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ABSTRACT Automatic maneuver decision in close-range air combat depends on the situation awareness of
the 3D aerial space. Optimal decision could only bemade when the 3D state (e.g. 3D position, orientation and
velocity) of the target aircraft is accurately provided. Together with the state of the aircraft in our side, optimal
maneuver decision could be made by maximizing the situation advantage or utilizing deep reinforcement
learning. On the other hand, vision-based 3D sensing methods are ideal for acquiring the 3D state of the
target aircraft in close-range air combat, since radar and other sensors work badly in such short range.
In this paper, we propose a novel pipeline for vision-based maneuver decision in close-range air combat.
The proposed pipeline contains three main modules: 3D target detection based on Augmented Autoencoder,
3D target tracking based on segmentation and optimization, and maneuver decision based on advantage
maximization and Deep Q Networks (DQN). The proposed method effectively handles the difficulties in air
combat environment, such as fast movement, occlusion from cloud, etc. Experiments demonstrate that our
method could robustly detect and track the target aircraft in complex environment, which provides strong
priors for maneuver decision and helps to significantly improve the winning rate of short-range air combat.

INDEX TERMS 3D target detection and tracking, reinforcement learning, maneuver decision, air combat.

I. INTRODUCTION
Automatic maneuver decision in close-range air combat has
become a popular research topic in recent years [1]–[5].
Vision-based sensors play an important role in the state
assessment of close-range air combat. Airborne radar and
laser sensors could only measure the distance between the
target aircraft and our aircraft, and are incapable of measuring
the full 6-dof pose of the target aircraft, especially the orien-
tation (heading, pitch and roll). Acquiring the full 6-dof pose
of the enemy aircraft is essential for estimating its moving
trend, after which optimal maneuver decision is possible to
be made accordingly. As a result, 3D vision-based sensing
from airborne cameras is often used for situation awareness
in close-range air combat. In order to robustly and accurately
obtain the 3D position, orientation and velocity of the target
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aircraft, a vision-based 3D target detection module and a
vision-based 3D target trackingmodule need to be developed.
After that, a maneuver decision module could be learned
based on the state of both sides. Most of the previous air
combat maneuver decision methods assume that the state of
the target aircraft (i.e. the position, orientation and velocity)
is already known and do not consider the problem of state
estimation (or situation awareness, such as target detection
and tracking). However, we believe situation awareness is
crucial in building an effective maneuver decision model.
As a result, we focus on the front end, and try to solve the
problem of 3D aerial target detection and tracking. The main
pipeline for vision-based maneuver decision in close-range
air combat is illustrated in Fig. 1. In this paper, we propose a
new pipeline, which features three novel modules: 3D target
detection, 3D target tracking, and maneuver decision. These
three modules are specially tailored for the characteristics of
short-range air combat, which is detailed as follows.
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FIGURE 1. The proposed vision-based maneuver decision method.

Although 3D target detection and tracking have been
widely studied and a lot of methods have been proposed
in recent years [6]–[13], very few of them have considered
the specific scenario of close-range air combat. Firstly, the
environment in upper air is very complicated. For example,
the visibility and dynamic range are very different from
the experimental environment (such as indoor environment
which the previous methods and datasets usually tested or
recorded in). Moreover, the cloud often occludes the target,
making it only partly visible or even hardly visible. There-
fore, the previous methods would frequently fail in such
complex environment. In this paper, we propose to detect
the target in upper air using an Augmented Autoencoder,
which is robust to different background and occlusion. Once
detected, the target aircraft is then tracked in the subsequent
frames using a robust segmentation-based 3D tracker, which
is especially robust to cloud occlusions. Secondly, in close-
range air combat, the target aircraft moves very fast, and the
scale changes dramatically in short time period. This is very
challenging for 3D target tracking algorithms. To handle this
issue, we propose to iteratively optimize the tracker, which
improves the convergence rate of the tracker and makes it
more robust to fast movement and scale change. Thirdly, in air
combat tasks, we usually need to fight with different kinds
of enemy aircrafts. In previous methods, the deep detection
and tracking models need to be trained individually for each
aircraft, which makes it infeasible in real practice. In this
paper, we make use of the so-called ‘separated latent rotation
space’ and develop an Augmented Autoencoder capable of
detecting different kinds of target aircraft in a single model.
The tracking module is also universally trained and works
for multiple aircraft types. Finally, based on the 3D target
detection and tracking results, full information of the target is

obtained, and optimal maneuver decision could be made by
maximizing the advantage score or utilizing deep reinforce-
ment learning.

The main contributions of this paper are:

1) We propose a novel maneuver decision pipeline in
close-range air combat based only on vision sensors.
The proposed pipeline could effectively and efficiently
make optimal maneuver decisions and helps to improve
the winning rate.

2) We propose a robust vision-based 3D aerial target
detection method and a 3D aerial target tracking
method which are able to handle complex upper air
environment and provide accurate state information of
the target aircraft in close-range air combat.

II. RELATED WORK
In this section, we briefly introduce the related researches
on vision-based 3D target detection, vision-based 3D target
tracking, and maneuver decision in close-range air combat.

A. VISION-BASED 3D TARGET DETECTION
Vision-based 3D target detection (also known as 6-dof object
pose estimation) aims to estimate the 6-dof pose of a known
object from a single image. This task is very different from
2D target detection, in which the target is only detected in a
2D image, instead in the 3D space. Due to the high dimen-
sionality, 3D target detection is much more difficult than
2D detection. In early days, monocular 3D target detection
is usually achieved through template matching [14]–[16].
In these early methods, template images of the target object in
various different poses are recorded or generated (rendered)
to build a template image library. At test time, the input image
is compared with all of the template images in the library
using fast comparing algorithms (usually in gradient domain).
Recently, deep learning-based methods have dominated the
research for vision-based 3D target detection [6]–[11]. These
methods could be classified into three main categories. Meth-
ods in the first category [6]–[8] train a deep neural network
to directly regress the 6-dof pose parameters, which seems
simple in spirit but relatively difficult to train. Methods in the
second category [9]–[11] take another route by first predict-
ing the keypoint locations in the image and then estimating
the 6-dof pose using the PnP algorithm. Methods in the
third category [17], [18] employ the Augmented Autoencoder
to train a latent code for different poses of the target. The
autoencoder-based architecture is relatively easy to train with
only augmented synthetic training data. With the help of data
augmentation and adversarial training, thesemethods are able
to solve the domain gap and generalize to real test images.
Currently, the deep learning-based methods are the state-of-
art methods in the field of 3D target detection. Therefore,
in this paper, we utilize an Augmented Autoencoder-based
method to detect the target aircraft in close-range air combat,
which is capable of robustly detecting different kinds of target
aircraft in a single model.
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B. VISION-BASED 3D TARGET TRACKING
Vision-based 3D target tracking aims to estimate the 6-dof
pose of a known object in each frame of a video sequence by
utilizing temporal information. For tracking tasks, the 6-dof
pose of the first frame is given as the prior. This prior is
usually provide by a 3D target detection algorithm introduced
in Section II-A. When tracking is lost due to some difficult
factors, the tracker needs to be reset by re-detecting the target
in the following frames. In early years, people use feature-
based and edge-based methods to accomplish the task of 3D
target tracking [19]. However, feature-based methods only
work for well-textured targets and could not work for texture-
less objects. Also, edge-based methods often struggle with
background clutters and only work well for simple objects in
simple background. On the other hand, region-based methods
have been popular for monocular 3D target tracking in recent
years [20]–[24]. These methods are built upon a statistical
formulation aiming to maximize the discrimination of fore-
ground and background regions. The earliest region-based
method is PWP3D [20]. After that, a lot of region-based
methods have been proposed based on PWP3D [21]–[25],
and each of them seize to tackle some of the problems in the
original PWP3D algorithm. Specifically, a recentmethod [25]
combines region-based method with learning-based video
object segmentation, which achieves very good performance
in cases with heavy occlusions. In this paper, we borrow
the idea of [25] and propose to track the target aircraft in
3D space using segmentation and optimization. We have
made several changes in order to make it work better for
fast aircraft movement and upper air environment with cloud
occlusions.

C. MANEUVER DECISION IN CLOSE-RANGE AIR COMBAT
Maneuver decision methods aims to automatically make
the best decision of movement for the aircraft. Making the
best maneuver decision is more crucial for the survival and
winning of the aircraft in close-range air combat than in
middle-range or long-range air combat, since it is much
more time-sensitive in close-range air combat. Previously,
maneuver decision is usually made by rules, which lacks
generalization ability. In recent years, researchers have been
trying to utilize reinforcement learning to tackle the problem
of maneuver decision. Yang et al. propose a deep reinforce-
ment learning-based maneuver decision model for UAV in
short-range air combat [2]. Their method mainly includes
the aircraft motion model, one-to-one short-range air combat
evaluation model and the maneuver decision model based
on Deep Q Network (DQN). Zhang et al. propose three
efficient training techniques for a multi-agent combat prob-
lem in UAV combat scenario in [3]. The proposed method
is able to train multiple agents simultaneously using multi-
agent deep Q-learning and multi-agent deep deterministic
policy gradient algorithms, but only 2D cases are discussed
in their paper. Wang et al. propose to improve maneuver
strategy in air combat by alternating freeze games with a
deep reinforcement learning algorithm [4]. They focus on

the training stability of the self-play training problem in
deep reinforcement learning. Kong et al. also propose an
UAV autonomous aerial combat maneuver strategy gener-
ation method based on state-adversarial deep deterministic
policy gradient and inverse reinforcement learning [5]. All
of the above methods assume that the state of the target
aircraft (i.e. the position, orientation and velocity) is already
known and do not consider the problem of state estimation.
However, we believe situation awareness is crucial in building
an effective maneuver decision model, so we mainly focus
on the problem of 3D aerial target detection and tracking.
After that, we also build a simple but effective maneuver
decision model to prove the advantage of our detection and
tracking algorithms and the effectiveness of the proposed
whole pipeline.

III. METHOD
In this section, we present the vision-based maneuver deci-
sion pipeline in detail. We first introduce the main workflow
of our pipeline in Section III-A. After that, we present the
proposed 3D aerial target detection module, the 3D aerial
target tracking module, and the maneuver decision module
in detail in Section III-B, III-C and III-D respectively.

A. OVERVIEW
The overview of the proposed pipeline is illustrated in Fig.2.
To accomplish vision-based automatic maneuver decision,
we need to make use of the video stream from airborne
cameras. When the target aircraft appears in the sight of view,
it is detected by the proposed 3D target detection module.
The detector estimates the 3D position and 3D orientation
of the target aircraft, and provides initial 6-dof pose of the
aircraft to the 3D target tracking module. With the initial
pose estimate, the 3D target tracker then estimates the 6-dof
pose of the aircraft in each of the subsequent frames. When
tracking is lost, the tracker needs to be re-initialized by the
detector. Apart from 6-dof poses, the 3D tracker could also
provide 3D velocity of the target aircraft through temporal
differential and filtering. After that, full state of the target air-
craft, including the position, orientation and velocity, is pro-
vided to the maneuver decision model. We develop a simple
one-step maneuver decision model and a second maneuver
decision model based on Deep Q Networks (DQN). The one-
step model is realized by maximizing the advantage score
in the next single step. The DQN-based model is a simple
neural network which takes the state vector of both sides and
output the Q value of each possible maneuver (action). After
training, optimal maneuver could be decided by choosing the
action with the highest Q value.

B. VISION-BASED 3D AERIAL TARGET DETECTION
The main idea of the proposed 3D aerial target detection
module is to first localize the target in the 2D image, and then
estimate its 6-dof poses using an Augmented Autoencoder.
The first step is accomplished using an on-the-shelf fast
2D detector, YOLO v3 [26]. In the following, we mainly
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FIGURE 2. Overview of the proposed pipeline.

introduce the second step: 6-dof pose estimation using Aug-
mented Autoencoder.

The network architecture is illustrated in Fig. 3. By using
an autoencoder, we want to learn the latent feature space
of the 3D rotation space. In order to make the model work
for multiple aircraft types, we propose to learn a ‘separated
latent rotation space’, which encodes the rotation of different
aircrafts into different separated regions of the latent space.
To achieve this, the training samples are prepared in a one-
to-one manner. The prior distribution is selected as a mixture
of Gaussians distribution in order to shape the distribution of
the latent code into N separated regions. Also, the encoder
plays a cooperative game with the classifier for better sepa-
ration. As a result, the trained network could simultaneously
estimate the class and orientation of the input image.

1) ONE-TO-ONE CONDITIONAL AUTOENCODER
Here a one-to-one mapping scheme is adopted for learning
the separated rotation space. For an input image of object i
(i = 1, 2, . . . ,N ) in rotation j, only itself is required to be
reconstructed by the generator with the label y = i.
The reconstruction target can be written as:

x̂ij = G
(
zij, y

)
= G

(
E
(
xi,j
)
, y = i

)
(1)

Since there are no extra constraints on the latent code z, the
learned rotation representation is not shared among objects.
Instead, they are likely to be naturally separated and clustered
by classes because of similar features within each object
class. The reconstruction objective is:

min
E,G

LR (E,G) = min
E,G

L2 (x,G (E (x) , y)) (2)

2) DISTRIBUTION DISCRIMINATOR ON z
To better shape the distribution of the latent code of different
object classes, we impose a mixture of Gaussians distribution
on the latent code z. We incorporate the class label as the input
ofDz. The one-hot class label could act as a switch that selects
the corresponding decision boundary of the discriminative
network given the class label y. Here the positive samples
for Dz is randomly drawn from one mixture component of

the prior distribution p (z) according to a given class label y:
z∗ ∼ p (z|y). The latent code generated by the encoder and the
corresponding class label y are also provided toDz as negative
samples. The encoderE and discriminatorDz then play amin-
max game with the following objective:

min
E

max
Dz

LD (E,Dz) (3)

where

LD (E,Dz) = Ez∗∼p(z|y)
[
logDz

(
z∗, y

)]
+Ex∼pdata(x)

[
log (1− Dz (E (x) , y))

]
(4)

3) CLASSIFIER ON z
Since we want to completely separate different objects in the
latent space, the encoder plays a cooperative game with the
classifier Cz. E and Cz work together for better classification
performance:

max
E,Cz

LC (E,Cz)

= max
E,Cz

Ex∼pdata(x),y

[∑
c

I(c = y) log (Cz (c|E (x)))

]
(5)

4) THE FINAL OBJECTIVE FUNCTION
Combining the above objectives gives the final objective for
learning separated latent rotation space:

min
E,G

max
Dz

[LR (E,G)+ λLD (E,Dz)]+max
E,Cz

γLC (E,Cz)

(6)

Thewhole network is trained on eachmini-batchwith SGD
sequentially in three phases:

(1) In the reconstruction phase, the encoder and the gener-
ator are updated by minimizing LR (E,G).
(2) In the regularization phase, the distribution discrimina-

torDz is first updated byminimizing−LD (E,Dz) to tell apart
true samples (generated using prior distribution of z) from
generated samples (the latent code computed by the encoder)
with the given class label y. Then the encoder E is updated by
minimizingLD (E,Dz) to confuse the discriminator network.
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FIGURE 3. Vision-based 3D aerial target detection based on augmented autoencoder.

(3) In the classification phase, the encoder E and the
classifier Cz are cooperatively updated by minimizing
−LC (E,Cz).

5) EXTENDING TO 6D TARGET DETECTION
After training theAugmentedAutoencoder, the rotation of the
target could be obtained through searching the latent code of
the test image in the codebook [17]. If we want to detect N
kinds of aircrafts, N codebooks need to be built by rendering
all kinds of the aircrafts in different rotation and feeding them
into the encoder to obtain the latent codes. For the i-th kind
of aircraft, the latent code of the test image ztest is compared
to all of the latent codes in codebook i:

cosij =
zijztest∥∥∥zij∥∥∥ ‖ztest‖ (7)

The rotation of the test image is determined through KNN
search:

Rtest = Rjmax (8)

where

jmax = max
j

cosij (9)

After that, the translation part t =
(
tx , ty, tz

)
could be

determined as follows and the detection is extended to 6D:

tz = tsyn_z ×
lsyn
ltest
×
ftest
fsyn

(10)

tx =
tz
ftest
× (xtest − xc) (11)

ty =
tz
ftest
× (ytest − yc) (12)

where fsyn and ftest are the focal lengths of the synthetic
camera and the test camera; lsyn and ltest are the diagonal
distance of the 2D rectangle of the synthetic image and the
detected 2D rectangle of the test image; tsyn_z is the rendering
distance for the synthetic images; xtest , ytest , xc, yc are the 2D
coordinates of the detection center and the coordinates of the
optical center.

C. VISION-BASED 3D AERIAL TARGET TRACKING
Given the initial pose estimated by the 3D detector, we then
track the target in the following frames. Once the tracker is
lost, we reset the pose by re-detecting the target, and then
re-start tracking. The proposed vision-based 3D aerial target
tracking pipeline is shown in Fig. 4. We use a similar tracking
pipeline as our previous work [25], but some modifications
have been made according to the characteristics of the aerial
tracking environment. The proposed tracking pipeline con-
tains two steps: video object segmentation and region-based
6-dof pose estimation.

1) VIDEO OBJECT SEGMENTATION NETWORK
Firstly, before estimating the 6-dof pose of the target in the
current frame, we try to segment the target in the image using
a video-object segmentation network. Specifically, we use
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FIGURE 4. Vision-based 3D aerial target tracking pipeline.

the DeepLab v3+ [27] network, and modify the input from
3 channels to 4 channels (current frame RGB channels +
the previous segmentation mask). By including the previous
mask as input, the network could obtain some clues about
the approximate current position of the target as temporal
prior. On the other hand, the previous mask helps to handle
occlusions, thus the segmentation network could predict the
full mask of the target in the current frame, even in heavy
occlusion cases. The training details for the video object
segmentation network could be found in [27].

2) REGION-BASED 6-DOF POSE ESTIMATION
Next, we estimate the 6-dof pose of the target based on the
segmentation result using non-linear optimization. We follow
the state-of-art region-based 3D pose tracking formulation:

E(p) = −
∑
x∈�

log[He(8(x(p)))Pf (x)

+ (1− He(8(x(p))))Pb(x)] (13)

where p = (ω1, ω2, ω3, t1, t2, t3)T ∈ R6 is the 6-dof pose
vector in Lie algebra representation. � is the image region,
x = (x, y)T ∈ � are the pixel coordinates in the image.
8(x) is the level-set embedding function (the signed distance
function):

8(x) =

{
−d (x,C) , ∀x ∈ �f

d (x,C) , ∀x ∈ �b
(14)

where C is the contour, �f and �b are the foreground and
background regions, d (x,C) calculates the nearest distance
from x to contour C . He is the smoothed Heaviside step
function. Pf (x) and Pb (x) are the posterior distributions of
foreground and background pixels, which are calculated from
the soft segmentation mask provided by the segmentation
network in our case.

The aim of region-based pose tracking is to minimize the
energy function (13). Similar to previous works [22], [24],

we use a Gauss-Newton method by re-writing the energy
function as a non-linear re-weighted least squares problem:

E (p) =
1
2

∑
x∈�

ψ (x)F2 (x,p) (15)

where

F(x,p) = − log[He(8(x(p)))Pf (x)

+ (1− He(8(x(p))))Pb(x)] (16)

and

ψ (x) =
1

F (x,p)
(17)

Then the non-linear optimization problem could be
solved iteratively by fixing and alternatingly updating the
weights ψ (x).

After pose tracking, the velocity is calculated using tem-
poral differential with Gaussian filtering (smoothing).

D. MANEUVER DECISION IN CLOSE-RANGE AIR COMBAT
After 3D detection and tracking, the state of the target aircraft
is obtained. Together with the state of our aircraft, the next
best maneuver of our aircraft could be decided bymaximizing
the advantage of our aircraft compared to the target aircraft.
In this section, we first introduce the aircraft motion model,
then we present two maneuver decision methods based on the
estimated state. Both two methods are simple yet effective.
Our method could achieve similar results compared to the
state-of-art methods with much simpler configurations (such
as the dimension of state vector, action space, and training
strategy), which proves the effectiveness of our detection and
tracking modules.

1) AIRCRAFT MOTION MODEL
Similar to previous works [2], [3], we use a simplified air-
craft motion model as shown in Fig. 5. We mainly consider
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FIGURE 5. Aircraft motion model.

the position, orientation and velocity of the two aircrafts.
We assume that the velocity direction coincides with the
aircraft body axis. The velocity direction v = (vx , vy, vz) is
decided by the heading angle ψ and the pitch angle γ , and
the roll angle φ is ignored (φ = 0).

The relative position vector of two aircrafts is depicted as
p. The angle between the velocity of our aircraft v1 and p is
θ1, which is called the Antenna Train Angle (ATA). The angle
between the velocity of target aircraft v2 and p is θ2, which is
called the Aspect Angle (AA).

The motion model can be described as:
.
x = v cos γ cosψ
.
y = v cos γ sinψ
.
z = v sin γ

(18)

where
.
x,

.
y,
.
z are the velocity components in three coordinate

axis directions.
Here we ignore the dynamic model of the aircraft and only

consider the motionmodel. Tomake themodel more realistic,
we have set limitation to the velocity change rate in each
coordinate axis. In general, we want to find the best next
velocity direction and magnitude in order to obtain the largest
advantage towards the target aircraft, which is discussed in
detail in the following.

2) ONE-STEP OPTIMAL MANEUVER DECISION
First, we present a simple one-step maneuver decision
method to quickly test the effectiveness of the proposed 3D
aerial target detection and tracking modules. The idea is to
maximize the advantage score in the next step. Since only one
step is considered, this maneuver decision algorithm could be
seem as a greedy algorithm.

In order to win a close-range air combat, the key is to enter
the tail zone of the target aircraft and avoid letting the target
aircraft to enter our tail zone. To achieve this goal, both the

relative angle and relative distance between the two aircrafts
need to be considered.

For the angle advantage, as shown in Fig. 5, the smaller
θ1 and θ2 are, the larger advantage we have towards the target
aircraft. The angle advantage score is defined as:

Sangle =
1
2

(
v1p
‖v1‖ ‖p‖

+
v2p
‖v2‖ ‖p‖

)
(19)

For the distance advantage, we want to enter the attack
zone, which is a region defined by the maximum attack
distance dmax and the minimum attack distance dmin. When
the distance ‖p‖ is larger than dmax , the next movement
should narrow the distance ‖p‖ as far as possible. On the
contrary, when the distance ‖p‖ is smaller than dmin, the
next movement should enlarge the distance ‖p‖. The distance
advantage score is define as:

Sdist

=



‖pt−1‖ − ‖pt‖
2vmax

; ‖pt‖ > dmax, ‖pt‖<‖pt−1‖

1−
‖pt‖−‖pt−1‖

2vmax
; ‖pt‖ > dmax, ‖pt‖ ≥ ‖pt−1‖

1−
‖pt−1‖−‖pt‖

2vmax
; ‖pt‖ < dmin, ‖pt‖ < ‖pt−1‖

‖pt‖ − ‖pt−1‖
2vmax

; ‖pt‖ < dmin, ‖pt‖ ≥ ‖pt−1‖

1; dmin ≤ ‖pt‖ ≤ dmax

(20)

where pt and pt−1 are the distance between two aircrafts in
the current time stamp and the previous time stamp, vmax is
the maximum velocity.

Comining the angle score and the distance score, the
advantage score is defined as follows:

Sadv = Sangle + αSdist (21)
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FIGURE 6. Deep Q network (DQN) for maneuver decision.

where α is a weight factor to balance the angle advantage
score and distance advantage score.

Since we only consider the motion model, the optional
action is to increase, decrease or maintain the velocity in each
of the X ,Y ,Z axes. By changing the velocity in each axis
individually, the heading angle and pitch angle are changed
accordingly. For the velocity in each axis vi, it could be
changed to vi+ δv, vi− δv, or maintain the same, where δv is
the discretized value for velocity change. As a result, we have
3 × 3 × 3 = 27 kinds of actions to choose. For each of the
possible actions, we evaluate the advantage score as in (21)
and choose the action with the largest advantage score as the
optimal action.

The criterion of winning the air combat is as follows:
θ1 <

π

6

θ2 <
π

3
dmin ≤ ‖p‖ ≤ dmax

(22)

Although here we only consider one step to make maneu-
ver decision, satisfactory results have been achieved in var-
ious different cases thanks to the robust and accurate state
estimation provided by our 3D detection and tracking mod-
ules. The experimental results will be presented in detail in
Section IV-D.

3) MANEUVER DECISION BASED ON DQN
Apart from the simple one-step decision model, we also
test another model based on Deep Q Network (DQN). The
DQN-based maneuver decision model is shown in Fig. 6. The
input to the network is the state vector of both sides:

State =
(
x1, y1, z1, vx1, vy1, vz1; x2, y2, z2, vx2, vy2, vz2

)
(23)

The network is a 3-layer fully connected network, with
128, 64 and 32 units respectively.

The output is the Q value of different actions. The actions
are defined as follows:

Action = {vx+, vx−, vx =} ×
{
vy+, vy−, vy =

}
× {vz+, vz−, vz =} (24)

FIGURE 7. 3D tracking results for an aircraft model. Left: input image;
Right: 6-dof tracking results. The 3D CAD model of the aircraft is rendered
according to the estimated pose parameters and superimposed on the
original image. The estimated 3D position and orientation are also
displayed in the image.

The possible action is to increase, decrease or maintain the
velocity in each of the X ,Y ,Z axes, resulting in 27 possible
actions in total.

The reward includes advantage reward and terminate
reward:

Reward = Radvantage + βRterminate (25)

where the advantage reward is the same as the advantage
score Sadv in Section III-D2), and the terminate reward is
defined as:

Rterminate =


1, if win
−1, if lose
0, otherwise

(26)

The loss function for DQN is:

L (θ) =
∥∥Q(si, ai; θ )− (ri+γmaxa′Q

′
(
si+1, a′; θ ′

))∥∥ (27)

where Q is the online Q-network, and Q′ is the target
Q-network. The parameters of the online Q-network is
updated to the target Q-network periodically. ri is the reward,
and γ is the discount factor.

IV. EXPERIMENT
To simulate realistic air combat scenes, we use an open-
source python-based 3D air combat simulator [28], which is
developed upon the HARFANG 3D framework [29]. In all
of the following experiments, we use a commodity desktop
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FIGURE 8. Curves for the relative angle and distance, and the pitch/yaw angles of both sides along the whole trajectory in two experiments.

FIGURE 9. Maneuver trajectory of some typical cases in our experiment
for one-step maneuver decision model. The blue aircraft is moving
randomly, and the red aircraft tries to beat the blue one using the
proposed one-step maneuver decision model.

computer with Intel i7 quad core CPU@4.0GHz and a single
NVIDIA GeForce GTX1080Ti GPU.

A. RESULTS ON 3D TARGET DETECTION
In order to test the effectiveness of the proposed 3D target
detection module, we evaluate our method on a subset of the
famous public dataset, LineMod dataset [14]. We compare
with two state-of-art methods: SSD-6D, a 6-dof object pose
estimation method, which is an extension of the SSD detec-
tion framework [7]; and Ori-Learn [17], a 3D orientation esti-
mation method based on Augmented Autoencoder. We use
the ADD metric as in previous works. The evaluation results
are summarized in Table 1.

TABLE 1. Detection accuracy in a subset of LineMod dataset using ADD
metric, best scores are in bold.

The results show that our method obtains higher ADD
scores compared to the other two state-of-art methods.
Specifically for the Duck object, our method performs much
better, which proves the effectiveness of the proposed 3D
target detection module.

We have also tested our 3D target detection method on
a synthetic aircraft and a real aircraft model. The detection
results are shown in Section IV-B together with the tracking
process.

B. RESULTS ON 3D TARGET TRACKING
Next, we evaluate the performance of our 3D target track-
ing module. Firstly, in order to test the capability of han-
dling occlusions, we evaluate our method on the occlusion
sequences of the synthetic Rigid Pose Dataset [30]. We com-
pare our method with 4 other methods [20], [23], [31], [32]
and the results are summarized in Table 2. We measure the
tracking success rate (SR), which is defined as the proportion
of frames that are successfully tracked (in %). The results
show that our method performs better than the other state-
of-art methods in occlusion cases.

Secondly, we test our 3D target tracking module in real
environment. We use a webcam to capture a real aircraft
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FIGURE 10. Two sample trajectories of the DQN-based model (red) fighting the one-step model (blue). Left: DQN-based model win; Right: One-step
model win.

TABLE 2. Evaluation results on occluded sequences of rigid pose dataset.
(Tracking success rate in %, best scores are in bold.)

model of the F-16 fighter, and try to detect and track the
aircraft model in a cluttered background. The tracking results
are demonstrated in Fig. 7.

To demonstrate the tracking accuracy, we render the 3D
CAD model of the aircraft according to the estimated 6-dof
poses and superimpose the rendered model on the image.
If the rendered model fits the aircraft on original image, the
composed image would be visually satisfied and the tracking
results are qualitatively accurate. As shown in Fig. 7, our
3D tracking method could robustly and accurately track the
aircraft model in cluttered background, which proves the
effectiveness of the proposed tracking module.

C. RESULTS ON MANEUVER DECISION IN CLOSE-RANGE
AIR COMBAT
At last, we could finally test the maneuver decision model
using the state information provided by the 3D detection and
tracking modules.

Firstly, we test the proposed simple one-step maneuver
decision model. In this experiment, we have red and blue
aircrafts in two sides. The blue aircraft is moving at random,

and the red aircraft tries to beat the blue one using the
proposed one-step maneuver decision model. In each trial,
the two aircrafts are placed at two random positions in a
limited region, and are set with random velocities. Some
trajectories of the red and blue aircrafts in different trials
are demonstrated in Fig. 9. In all these trials, the red aircraft
armed with the proposed one-step maneuver decision model
successfully chase the tail of the blue aircraft and win the air
combat.

We have also drawn the curves of the relative angle θ1
(ATA), θ2(AA), the relative distance d , together with the
curves of pitch and yaw angles of both sides in Fig. 8.
It is shown that, through the chasing process, the rel-
ative angle θ1, θ2 and the relative d tend to decrease
gradually, so that the advantage score would increase.
Also, the pitch and yaw angles of the red aircraft gen-
erally try to follow the blue aircraft in order to chase
its tail.

Secondly, we test the proposed DQN-based maneuver
decision model. In this part of experiment, the DQN-based
model fights with both the random moving model and the
one-step maneuver decision model. When fighting with the
random moving model, the DQN-based model acts similarly
to the one-step model, but obtain higher success rate. When
fighting with the one-step maneuver decision model, the
DQN-based model also wins in most cases (but still loses
in about 15% of the trails). Two sample trajectories of the
DQN-based model (red) fighting the one-step model (blue)
are shown in Fig. 10.

4166 VOLUME 10, 2022



L. Zhong et al.: Vision-Based 3D Aerial Target Detection and Tracking

TABLE 3. Winning rate of different configurations.

In the end, we test the winning rate of 3 different cases:
(1) One-step model vs. Random moving model; (2) DQN
model vs. Random moving model; (3) DQN model vs.
One-step model. For each case, we run 1000 trials and
record the winning rate. The results are shown in Table 3.
The DQN-based model performs best, which proves the
advantage of considering more than one step by using
deep Q learning.

V. CONCLUSION
In this paper, we have proposed a novel vision-based
maneuver decision method in closed-range air combat. The
proposed method contains three main modules: 3D target
detection, 3D target tracking, and maneuver decision. The
proposed method effectively handles the difficulties in air
combat environment, such as fast movement, occlusion from
cloud, etc. By robustly detecting and tracking the target
aircraft in complex environment, our method could provide
optimal maneuver decision which significantly improves the
winning rate of short-range air combat. Experiments show
that the proposed 3D detection and tracking methods perform
better than previous methods, and the proposed maneuver
decision models could effectively provide optimal decisions
to win the close-range air combat.
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