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ABSTRACT Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) are a class of
Recurrent Neural Networks (RNN) suitable for sequential data processing. Bidirectional LSTM (BLSTM)
enables a better understanding of context by learning the future time steps in a bidirectional manner.
Moreover, GRU deploys reset and update gates in the hidden layer, which is computationally more
efficient than a conventional LSTM. This paper proposes an efficient network model based on deep
BLSTM-GRU for ciphertext classification aiming to mark the category to which the ciphertext belongs. The
proposed model performance was evaluated using well-known evaluation metrics on two publicly available
datasets encrypted with various classical cipher methods and performance was compared against one-
dimensional convolutional neural network (1D-CNN) and various other deep learning-based approaches. The
experimental results showed that the BLSTM-GRU cell unit network model achieved a high classification
accuracy of up to 95.8%. To the best of our knowledge, this is the first time an RNN-based model has been
applied for the ciphertext classification.

INDEX TERMS Recurrent neural networks, bidirectional long short-term memory, gated recurrent unit,
ciphertext classification, 1D-convolutional neural networks.

I. INTRODUCTION
With the increasing rate of data transfer over the internet,
system security is becoming one of the most important
issues for information exchange [1], [2]. The system security
can be subdivided into cryptography and cryptanalysis.
The purpose of a cryptosystem is to provide security by
decorrelating the plaintexts and ciphertexts and making the
plaintexts unreadable [3]–[5]. Cryptanalysis investigates the
weakness of the cryptosystem to ensure system security.
In cryptanalysis, the attacker tries to recover the original form
of a secured message by analyzing hidden patterns in data or
finding the secret key. One of the main ways to attack the
cryptosystem is to analyze the hidden data patterns to reveal
the main information of the ciphertext [1], [6], [7]. This is
referred to as building a structured knowledge representation
by extracting the features from the ciphertext normally
using machine learning algorithms to process the information
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confined in the ciphertext. This technique includes machine
learning, statistics, computational linguistics, and informa-
tion retrieval [8]. Another way is to find the secret key to
recover the originalmessage. Ciphertext classification aiming
to mark the category to which the ciphertext belongs can
help an attacker reveal the subject of the information being
exchanged. Ciphertext classification is a supervised learning
task, where the machine learning algorithms are trained with
a set of labeled data from different classes using features
extracted from the document. On the other hand, different
types of information with distinctive features can be involved
in classification tasks.

An artificial neural network (ANN) is a commonly
used method for many recognition, classification tasks, and
cryptanalysis [9]–[11]. Many ANN-based and evolutionary
approaches have been used in literature for cryptanaly-
sis [12]–[17]. Convolutional neural networks (CNNs) are a
powerful machine learning approach introduced several years
ago. Recent advances in CNNs have demonstrated remark-
able performance in different data processing tasks applied
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mainly to medical image analysis [18], [19]. By network
training on a set of annotated data, CNNs can extract the
hidden pattern in data with remarkable accuracy. On the other
hand, ANN and CNN-based methods are limited by the lack
of sequential data processing ability considering unique char-
acteristics of the ciphertext [20]–[22]. The long short-term
memory (LSTM), recurrent neural network (RNN), and gated
recurrent unit (GRU) cell units have been established for
sequential data processing, which takes temporal features
into account using memory cell units [20], [23]–[25].
Because the ciphertext sequence is decorrelated from the
original plaintext, finding discriminative features between
different categories requires a deep understanding of the
context [26]. The bidirectional LSTM (BLSTM) provides a
better understanding of context by learning in a bidirectional
manner and learning the representations from future time
steps [27], [28]. On the other hand, the GRU cell unit is
computationally more efficient than conventional LSTM by
deploying update and reset gates in hidden layers [29]. In our
previous study, an attention-based LSTM was proposed to
attack the classical cipher [30]. The attention mechanism
improves the LSTM ability to save important information
along the sequence.

Realizing the lack of deep learning applications on the
ciphertext classification, this article presents a novel network
model using BLSTM and GRU cell units to classify the
ciphertext. The proposed network effectively captures time
dependencies of the feature and the text features, which
are essential for efficient cipher text classification. The
present research evaluated three classical cipher methods
(Caesar cipher, Vigenere cipher, and Substitution cipher).
The efficiency of the proposed model was assessed using
well-known evaluation metrics (accuracy, recall, precision,
and F1 score) on two datasets: publicly available Brown
corpus and company report datasets. The experimental results
showed that the proposed model could effectively and
quickly confirm the ciphertext category and achieve a high
classification accuracy of 95.8%. In addition, we proposed
a 1D CNN network model to evaluate the propsed network
efficiency against the CNN model.

The main contributions according to the security and
automated ciphertext classification challenges are as follows:

(1) A deep network model was designed based on
BLSTM-GRU cell units for automated ciphertext classifica-
tion, supporting different ciphertext lengths.

(2) In addition to features in the ciphertext document, this
study focused on the temporal dependency from the input
sequence using RNN-based cell units.

(3) The proposed method efficiency compared to various
deep learning-based models was explored in the paper.
The results showed that the proposed network model
outperformed other deep learning-based approaches and was
more efficient in automated ciphertext classification.

The remaining sections of this article are planned as
follows. Section II briefly reviews RNN, LSTM, GRU, and
classical cipher methods used in this experiment. Details of

FIGURE 1. Recurrent neural networks and different cell units. (a) RNN
model, (b) LSTM cell unit, (c) GRU cell unit.

the proposed BLSTM-GRU and 1D CNN network models
are presented in Section III. Section IV presents details of the
experiments followed by results and discussions. Concluding
remarks are given in the last section.

II. METHODOLOGY
The current section in the article presents the details about the
RNN, LSTM, and GRU cells units used to design the main
constructing elements of the network model, followed by a
review of different classical cipher techniques. This review is
restricted to the above-mentioned state-of-the-art techniques
because the primary focus was on ciphertext classification.

A. RECURRENT NEURAL NETWORKS (RNNs)
The RNN is a widely used specific neural network capable of
sequence data processing that makes it suitable for learning
algorithmic tasks. The RNN has been used for many natural
language processing (NLP) applications. The main limitation
of the RNN includes suffering from vanishing gradients
in deep networks (see Fig. 1(a)) [31], [32]. For sequence
data (x1, x2, x3, . . . , xt ), the hidden state ht of the RNN is
calculated using the following equation:

ht = f (ht−1, xt ) (1)

where f denotes the activation function.

B. LONG SHORT-TERM MEMORY (LSTM)
LSTM is a specific type of RNN model to solve the gradient
vanishing problem of the RNN. LSTM is made up of three
main gates. These three gates control the information flow
in and out from LSTM structures to protect and control
information: the forget gate, the input gate, and the output
gate (see Fig. 1(b)) [31], [33]. The input gate stands for new
information added to the cell state, the forget gate decides
which information will be memorized or eliminated from the
cell, and the output gate is for LSTM output. Sigmoid and
tangent functions are mainly used in LSTM cells.

tanh(x) =
ex − e−x

ex + e−x
(2)

sigmoid(x) =
1

1+ e−x
(3)

it = σ (wTxix(t) + w
T
hih(t−1) + bi) (4)

ft = σ (wTxf x(t) + w
T
hf h(t−1) + bf ) (5)

ot = σ (wTxox(t) + w
T
hoh(t−1) + bo) (6)

gt = tanh(wTxgx(t) + w
T
hgh(t−1) + bg) (7)
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ct = ft ⊗ c(t−1) + it ⊗ gt (8)

ht = ot ⊗ tanh c(t) (9)

where σ is the sigmoid and tanh is the tangent activation
function, respectively. i, f , o, c, and h are the input gate,
forget gate, output gate, intermediate gate, and the cell
memory output and ⊗ denotes element-wise multiplication;
t represents time step and T represents the length of the
window (the length of a sliding cutout of a time sequence of
data); w denotes the layer weight representing input x, and b
represents the threshold of the output gate.

C. GATED RECURRENT UNIT (GRU)
The GRU is a type of RNN structure with fewer gates
compared to LSTM. In the GRU cell unit, the input and
forget gates are controlled by one gate. Hence, the forget gate
and input gate are combined into one gate, making the GRU
simpler than LSTM [29]. For example, if zt = 1, the entry
of the new data for the input gate will be closed, and the
forget gate is opened, whereas the mechanism acts vice versa
when zt = 0 (see Fig. 1(c)). The reset gate determines how to
combine the new input with the previous memory to calculate
the new state. The GRU differences from the LSTM are as
follows:

rt = σ (wTxrx(t) + w
T
hro(t−1) + br ) (10)

zt = σ (wTxzx(t) + w
T
o z o(t−1) + bz) (11)

ot = zt ⊗ ot−1 + (1− zt )⊗ õt (12)

where rt stands for reset gate; zt represents the update gate;
ot is the output gate. ⊗ denotes element-wise multiplication;
t represents the time step; T represents the length of the
window; w denotes the layer weight representing input x, and
b represents the threshold of the output gate.

D. CLASSICAL CIPHERS
The classical ciphers used in this experiment, including
Caesar cipher, Vigenere cipher, and substitution cipher, are
explained briefly below. To encrypt the original plaintext
into unreadable ciphertext with a shift (or Caesar) cipher
encryption method, each letter in the original message is
replaced with a letter corresponding to a certain number
of letters up or down in the alphabet. The number of
possible shifts is limited to between 0 and 25 in the English
language, which is equal to the number of English letters.
The receiver decodes the ciphertext message by shifting
each letter in the encrypted message back [34]. A Vigenere
cipher is categorized as a poly-alphabetic cipher that encrypts
a plaintext letter into a set of different letters using the
Key with the total number of possible 26m keys. The
substitution cipher deploys any permutation of the 26 letters
as a key. Therefore, the total possible keys are 26! ≈ 288.4.
Table 1 gives an example of the classical cipher methods.

E. WORD EMBEDDING
Word embedding is a set of language feature learn-
ing techniques in NLP converting word tokens to

machine-readable vectors. Word2vec is a two-layer neural
net that converts the text words into a vector. The input is a
text corpus, and the output is a set of vectors. The advantage
of word2vec is that it can train large-scale corpora to
produce low-dimensional word vectors [35]. Given a sentence
consisting of n words (x1, x2, x3, . . . , xn−2, xn−1, xn), every
word xi is converted into a real-valued vector, ei, represented
as

ei = [w1,w2,w3, . . . .,wn−2,wn−1,wn] ∈ Rn×d (13)

where w is a word, and d is the size of the word embedding.

III. NETWORK ARCHITECTURE DESIGN
This section provides details of the proposed BLSTM-GRU
network model and 1D CNN-based network model.

A. PROPOSED BLSTM-GRU NETWORK MODEL
First, the proposed network was tested using the LSTM
network with three layers, and the results were evaluated. The
parameter setting for each LSTM layer was selected experi-
mentally. Subsequently, the LSTM layers were replaced with
BLSTM and GRU cell units, and the network performance
was evaluated. Table 2 lists the optimal hyperparameters
setting of the proposed network model.

Fig. 2 shows the overall structure of the proposed network
model. The input layer of the proposed network model is
a sequence of the ciphertext. The input layer is a sequence
input layer to enter sequential ciphertext data into the
network, followed by aword-embedding layer. The next is the
BLSTM layer, followed by a dropout layer to prevent network
overfitting. The BLSTM layer learns the dependencies and
dynamics between sequence data in a bidirectional manner,
which is important for learning discriminative features of
data in each time step. The dropout layer is normally used
in a deep learning-based method to prevent the network from
overfitting. The dropout layer randomly drops out a certain
number of neurons to improve the generalizability of the
network. This prevents network overfitting. The second layer
of the proposed model is a GRU cell unit with 200 hidden
cell units that can extract contextual features with a lower
computational cost than LSTM, followed by a dropout layer.
Afterward, a conventional LSTMunit is usedwith 200 hidden
units followed by a fully connected with 60 neurons. The
last layer is a fully-connected layer (FC) with the number of
neurons equal to the number of classes for each dataset. A
Softmax function is used to generate the probability of each
ciphertext class. The proposed method can fully characterize
each ciphertext information based on the advantages of
the high precision sequence labeling ability of the network
model. The softmax function can be calculated as follows:

Softmax(zi) =
ezi

N∑
k=1

ezk
(14)
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TABLE 1. Example of plaintext, ciphertext, and corresponding category encrypted with different classical cipher methods.

TABLE 2. The BLSTM-GRU network model parameter setting.

FIGURE 2. Proposed BLSTM - GRU network model for the ciphertext
classification where the hidden blocks can be used as conventional LSTM
or GRU cells.

where z stands for input vector and k is the number of
classes;N denotes the total number of samples; i is the sample
number.

The proposed model-training algorithm can be explained
in the following steps.

B. PROPOSED 1D CNN-BASED MODEL
A1DCNN-basedmodel for ciphertext classificationwas pro-
posed to evaluate the efficiency of the BLSTM-GRUmodel in
comparison to CNN. CNN can capture hierarchical features
of data via multiple consecutive convolution kernels [36].
CNN mainly consists of the following elements: 1) a set
of convolutional filters, 2) an activation function, and 3)
a max-pooling layer. A convolution layer is a fundamental

Algorithm 1 Proposed BLSTM-GRU Network Model
1. Input: the sequence of the ciphertext.
2. Output: corresponding class of the ciphertext.
3. Learning rate, batch size, embedding dimension.
4. BLSTM (hidden unit size, batch size)
5. Drop out Layer (0.2)
6. GRU (hidden unit size, batch size)
7. Drop out Layer (0.2)
8. LSTM (hidden unit size, batch size)
9. Drop out Layer (0.2)
10. FC (60 neurons)
11. FC (number of classes)
12. Softmax
13. Return Output

component of the CNN architecture that performs feature
extraction, which is a combination of linear and nonlinear
operations and activation functions as follows:

f =
N∑
i=1

(wixi + b) (15)

where i, w, b, x, and N are the input, layer weight, bias, input
data, and the total number of samples, respectively.

Maximum pooling is referred to as a pooling operation
that calculates the maximum values from each convolution
filter. The results are downsampled or pooled feature maps
that highlight the present feature in the patch calculates as
follows:

_c = max(c) (16)

where c stands for convolution layer values after the
convolution operation.

The ReLU function is a nonlinear function applied to
increase the nonlinearity of the CNN feature maps that can
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TABLE 3. Parameters for tuning the proposed 1D CNN network model.

FIGURE 3. Proposed 1D CNN network model for the ciphertext
classification.

be calculated as follows:

g(i) =
{
0, if i ≤ 0
i, otherwise

(17)

Batch normalization is amethod used tomake artificial neural
networks faster and more stable by calculating the mean and
standard deviation of each input variable.

The proposed 1D CNN network consists of three parallel
pathways that extract the features from the ciphertext.
Each pathway consists of two 1D convolution layers, each
followed by batch normalization, ReLU, and dropout layers
(see Fig. 3). The extracted features are then fed to a
max-pooling layer to reduce the data dimension. The number
of convolutional filters in each of the pathways was 64 and
128, respectively. Consequently, the extracted features from
each pathway are concatenated using a depth concatenation
operation and fed into a fully connected layer. The Softmax
function is used to generate the probability of each class.
Table 3 lists the proposed 1D CNN parameters.

IV. RESULTS AND DISCUSSION
This section first introduces datasets used to evaluate the
efficiency of the proposed network model for ciphertext
classification. Second, the details of the experimental setup
for network training, network training on different datasets,
network performance analysis, the impact of hyperparameter
tuning, and finally a discussion of the results are given.

A. DATASETS
Experiments are conducted on the two datasets to authenticate
the effectiveness of the proposed networkmodel. The datasets

TABLE 4. Data distribution for the training and test datasets.

FIGURE 4. Visualization of the class distribution and the number of
samples in the different datasets. (a) Brown corpus dataset, (b) company
report dataset.

TABLE 5. System types of equipment.

were divided randomly into training and test sets. The
optimal amount of training and test datasets were obtained
experimentally.

Dataset-1: The first dataset is the company reports dataset,
containing documents related to different issues occurring
during company operation. It consists of four hundred and
eighty documents from four different classes, where each
class represents a group of reports related to failure in
different company sections.

Dataset-2: The second dataset is the Brown corpus, which
consists of a collection of text samples from fifteen different
classes. Both datasets are encrypted using three classical
cipher methods (Caesar, Substitution, and Vigenere cipher).
Table 4 lists the total amount of samples in each dataset and
data distribution for training and test datasets. Fig. 4 shows
the visualization of the class distribution of both datasets.

B. EXPERIMENTAL SETUP
Table 5 lists the system configuration for training the
proposed network models.
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TABLE 6. Confusion matrix evaluation measures for the classification
results.

C. MODEL TRAINING
In this phase, the main work is the training of the proposed
network models over the encrypted domain. The training
procedure can speed up using Graphics Processing Unit
(GPU). The proposed models were implemented using
Matlab deep learning library, which can be executed on
GPU. This will accelerate the training process 5 to 10
times. A stochastic gradient descent (SGD) training strategy
subdivides the training dataset (called mini-batches) for each
training epoch. A mini-batch size of 128 was considered
for training the proposed method, which yielded better
performance.

All optimal parameters were obtained experimentally.
A dropout of 0.2 was used to prevent network overfitting.
The Adam optimizer was used with a 0.001 learning rate
and cross-entropy loss function [37]. The cross-entropy was
defined by measuring the difference between the actual and
predicted output of the model expressed as the following
equation:

loss = −
N∑
i=1

(yi log ȳi) (18)

where y stands for predicted probability by the network; ȳ is
the ground truth; i stands for the number of data;N is the total
number of samples.

The training progress plot demonstrates the training
accuracy per mini-batch. The training plots and corre-
sponding cross-entropy loss for each mini-batch of both
encrypted datasets against plaintext using the BLSTM-GRU
network model are shown in Fig. 5(a) Brown dataset and
(b) Company report dataset. The classifier accuracy using the
proposed BLSTM-GRU network model oscillates between
92% to 100% for the Brown dataset and 95% to 100%
for the Company report dataset. Similar results are found
for plaintext classification accuracy. Figure 6 presents the
training process of the proposed 1D CNN model on both
datasets. The classifier accuracy oscillates between 72% to
81% for the Brown dataset and 77% to 85% for the Company
report dataset.

D. PERFORMANCE ANALYSIS
The performance of the classification model was evaluated
using a confusion matrix, which is a widely used method
for measuring the classification accuracy of machine learning
methods. The confusion matrix was calculated as listed in
Table 6.

FIGURE 5. Accuracy and loss curves of the proposed BLSTM-GRU network
model per epoch for each cipher method. (a) Brown corpus dataset,
(b) company report dataset.

FIGURE 6. Accuracy and loss curves of the proposed 1D CNN network
model per epoch for each cipher method. (a) Brown corpus dataset,
(b) company report dataset.

True positive (TP) stands for true positive when network
prediction is equal to the actual value, both one. True
negative (TN) stands for true negative when the predicted
value by the network and actual class are equal to 0. False
positive (FP) represents the false positive when the actual
class 0 and the predicted class is 1. False negative (FN)
represents the false negative when the actual class is 1, and
the predicted class is 0.

Fig. 7 presents the confusion matrix of the proposed
BLSTM-GRU model performance for classifying the
Vigenere encrypted text versus plaintext. The confusion
matrix for Caesar and Substitution cipher encrypted text has
a similar result to Fig. 7. The confusion matrix for simple
plaintext without encryption shows higher accuracy than the
encrypted text. Afterward, we evaluated the classification
performance of the proposed BLSTM-GRU model using
well-known metrics, such as the accuracy, precision, recall,
and F1-Measure using equations (19), (20), (21), and (22),
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FIGURE 7. Confusion matrix of the ciphertext and corresponding plaintext classification and using proposed
BLSTM-GRU network model. (a, b) Company report dataset and Brown corpus dataset encrypted using Vigenere
cipher method, (c, d) confusion matrix for the corresponding plaintext classification.

respectively. The classification accuracy (CA) stands for
the overall percentage of the correctly predicted cipher text
classes on the dataset that can be calculated as follows:

CA =
TP+ TN

TP+ FP+ FN + TN
(19)

The precision stands for a fraction of relevant predictions
among all the predicted values that can be calculated as
follows:

precision =
TP

(TP+ FP)
(20)

The recall is the ratio of correctly predicted occurrences
among all instances on the dataset, which can be calculated
as follows:

recall =
TP

(TP+ FN )
(21)

The imbalanced dataset may harm the actual network
accuracy due to accuracy detection towards the majority of
classes. Accordingly, the F1 measure was utilized to assess

the detection performance for the proposed model, which can
be calculated as follows:

F1 = 2×
precision× recall
precision+ recall

(22)

By taking advantage of the combination of BLSTM and
GRU for ciphertext classification, a single layer of BLSTM
was sufficient [38]. Figure 8 presents the result of different
evaluationmetrics using the CNN andBLSTM-GRUnetwork
models on both datasets. The proposed method showed high
classification accuracy for up to 15 different categories.
Based on the experiments, the BLSTM-GRU network model
works better than the CNN for ciphertext classification.

The CNN performance for large datasets with long
sequence lengths was much lower than the BLSTM-GRU
network. This is because the Brown corpus dataset contains
sentences with a long sequence length, and the CNN cannot
process long sequence data, whereas the BLSTM-GRU
network shows a high-level ability for long sequence
processing.

3234 VOLUME 10, 2022



E. Ahmadzadeh et al.: Deep Bidirectional LSTM-GRU Network Model for Automated Ciphertext Classification

FIGURE 8. Performance comparison of CNN and BLSTM-GRU network
models for ciphertext classification on different datasets. (a, b) CNN
classification performance on the company report and Brown datasets,
respectively. (c, d) BLSTM-GRU network model classification result on the
company report dataset and Brown datasets, respectively.

TABLE 7. Impact of the word embedding dimension.

E. THE IMPACT OF HYPERPARAMETER TUNING
Hyperparameter tuning highly impacts the training processes
that are assigned by users before training. The impact of
hyperparameter tuning on network training was investigated
using the company report dataset encrypted according to the
Vigenere cipher method.

1) WORD EMBEDDING DIMENSION
Word embedding is a useful and popular tool in modern
NLP, which is usually a linear or quadratic function of
dimensionality. The word embedding dimension has a
profound impact on the training time and computational
costs. The smaller dimensionality of word embedding cannot
capture all possible word relationships, whereas a very large
embedding dimensionality leads to network overfitting and
slows down training. Fig. 9(a) presents the experimental
result for the impact of different word embedding dimensions
on the training process, and Table 7 lists the quantitative
results.

F. MINIBATCH SIZE
The mini-batch stochastic gradient descent (SGD) is a widely
used technique for large-scale optimization problems for
training machine learning models and deep learning models.
The mini-batch refers to the amount of data used in every
epoch to train the network. A, excessively large batch
size slows the network convergence rate, while a too-small

TABLE 8. Impact of the mini-batch size.

TABLE 9. Impact of hidden cell units.

batch size makes the network fluctuate without achieving
acceptable performance. Fig. 9(b) presents the experimental
results for the impact of Mini-batch size on the training
process, and Table 8 lists the quantitative results.

G. IMPACT OF THE NUMBER OF LSTM HIDDEN UNITs
The number of hidden units in an LSTM refers to the
dimensionality of the hidden states. Changing the number of
hidden units affects the training of LSTMs. Fig. 9(c) shows
the experimental result for the impact of hidden units on the
training process, and Table 9 lists quantitative results.

H. DISCUSSION
This study introduced a deep learning-based network
model for automated ciphertext classification with effi-
cient performance using RNN-based cell units. Generally,
the RNN-based model can store information along the
sequence, which showed a better performance than other deep
learning-based models by taking the temporal and spatial
features into account [31]–[33]. Bidirectional LSTM enables
a better understanding of context by learning future time steps
in a bidirectional manner. Moreover, GRU deploys reset and
update gates in the hidden layer, which is computationally
more efficient than a conventional LSTM. In this paper,
a network model based on the BLSTM-GRU cell units was
proposed to recognize the ciphertext category automatically
and accurately. In addition to features in the ciphertext
document, this study focused on the temporal dependency
from the input sequence using RNN-based cell units. Further-
more, to evaluate the efficiency of proposed BLSTM-GRU
network model against CNN model, we proposed a 1D
CNN-based network model for ciphertext classification. The
proposed BLSTM-GRU method efficiency was compared
with several other deep learning-based models, including
proposed 1D CNN model. The results suggest the efficacy of
the proposed BLSTM-GRU network model using different
well-known evaluation metrics, including the F1 score,
precision, and recall. The RNN-based model disadvantages
can be expressed as long-term dependence problems, gradient
fading, or gradient explosion problems. In this experiment,
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FIGURE 9. Impact of hyperparameter tuning on the network training performance. (a) Impact of the word-embedding dimension,
(b) impact of the mini-batch size, (c) impact of the hidden cell units.

FIGURE 10. Performance comparison of different deep learning-based
models for ciphertext classification. (a) Caesar cipher, (b) Substitution
cipher, (c) Vigenere cipher.

the Adam optimization method was used to train the model,
and the learning rate was set to 0.001. The dropout method
is used to prevent overfitting with a factor of 0.2. In addition,
this study investigated the impact of different hyperparameter
tunings on network performance, including word embedding
dimension, minibatch size, and the number of BLSTM-GRU
cell units. The experimental results indicated that the network
could converge faster using optimal hyperparameters. The
effectiveness and performance of the proposed method were
assessed by comparing the proposed method with some of the
other deep learning-based models shown in Fig. 10.

V. CONCLUSION
This paper proposed a network model based on BLSTM
and GRU network model, which has recently outperformed
many deep learning approaches in the sequential data
processing. The BLSTM showed a better understanding of
the context by learning the future time steps in a bidirectional
manner. The GRU cell unit deploys an update and reset
gate, which is more efficient than the conventional LSTM
model. Based on the experimental results, the method yielded
high classification accuracy by deploying the bidirectional
learning and which enabled the extraction of more distinctive
features to predict the ciphertext classes better. The proposed
method can classify ciphertext in modern ciphers, which are
more complex, and the relationships and dependencies are
more complex to discover distinctive features for accurate
cipher text classification. The limitation of the proposed
model can be expressed as long-term dependence problems
in long ciphertext sequences, which causes the LSTM to

lose important information along the sequence. Thus, future
work will include an investigation of the network’s ability to
classify ciphertext encrypted with modern ciphers for long
sequence.
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