, we are proposing One-to-Many
spatial data augmentation. As shown in Figure 3, the
proposed augmentation technique duplicates each sample in
(K) directions. The number of augmented samples K is a
parameter that can be changed. If we choose K too large,
this will enhance the system performance. However, this will
increase the system’s complexity during the training phase
and increase the training time. On the other hand, choosing a
small K hurts the performance in the case of a small number
of data samples and may cause underfitting. Each recorded
sample is repeated every n meters. In DeepFeat, we choose
n = 3m as GPS accuracy decreases after nearly 3 meters,
and the radio conditions change at distances larger than
about 3 meters. K is considered as a system hyper-parameter
that will be evaluated in the performance and evaluation
section.

2) GRID GENERATION

To solve the localization problem, we have two approaches.
The first approach is a regression problem that requires an
infinite number of points that need a massive amount of
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FIGURE 4. The grid cells. The total area is divided into equally-sized
square cells, where the green points present the samples.

training samples, increasing model complexity and visibility.
On the other hand, the second approach addresses the
localization problem as a classification problem by using a
grid approach [49]. The grid generation approach overcomes
different scalability challenges. First, it allows the data
to be collected while the users are moving naturally in
their lives, without requiring them to stand still at the
different fingerprint locations, which reduces the cost. Next,
it provides a way to reduce the number of grid cells in the
area of interest and hence controls the model complexity
and accuracy [27]. The grid generator divides the area into a
virtual grid consisting of M grid cells, as shown in Figure 4.
Each training sample belongs to one grid cell decided based
on the coordinates, where a group of samples located in
a specific grid cell represents the signature for this cell.
These are the training samples used for this cell. Moreover,
the length of the grid cell is a parameter to be tuned
which affects the localization accuracy, as will be shown in
Section V.

3) DEEP FEED-FORWARD NEURAL NETWORK MODEL

We start to train a deep neural network model after
generating the grid cells. The model is trained using the
data samples augmented by the proposed One-to-Many
augmenter. DeepFeat uses a feed-forward neural network,
as shown in Figure 5. The input to the model is the N =
12 used features (F, F2, ..., Fy), which are the outputs of
the feature selection module. We have N training samples
representing the augmented training data set, where each
record in the N; samples contains all the N input features.
On the other hand, the network’s output is the probability of
the input sample to be in each grid cell (Pg,, Pg,, . .., Pgy,)-
Each input sample belongs to one grid cell. Therefore,
we decide that the input sample belongs to the grid cell with
the highest probability based on the output probabilities of
all grid cells. Furthermore, DeepFeat uses Softmax for the
output layer to calculate the probability (score) for each grid
cell. In the offline phase, this deep model is trained using
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FIGURE 5. Feed-forward deep neural network structure.

some training fingerprints such that the model learns the
relationship between the input N features and the probability
of M grid cells.

B. ONLINE PHASE

The previously trained model in Section A is used to estimate
the user location in the online phase. In addition, the
model can predict the user’s location by learning the joint
distribution (relation) between the input and the output,
as mentioned in the previous section. Thus, the input is a new
data sample, and the model will predict the grid cell where
the user is located.

1) ESTIMATING LOCATION OF THE UE

We want to know the estimated location of the user. First,
we estimate the grid cell (g) where the user exists, which is
the cell with maximum probability, as follows:

§ = argmax(P(g|F)) “
geG
where G is the set containing all grid cells, g is any grid
cell belonging to G, and F = (F1,F>,...,Fy) is the
input features vector. We consequently estimate the user’s
location /.

The first method considers the center of the estimated
cell g as the estimated user’s location. However, it is a poor
estimation. We used a second method with better estimation
by using the center of mass of all grid cells weighted by the
corresponding probability of each cell [28].

l= Z g x P, (5)
geG
where P is the corresponding probability for each grid cell
g at the deep model’s output layer.
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FIGURE 6. Effect of data augmentation on the localization accuracy.

2) LOCALIZATION ACCURACY
We then calculate the median localization accuracy after
estimating the user’s location. It is calculated by getting
the difference between the estimated user’s and the actual
locations for all test samples.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DeepFeat in a
suburban environment. First, we mention the data collection
method. We then study the effect of different parameters on
DeepFeat performance. Finally, we compare DeepFeat with
other state-of-the-art systems.

A. DATA COLLECTION

Data is collected through intensive drive tests in a sub-
urban area using TEMS solution [45], an autonomous
solution that uses smartphones to test data and voice
services. Data logs are uploaded or saved periodically for
further post-analysis. The used testing unit is a commer-
cial smartphone to simulate a real customer’s experience.
In our case, we collected the log files through Samsung
Galaxy S8.

B. EFFECT OF CHANGING DIFFERENT PARAMETERS ON
LOCALIZATION ACCURACY

This part shows the effect of changing different parameters
on DeepFeat localization accuracy, as shown below.

1) EFFECT OF DATA AUGMENTATION

Figure 6 shows the effect of using the One-to-Many
augmenter (Section IV-A1) versus no augmentation. We tried
different values for the augmentation parameter K where
increasing K enhances the localization accuracy; however,
the training time increases exponentially. After K = 8§,
the localization accuracy starts to deteriorate. Therefore,
we selected K = 4 for getting high localization accuracy with
an adequate training time.
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FIGURE 7. Effect of changing grid cell length on the localization accuracy.

2) EFFECT OF CHANGING GRID CELL SIZE

Figure 7 shows the effect of changing the grid cell
length (in meters) on the localization accuracy. This box
plot shows the enhancement of localization accuracy by
increasing the grid cell length, but this happens until a
specific grid length of 50m. Increasing the grid cell length
increases the number of data samples within each cell,
which results in a better training model and a higher
accuracy. However, the localization accuracy degrades after
a grid cell length of 50 meters because increasing grid cell
length will cover larger areas. Thus, there is a trade-off
between gird cell and localization accuracy, leading us to
choose 50 meters as the optimum value for the grid cell
length.

3) EFFECT OF NUMBER OF TRAINING EPOCHS

The number of training epochs represents the system’s
number of iterations over training data to update the weights.
Figure 8 shows the effect of changing the number of training
epochs on the localization accuracy at the optimum grid cell
length obtained in the previous section. It shows that we
enhance the localization accuracy by increasing the number
of epochs. However, the localization accuracy is nearly
constant after 2500 epochs. As shown in Figure 8§, we stop
at 3500 epochs where the minimum localization accuracy in
meter is 7.4m, with a median value of 13.7m and a maximum
value of 22.11m.

4) EFFECT OF DIVIDING AREA INTO SUB-AREAS
(HOMOGENEITY TEST)

To test the robustness of DeepFeat model accuracy,
we divided the area into four equal sub-areas. Then,
we checked localization accuracy per sub-area. Figure 9
shows the localization accuracy difference between sub-
areas. The figure shows that the localization accuracy
variance is almost 1 meter, showing the homogeneity of the
model for different sub-areas.

3410

—— Minimum | |

w
s}
T

—— Median
—— Maximum

[\
S
T
|

—
[an}
T
|

Localization Accuracy (Meter)

| | | | | | |
500 1,000 1,500 2,000 2,500 3,000 3,500
Number of Epochs

FIGURE 8. Effect of increasing number of epochs on the localization
accuracy.

40
35 | n
30 |- n
25 - n
20 | n
15 n
10 |- n

Localization Accuracy (meter)

Subarea 2 Subarea 3  Subarea 4
Lower Right Upper Right Lower Left Upper Left

Subarea 1

FIGURE 9. Localization accuracy for different sub-areas (homogeneity
test).

5) EFFECT OF DIFFERENT AREA SIZE

One of the contributions introduced in this paper is testing
DeepFeat model on a considerably large-scale area of 45km?
compared to most of the previous works [27], [28], where
they introduce their models to a small-scale area < 2Km?.
We addressed the difference in our model accuracy when
we used a small-scale region of 6.27km? compared to a
large-scaled one of 45km?. Figure 10 shows that using
small-scale area results in median accuracy of 13.179m.
In comparison, the large-scale area results in median
accuracy of 13.7m, which indicates that DeepFeat is a
robust outdoor localization system even in a large-scale
area.

6) FEATURE SELECTION EVALUATION

In this section, we evaluate the DeepFeat performance using a
different number of features. Figure 11 shows the localization
accuracy for different models. The first one uses RSRP and
PCI as the most commonly used features in the literature
[27], [28]. In contrast, the second one uses all 19 features, and
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TABLE 6. Proposed accuracy metric for different systems.

System Area Size (km2) | Number of Sam- | Number of Cells | Localization Ac- | Number of Cells | Number of Sam-
ples curacy (meter) /km? ples / km?

DeepFeat-Large 45 29375 204 13.7 4.5 652.8
DeepFeat-Small 6.72 5800 88 5.5 14 925
CellSense-Rural [24] 1.958 1351 59 105.11 30.1 690.0
CellSense-Urban [24] || 5.45 2704 155 30.05 28.4 496.1
DeepLoc-Rural [27] 1.2 44659 20 15.74 16.7 37215.8
DeepLoc-Urban [27] || 0.2 19369 185 18.8 925 96845.0
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FIGURE 10. Effect of area size on the localization accuracy by using the
optimum grid cell length of 50m. DeepFeat achieves median localization
accuracy of 13.7m in large-scale area of 45Km2 and 13.179m in
small-scale area of 6.27Km2.

the third uses the proposed hybrid model that uses 12 features,
and those features are mentioned before in Section III-B. This
figure shows that the first model achieves median localization
accuracy of 22.55m, the second one achieves 16.28m, and the
proposed hybrid model achieves the best median localization
accuracy of 13.7m.

We then compare the computation resources(time) needed
to train the model using all collected features (19 fea-
tures) with the resultant features from the hybrid model
(12 features). We saved 20.6% from the computation
resources(time) using Lenovo Laptop core 17 with GTX GPU
for the training process. Figure 12 shows the saving impact
due to using our hybrid model features.

C. COMPARISON EVALUATION

This section compares DeepFeat with the other two state-of-
the-art systems, CellSense [24] and DeepLoc [27]. CellSense,
is mainly a probabilistic RSSI-based fingerprinting location
determination system for 2G phones [24]. While DeepLoc
is a deep-learning-based outdoor cellular localization model
that captures the unique signatures of the different cell
towers at different locations without assuming cell towers’
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FIGURE 12. The needed computational resources (time) to train the
model using all collected features (19 features) and the resultant features
from the hybrid model (12 features).

independence [27]. Table 6 provides a look across different
cell-based localization systems. The table includes the
main metrics that differentiate one system from another:
area size, number of samples, number of cells, and the
achieved accuracy (localization error). For the sake of
fair benchmarking, we normalized the number of samples
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and cells over area size among all systems subject for
comparison. Hence, we introduce cell density and samples
per Km2. From the table, we can have the following
observations:

1) Cell Density: A higher number of cells per Km? pro-
vides more information and a unique fingerprint for
the area, enhancing the localization learning process as
distinguishing between samples will be much easier,
hence better localization error. DeepFeat shows the
best localization accuracy with the lowest cell density
among other systems.

2) Dataset size: More samples per Km? provide better fin-
gerprints in the area, enhancing the localization error,
but it consumes more time and higher operational cost.
Although DeepFeat and CellSense use a comparable
number of samples per Km?, DeepFeat shows better
localization accuracy. We also observed that DeepLoc
showed similar localization accuracy with DeepFeat
but with 50-100 times more samples, which reduces
the cost needed to collect training data in the DeepFeat
model.

As illustrated above, DeepFeat provides superior per-
formance in both large-scale and small-scale areas. This
performance gain is due to features engineering developed
within DeepFeat. The various features introduced to the
model enhance fingerprint, which supports DeepFeat to
operate smoothly on different scales and to accommodate
the relatively lower samples/cells density, unlike the other
systems within the comparison.

VI. CONCLUSION

We introduced DeepFeat as a multi-features outdoor localiza-
tion deep-learning-based system for 4G networks. DeepFeat
utilizes various Telecom features to deliver high localization
accuracy. We showed that the employed feature selec-
tion module in DeepFeat saves computing resources(time)
with enhancement in system accuracy. Using multi-features
enhanced the localization accuracy significantly compared
to using few features. Also, DeepFeat introduces a new
data augmenter that helps to improve model accuracy and
localization accuracy. We tested DeepFeat over a large-scale
area with a median localization accuracy of 13m. Also,
it achieved median localization accuracy up to 5m in an
outdoor environment when tested over a small-scale area of
1.8km?. Therefore, DeepFeat achieves a significant localiza-
tion accuracy by using many selected features in different
environments of different scales. The current proposed model
of DeepFeat depends on data collected from the field so
that the features are time stamped. This time dependency is
not considered in the proposed model. Thus, we can extend
DeepFeat to consider time as a feature using Recurrent Neural
Network (RNN). Memorizing time from the last sample can
be extended to other features as the last position and angle
of direction as implemented in the RATSLAM model [48].
This work considers a modal deep-learning technique where
we have data collected using a drive test that depends on
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a single user only. Each person is tracked independently of
the other. However, we may consider later the use of multi-
modal deep-learning techniques to improve the prediction
performance for multi-users. DeepFeat performance also
shall be investigated for different devices used for data
collections. Moreover, we can study DeepFeat performance
with datasets from various service providers. Finally,
we can test DeepFeat for new evolving mobile technologies
like 5G.
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