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ABSTRACT Recently, cybersecurity experts and researchers have given special attention to developing
cost-effective deep learning (DL)-based algorithms for Android malware detection (AMD) systems. How-
ever, the conventional AMD solutions necessitate extensive computations to achieve high accuracy in
detecting Android malware apps. Consequently, there is a significant benefit in utilizing convolution neural
networks (CNNs) in vision-based AMD applications to quickly and efficiently learn without prior stages of
reverse engineering processes. Thus, this paper introduces an efficient and automated vision-based AMD
model composed of 16 well-developed and fine-tuned CNN algorithms. This model precludes the need for
a pre-designated features extraction process while generating accurate predictions of malware images with
minimum cost and high detection speed. Such performance is achieved with colored or grayscale malware
images, whether by using balanced or imbalanced datasets. Firstly, the bytecodes of the ‘‘classes.dex’’ files
extracted from the Android benign and malware apps were converted to color and grayscale visual images
before forwarding them to the developed CNN algorithms for classification. Then, the detection efficiency of
the proposed AMD model was examined and evaluated using the imbalanced benchmark Leopard Android
dataset that composes 14733 samples of malware apps and 2486 samples of benign apps. Finally, different
experimental scenarios were conducted using balanced and imbalanced Android samples of color and
grayscale images generated from the Leopard dataset; to extensively and sufficiently validate the detection
and classification performance of the suggested model. Comprehensive assessment classification parameters
in the evaluation experiments were applied to prove the high capability of the developed fine-tuned CNN
algorithms in recognizing Android malware attacks with low computational overhead. As a result, the
detection accuracy reached 99.40% for balanced samples and 98.05% for imbalanced samples. Furthermore,
the proposed AMD model outperforms the existing approaches that utilize conventional vision-based
algorithms and are tested on the same benchmark Android dataset.

INDEX TERMS Cyberattacks, android, malware detection, visualization, color and grayscale images,
imbalanced datasets, deep learning, machine learning, convolution neural network (CNN), fine-tuning,
transfer learning.

I. INTRODUCTION
Android Operating System (OS) is dominating the smart-
phone marketplace holding 72.84% of the mobile market
share [1]. Furthermore, due to the open-source nature of

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuihua Wang .

the Android platform, users can download applications from
several markets such as Google Play Store or third-party mar-
ketplace. However, the open nature of Android along with its
popularity rose the attraction ofmalware attackers. Any appli-
cation with lousy intention is malicious software (malware).
Malware is developed to control the user’s device, steal
his or her information, and interrupt the OS functionality.
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Android malware can be categorized into several types such
as Riskware, SMS, Adware, and Banking [2]. To evade
malware detection systems, malicious software developers
usually imply small modifications on the original source code
of the malware app to generate new malicious software vari-
ants. In consequence, identifying the new malicious software
variants becomes challenging even if they belong to the same
family [3].

In order to overcome the aforementioned challenge,
a model can be trained using machine learning (ML) to
identify malicious software families in regards to the source
code variants efficiently [4]. ML has been deployed in devel-
oping malware detection systems using different approaches
such as static, dynamic, or hybrid analysis [5]–[7]. In static
analysis, the original source code of the Android application
is parsed without executing the app. On the other hand, the
dynamic analysis studies the app’s features and its behaviour
during the run-time. However, in both approaches, retrieving
the features of the Android Application Package (APK) by
reverse engineering or run-time execution consumes process-
ing time and computational resources. However, a model can
be easily trained utilizing the deep learning (DL) approach
by converting the malicious classification issue to an image
classification issue [8]–[11].

Convolutional Neural Networks (CNN) is a type of deep
learning implemented in a multi-layer algorithm to suf-
ficiently classify a large set of images. Inspired by the
effective classification of CNN, this paper proposes an
automated vision-based DL model for Android malware
detection (AMD) systems. The substantial contributions of
this work are:
• Presenting a comprehensive review of the static-based,
dynamic-based, and vision-based AMD approaches.

• Introducing an automated vision-based AMD model for
accurate and efficient detection of malware attacks exist-
ing in the Android operating system.

• Developing 16 different fine-tuned DL-based CNN
algorithms (Xception, VGG16, VGG19, DarkNet53,
MobileNetV2, ResNet101, AlexNet, ResNet50, ResNet
18, InceptionV3, DarkNet19, ShuffleNet, Places365-
GoogleNet, NasNetMobile, GoogleNet, and Squeeze
Net) to proficiently classify benign apps from malware
apps without the need for extensive computations of
reverse engineering or features extraction stages.

• Testing two binary classification scenarios using imbal-
anced (14733 malware samples and 2486 benign sam-
ples) and balanced (2486 malware samples and 2486
benign samples) Android apps datasets; to demonstrate
the success of the developed fine-tuned CNN algorithms
to work on different balanced and imbalanced datasets
sizes without the need for data augmentation techniques
like other conventional classification approaches.

• Accomplishing lower computational overhead and
higher detection accuracy for the proposed vision-based
automated AMD model compared to conventional
detection models. This is achieved with fewer training

iterations by using only the fine-tuning process of the
CNN layers, hyperparameters, and CNN optimization
techniques.

• Performing extensive experiments using both visual
color and grayscale images of Android benign and mal-
ware apps to precisely evaluate the detection perfor-
mance of the suggested AMD model even when it is
applied on different visual image representations.

• Executing comprehensive simulation tests to prove the
validity and efficiency of the proposed automated AMD
model using 16 various detection and classification
parameters.

• Implementing different experiments to check the storage
capacity and complexity performance of the developed
CNN algorithms to prove the simplicity and efficiency
of the proposed automated AMD model in recognizing
Android malware attacks.

• Conducting a comparative study in terms of the obtained
classification accuracy of Android malware attacks; to
confirm the superiority of the proposed AMD model
in comparison to recent related and conventional AMD
models.

The rest of the paper is structured as follows. Section II
discusses a background on the Android application pack-
age and related works. Section III introduces the proposed
automated vision-based AMD model. Section IV displays
the experimental results and discussions. Finally, Section V
concludes this paper and presents possible future work.

II. BACKGROUND AND LITERATURE REVIEW
A. ANDROID APPLICATION PACKAGE
Android Application Package, APK, is a zipped file for dis-
tributing and installing applications by the Android OS [12].
However, unzipping the APK file results in mainly retrieving
the following:

• AndroidManifest.xml: a binary XML file format that
contains metadata of the app such as app name, permis-
sions, and version.

• classes.dex: a Dex file format that contains the app code.
• resources.arsc: a file that contains the pre-compiled
resources of the app, such as styles, colors, and strings.

• assets: a directory that contains the app assets.
• res: a directory that contains all the app resources which
are not included in the resources.arsc file.

• lib: a directory that contains all the app libraries.
• META-INF : a directory that contains the metadata of the
APK, such as the APK signature.

A further step can be implemented by utilizing some
reverse-engineering tools to get different formats of the .dex
file as shown in Fig. 1. For example, the app classes can be
retrieved in .smali format by using APKtool. Furthermore,
the classes in Java format can be restored from the .dex file
by deploying Dex2jar tool [13]. This reverse engineering step
might be necessary for some research works to implement
deep feature extraction [14]–[16].
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FIGURE 1. Android APK decompilation process.

B. STATIC/DYNAMIC ML-BASED ANALYSIS
Machine learning (ML) is an approach in which the system
learns a pattern, develops a model, and generates predictions
by observing only the input data. In implementing malicious
detection systems for Android applications, the machine
learning analysis approach utilizes several features of the
Android app including API calls, permissions, and control
flows [17]. However, obtaining such features can be per-
formed by static, dynamic, or hybrid approaches [18]. In the
static analysis approach, the source code of the Android
malware is parsed without executing the application. Several
static features can be extracted by scanning the binary files
of the malicious software including permissions and API
calls [19]. Subsequently, variousmachine learning algorithms
can be deployed in the classification process. Despite the
fact that the static analysis is inexpensive, it lacks to detect
zero-day and obfuscated malware attacks [20].

Besides static-based analysis applications, there are var-
ious contributions to dynamic-based malware analysis
[21]–[24]. The dynamic analysis approach observes the
behavioral features of the malware by running the Android
APK. To avoid any damage on real devices, the execu-
tion is performed in isolated virtual machines. Various
behavior-based characteristics can be acquired during the
dynamic analysis such as network traffic activities [25], API
calls [26], and system log files [27]. For further classification,
the obtained behavioral features are combined in the features
dataset [17]. However, since the dynamic analysis is per-
formed in an isolated environment, the malware may change
its behavior during its run-time. Therefore, the dynamic anal-
ysis may be insufficient in capturing the real behavior of the
malware attack.

C. VISION ML-BASED ANALYSIS
The research work on the visual-based analysis approach
offered a new direction to deploy convolutional neural

network (CNN) algorithms to effectively detect malicious
software. Huang et al. developed R2-D2, a color-based CNN
detection system for the Android platform [8]. The system
converted the classes.dex file of the Android application into
an RGB (Red, Green, Blue) image. Subsequently, the colored
image was utilized in the feature extraction and training of the
CNNmodel. The research work results in creating a database
namely, Leopard Mobile database.

Several papers have utilized Leopard Mobile database
[9]–[11], [28]. The author of [9] developed a malware threat
hunting system (MTHS) using deep CNN (DCNN) and ML.
MTHS aims to detect malware by applying machine learn-
ing and deep learning on the converted binary files of mal-
ware applications. However, the proposed system was trained
on colored images only. Another system, TensorFlow, was
proposed by [10]. Initially, the malware source code was
filtered then deep learning algorithm was applied to iden-
tify the source code plagiarism. In [11], an visual-based
malware detection framework was implemented using three
Fine-tuned CNN models including InceptionV3, ResNet50,
and VGG16. An accuracy of 97.35% was obtained. Never-
theless, the framework endured additional complexity due to
the applied augmentation techniques to handle the imbalance
samples distribution. Furthermore, Naeem et al. developed
an industrial Internet of Things malicious software detection
scheme utilizing a visual-based CNN algorithm [28]. They
proved that malware detection based on colored visualization
outperforms the utilization of gray-scale images.

However, in some works, the malware and benign samples
were obtained as APK files from several sources such as
Drebin, AMD, and Google Play Store [29], [30]. Subse-
quently, the APK samples were converted into images that
match the CNN model requirements. In [29], the authors
created an adjacency matrix of Android APK and converted it
into an image as an input to the CNN model. Darwaish et al.
developed an intelligent mapping algorithm of APK files
to RGB images [31]. Their proposed system mapped the
Manifest file to the green channel. Furthermore, API calls
and opcodes were mapped to the red channel. Finally, the
malicious behaviors were mapped to the blue channel. A fur-
ther investigation has been implemented by [32] utilizing
the Drebin database. In the proposed system the malware is
detected by identifying maliciously opcode sequence loca-
tions in the Android app. However, machine learning algo-
rithms can be combined with the CNN model to enhance
the detection performance. In [33], they have substituted the
softmax layer of CNN with Support Vector Machine (SVM).
The results showed that the fine-tuned CNN-SVM model
surpassed the original CNN.

D. RELATED WORK COMPARISON
Table 1 presents a summary and comparison among cur-
rent works on vision-based Android malware detection.
It is concluded from Table 1 that most of the conventional
DL-based or ML-based AMD models in the literature have
accomplished certain detection accuracy levels that are not
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TABLE 1. Summary and comparison among current works on vision-based Android malware detection.

highly appreciated and recommended for efficient Android
malware identification in cybersecurity applications. Further-
more, some of them require features engineering steps before
performing the learning process. In addition, the conventional
detection models used datasets with a small number of sam-
ples in the training process that have dramatically reduced
the detection efficiency. Thus, because the number of mal-
ware apps is increasing considerably and daily, an automated

and accurate vision-based AMD model is introduced in this
article; to accurately and efficiently detect Android malware
attacks. The suggested AMD model composes 16 different
CNN algorithms that have been fine-tuned efficiently and
adequately to achieve high malware detection accuracy and
low malware misclassification.

Consequently, the fine-tuned and developed CNN algo-
rithms suggested for the vision-based AMD process in this

VOLUME 10, 2022 2703



I. Almomani et al.: Automated Vision-Based Deep Learning Model for Efficient Detection of Android Malware Attacks

paper are different from conventional AMD models that
introduce additional steps for extracting features. In the pro-
posed AMDmodel, the bytecodes of the benign and malware
APKs were converted to color and grayscale visual images
before resizing and forwarding them to the developed CNN
algorithms to classify them. The goal of transforming and
resizing benign and malware apps to graphical images is to
generate an Android dataset in a proper structure adapted to
the input format and size of the utilized CNN algorithms.
The main advantage of using the pre-trained CNN algorithms
in the proposed AMD model that they were well-trained
previously on more than 14 million digital images of many
different classes of the ImageNet database [34]. So, in the
proposed AMD model, the transfer learning concept was
exploited by employing the already trained features and the
obtained optimal weights of the pre-trained CNN algorithms
for detecting malware attacks efficiently. This terrific benefit
of transfer learning is recommended inAMD tasks, especially
when examining and analyzing the performance of malware
detection models on imbalanced Android datasets. Moreover,
the fine-tuning of weights and hyperparameters of the CNN
layers significantly improved the operation of the utilized
pre-trained CNN algorithms. Consequently, increasing the
detection performance of the proposed AMD model without
using reverse-engineering tools or signal processing-based
augmentation algorithms.

III. PROPOSED AUTOMATED VISION-BASED
AMD MODEL
In the last years, it has been evident that the number of
Android malware cyberattacks has increased gradually. As a
result, cybersecurity scholars and experts are interested in
developing cost-effective and reliable solutions to mitigate
the severe impact of such attacks. Therefore, this paper
proposes an accurate and automated vision-based Android
malware detection (AMD) model that deals with this critical
cybersecurity challenge that cannot be neglected. This model
composes different fine-tuned DL-based CNN algorithms
developed and exploited to detect malware attacks in Android
OS efficiently.

The proposed vision-based AMD model is different from
the conventional and existing AMD solutions. So, in contrast
to the preceding static-based or dynamic-based AMD solu-
tions that necessitate manual procedures for features extrac-
tion and collection, the proposed AMD model in this paper
can efficiently detect Android malware attacks without exten-
sive computations resulting from extracting many complex
features from the analyzedAndroid apps. To bemore specific,
as indicated in Fig. 2, the proposed AMDmodel composed 16
different well-developed and fine-tuned CNN algorithms that
preclude the need for pre-designated extracted features. Thus,
the proposed AMD model can quickly learn and efficiently
differentiate and recognize Androidmalware and benign apps
more accurately.

The main steps of the proposed automated vision-based
AMD model are demonstrated in Fig. 2. It comprises

three different main modules: (1) Pre-processing module,
(2) Training, fine-tuning, and classification module, and
(3) Detection evaluation module. The explanations and dis-
cussions of these three modules are as follows:

A. PRE-PROCESSING MODULE
In the proposed AMDmodel, the bytecodes of the classes.dex
files obtained from the Android dataset of benign and mal-
ware apps have been converted into the three-channels format
of visual color images (Red, Green, Blue). Because the type
of image files affects the performance of the Android mal-
ware detection system, consequently, the classes.dex files of
the Android APKfiles are converted to ‘‘.png’’ format images
files since it is the most effective file type compared to other
image formats. Furthermore, the ‘‘.png’’ format is better than
other image formats regarding preserving the information
included in the image file. Themain objective of transforming
Android apps into visual images is to acquire more additional
features and extra texture details that cannot be obtained and
extracted from the original benign and malware apps in their
binary formats. So, the Android dataset conversion to visual
images avoids the need for reverse feature engineering steps
or any specific domain knowledge, as the case in the exist-
ing conventional signature-based (static-based) or behavior-
based (dynamic-based) Android analysis techniques.

In the conversion process, each 8-bits (bytecode) in the
classes.dex file is transformed into an RGB pixel. This pro-
cess was repeated for all binary bits in the .dex file of all
benign and malware apps in the Android dataset. After that,
all obtained RGB pixels were accumulated and reformatted
to generate the final 2D color image of each Android app
(benign or malware).

To precisely evaluate the detection performance of the
suggested AMD model on successfully working on different
image visualizations and representations, the visual grayscale
images of Android benign and malware apps have also gen-
erated. Fig. 3 presents samples of the generated color and
grayscale images of the benign and malware Android APKs
in the Leopard mobile dataset. As shown in Fig. 3, the result-
ing color or grayscale images have various resolutions with
different widths based on the size of their original .dex files
extracted from the benign and malware APKs. Table 2 shows
the relation between the Android app sizes and the specific
widths of the generated visual images.

Furthermore, it is demonstrated from the obtained visual
color or grayscale images presented in Fig. 3 that the
generated images have various layouts, styles, and forms.
So, themalware images have particular visual similarities and
attributes that are entirely dissimilar from those of benign
images, where each category of them has various distinctive
stripes. These remarkable differences in the visualization
features of the acquired benign and malware images inspired
us to adapt and exploit the common DL-based pre-learned
CNN algorithms for AMD challenges and mobile cybersecu-
rity applications. Therefore, these CNN algorithms utilized
for general image processing applications of detection,
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FIGURE 2. The proposed vision-based AMD model.

classification, and recognition tasks have been exploited in
the proposed work to detect malware attacks in Android OS.

After obtaining the visual color and grayscale images,
they were resized before redirecting them to the suggested
fine-tuned CNN algorithms for automated features extrac-
tion, training, and classification purposes. The resizing pro-
cess for the generated Android benign or malware images

is a mandatory step where each one of the employed CNN
algorithm has its specific resolution for the input image size,
as depicted in Table 3.

Additionally, the obtained visual Android dataset of benign
and malware images was distributed into two different
percentages for testing and training objectives. More sim-
ulation experiments were carried out to decide the optimal
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TABLE 2. The relation between Android APK sizes and the generated
visual image widths.

percentages that can be utilized to achieve efficient malware
detection with high recognition accuracy and fast training.
The simulations’ outcomes disclosed that earmarking 80%
of the visual dataset for the training process and 20% of
the visual dataset for the testing process have realized the
recommended and superior AMD performance compared to
the other testing and training percentages for the examined
fine-tuned CNN algorithms. Thus, in our work, we did not
use the validation set because we used transfer learning CNN
algorithms, not CNN algorithms developed from scratch.
This is the common practice used in the literature work in the
case of using transfer learning CNN algorithms. So, in the
case of using transfer learning CNN algorithms, the valida-
tion set and test set are combined, and they are considered the
testing ratio of the utilized dataset. Therefore, in the experi-
mental analysis, both 80% and 20% of the visual images were
chosen randomly by the suggested AMD model.

B. TRAINING, FINE-TUNING, AND
CLASSIFICATION MODULE
Most of the existing DL-based AMD algorithms trained mal-
ware detection models on Android datasets with a limited
number of APKs. Thus, these conventional AMD algorithms
have significant malware detection and classification prob-
lems because they were not well trained. Consequently, they
can not efficiently discriminate the behaviors of benign apps
from malware apps due to the limited number of tested
samples.

Consequently, the dataset size used for training the CNN
models has significant impacts on the detection efficacy,
classification accuracy, and the number of computations of
the training and testing processes. So, the DL-based transfer
learning CNN models are efficient solutions for malware
attacks analysis and AMD applications, mainly when the
examined Android dataset contains a small number of benign
and malware samples as in the benchmark Leopard mobile
dataset used in this paper.

Therefore, the proposed AMD model has exploited and
employed transfer learning. The already learned features,
weights, and hyperparameters of previously pre-learned CNN
algorithms tested for image recognition challenges with gen-
eral images dataset were transferred to the proposed malware
image recognition challenge that used a different Android
images dataset. Hence, transfer learning was an effective
solution for malware detection analysis in the proposed AMD

TABLE 3. The image sizes of the CNN algorithms.

model. The tested Android dataset has a limited and imbal-
anced number of benign and malware images. Thus, this
incredibly avoided the occurrence of over-fitting as possible
during the training and testing processes while validating the
suggested model performance.

Different DL-based pre-trained CNN algorithms were
previously trained on various natural images such as
Xception [35], VGG16 [36], VGG19 [37], DarkNet-53 [38],
MobileNet-V2 [39], ResNet101 [40], AlexNet [41],
ResNet-50 [42], ResNet18 [43], InceptionV3 [44], Dark-
Net19 [45], ShuffleNet [46], Places365-GoogleNet [47],
NasNetMobile [48], GoogleNet [49], and SqueezeNet [50].
In the proposed vision-based AMD model, the fine-tuned
versions of these sixteen CNN algorithms have employed
to extract and obtain the significant texture features of the
Android malware and benign images. These algorithms were
pre-learned and pre-trained on the ImageNet dataset [34] to
distinguish different types of visual objects. Consequently,
these CNN algorithms can be exploited and re-trained quickly
using Android benign and malware images to extract their
main visible details and texture features; this is the terrific
advantage of the transfer learning process. Therefore, the
transfer learned-based CNN algorithms were employed in
the proposed model to detect Android malware attacks. They
offered effective detection performance through knowledge
transfer from general image detection and classification chal-
lenges to Android malware image detection and classification
challenge studied in this paper.

Therefore, the optimized and fine-tuned versions of two
different categories of pre-trained CNN algorithms were
utilized in the proposed AMD model: series CNN algo-
rithms and Direct Acyclic Graph (DAG) CNN algorithms.
In each one of the series CNN algorithms like AlexNet,
VGG16, VGG19, and DarkNet19, the deep CNN layers
are organized one after the other. In addition, each series
CNN architecture has a single output layer and a single
input layer. So, the series CNN algorithms are considered
single-path deep CNN designs with no parallel paths of
convolutional layers. On the other hand, the DAG CNN
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FIGURE 3. 2D visual samples for malware and benign APKs.

algorithms are considered multi-path deep CNN designs,
where they have concatenated parallel multi-paths of numer-
ous convolutional layers with different filter numbers/sizes.
Thus, the DAG CNN algorithms have deep CNN lay-
ers organized by a directed acyclic graph; therefore, they
have more complex structures than series CNN algorithms.
In addition, each DAG architecture has inputs from differ-
ent CNN layers and outputs to various CNN layers. The
Xception, DarkNet53, MobileNetV2, ResNet101, ResNet50,
ResNet18, InceptionV3, ShuffleNet, Places365-GoogleNet,
NasNetMobile, GoogleNet, and SqueezeNet are different
examples of DAG CNN algorithms. In terms of detection
accuracy, the DAG CNN algorithms have higher detection
and classification accomplishment than the series CNN algo-
rithms because they can extract more informative and texture
features in the training process from the input malware and
benign images.

Among the employed CNN algorithms tested by the pro-
posed AMD model, the fine-tuned Xception CNN algorithm
achieves the most outstanding and superior detection results
for visual Android benign and malware classification com-
pared to other CNN algorithms. Consequently, this paper
discusses in-depth details and insights into its structure, train-
ing behavior, fine-tuning and optimization hyperparameters,
and accomplishment detection outcomes. Thus, the proposed
vision-based AMD model has implemented and utilized the
fine-tuned structure of the pre-trained Xception CNN algo-
rithm shown in Fig. 4; to classify and detect visualized images
of Android malware and benign apps. The DL-based Xcep-
tion CNN algorithm is previously trained on more general
digital images (approximately 14 million images with 1000

different classes) of the ImageNet database [34]. So, the
already pre-trained features have exploited and transferred in
the proposed AMD model to quickly and accurately detect
Android malware attacks.

The Xception CNN algorithm is a modern and enhanced
version of the InceptionV3 CNN algorithm [44]. The Xcep-
tion CNN algorithm is called ’Extreme Inception’ algorithm,
where the Xception algorithm has the same Inception algo-
rithm by replacingmore of the standard convolutional (Conv.)
layers with SeparableConv. layers. The SeparableConv. lay-
ers are utilized instead on the Conv. layers to factorize the
convolution kernel into two smaller kernels. So, the detection
and classification performance of the Xception algorithm out-
performs that of the InceptionV3 algorithm through proper
and efficient use of the algorithm hyperparameters while
using a small number of training iterations. The complete
structure with the full specifications of the fine-tuned Xcep-
tion algorithm utilized in the proposed vision-based AMD
model is given in Fig. 4.

The input layer of the Xception CNN algorithm has an
input image resolution of 299×299×3. Therefore, before for-
warding the visual begin and malware images to the Xception
CNN algorithm, they must be resized to 299×299×3 to meet
the proper input size of the input layer. As shown in Fig. 4, the
visual malware and benign images are firstly forwarded to the
entry flow. Then, the resulting featuremaps pass to themiddle
flow, repeated eight times. Finally, the resulting feature maps
go through the exit flow.

The Xception CNN algorithm consists of 36 Conv. and
SeparableConv. layers used for extracting the main informa-
tive texture features from the input visual malware and benign
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images. These 36 stacked Conv. layers are structured and
arranged into 14 separable modules (blocks). These modules
have linear residual networks except for the first and last
modules. In the proposed Xception CNN algorithm, only
one fully-connected layer is utilized before the final softmax
layer used for detection and classification purposes. Thus,
the Xception CNN algorithm composes a linear group of
SeparableConv. layers, including more linear residual con-
nections. In the Xception CNN algorithm, all Conv. and
SeparableConv. layers are followed by batch normalization
layers that are not incorporated in Fig. 4 for simplicity in
the presentation. In addition, all SeparableConv. layers utilize
a depth multiplier of 1, not a depth expansion. The stride
value of 2 × 2 is used for all Conv. and MaxPooling layers.
The ReLU activation function is used to accelerate the train-
ing process. Also, the Xception CNN algorithm composes
one GlobalAveragePooling layer and four MaxPooling layers
with a kernel value of 3×3. The objective of the MaxPooling
(Maximum Pooling) layer is to estimate the maximum value
for every patch of the feature map, while the GlobalAverage-
Pooling layer estimates the average value for every patch on
the feature map.

The most important advantage of the fine-tuned Xception
CNN algorithm compared to other CNN algorithms that
it can be improved easily where its stacked modules have
internal repeated types of layers that can be simply adapted
and modified. In addition, the fine-tuned Xception algorithm
improves the detection performance without the need to per-
form deeper training, where the composed Conv. or Separa-
bleConv. layers have different kernels that can discover and
learn distinctive texture features in the benign and malware
images with a small number of training iterations. Therefore,
it is computationally efficient and attractive to be employed
for detecting Android malware attacks. Further information
and explanations of the rest of the other utilized 15 different
pre-trained CNN algorithms (VGG16, VGG19, DarkNet-53,
MobileNet-V2, ResNet101, AlexNet, ResNet-50, ResNet18,
InceptionV3, DarkNet19, ShuffleNet, Places365-GoogleNet,
NasNetMobile, GoogleNet, and SqueezeNet), could be inves-
tigated and explored in [36]–[50].

Besides exploiting the advantages of transfer learning in
the proposed AMD model, the whole hyperparameters of the
employed CNN algorithms are fine-tuned. So, the proposed
AMD model utilized fine-tuning, not other types of tuning
like shallow tuning or deep tuning [51]. This is because
fine-tuning is better than these tuning types in terms of
achieving high detection accuracy compared to shallow tun-
ing and low computational complexity compared to deep
tuning. Therefore, all the hyperparameters of the employed
CNN algorithms have optimized and fine-tuned in the pro-
posed AMD model until an efficient and high detection rate
is achieved. After running many tests and experiments, the
final fine-tuning and optimization parameters used in the
proposed vision-based AMD model are: learning rate of
0.00001, ADAM optimizer [52], ridge regression regularizer
(L2-regularization) [53] with a weight decay rate of 0.001,

maximum number of epochs equals 10, minimum batch size
of 16, validation frequency of 16, a dropout rate of 0.5,
learnRateSchedule parameter is set to be ‘‘piecewise’’, Learn-
RateDropPeriod parameter is set to 3, LearnRateDropFactor
parameter is set to 0.9, and loss categorical cross-entropy
function is used. These all fine-tuned hyperparameters were
carefully chosen to avoid the overfitting occurrence and
optimize the performance of the training and validation
processes.

Furthermore, in the whole employed CNN algorithms,
the softmax and fully-connected classifiers were utilized to
classify betweenAndroidmalware and benign samples. Thus,
the output layer in the employed 16 different CNN algorithms
that includes 1000 classes is customized and fine-tuned
to have only two classes (malware and benign). Also, the
back-propagation technique [54] is utilized in the proposed
AMD model to fine-tune and optimize the hyberparameters
and weights of the layers in the employed CNN algorithms
that were initially trained on the ImageNet dataset; this is
to achieve high detection efficiency in identifying malware
attacks.

C. DETECTION EVALUATION MODULE
The detection evaluation module is concerned with compre-
hensively evaluating the proposed vision-based AMD model
using 16 different detection assessment parameters. Conse-
quently, the classification and detection efficiency of the sug-
gested 16 different CNN algorithms have examined in terms
of (1) recognition accuracy, (2) recall (sensitivity) (TPR)
(true positive rate), (3) precision (PPV) (positive predictive
value), (4) NPV (negative predictive value), (5) specificity
(TNR) (true negative rate), (6) FNR (false negative rate),
(7) FPR (false positive rate), (8) FOR (false omission rate),
(9) FDR (false discovery rate), (10) misclassification rate,
(11) F1-Score, (12) AROC (Area under the receiver operating
characteristic) score, (13) accuracy curve, (14) loss curve,
(15) confusion matrix, and (16) AROC curve. Further details
and explanations of these detection assessment parameters
can be explored in [55], [56], and they can be mathematically
expressed as follows:

Accuracy =
TN + TP

FP+ TP+ FN + TN
(1)

Sensitivity = Recall (TPR) =
TP

FN + TP
(2)

Precision (PPV) =
TP

FP+ TP
(3)

NPV =
TN

FN + TN
(4)

Specificity (TNR) =
TN

FP+ TN
(5)

FNR =
FN

TP+ FN
(6)

FPR =
FP

TN + FP
(7)
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FIGURE 4. Flow structure of the fine-tuned Xception CNN algorithm.

FOR =
FN

TN + FN
(8)

FDR =
FP

TP+ FP
(9)

Misclassification rate =
FN + FP

FP+ TP+ FN + TN
(10)

F1-Score =
2TP

2TP+ FN+ FP
(11)
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where TN (true negative), TP (true positive), FN (false neg-
ative), and FP (false positive) are estimated by the confusion
matrix shown in Fig. 5. The confusionmatrix is called an error
matrix, where it visualizes the different output predictions
of the analyzed detection task. TP means that the prediction
output is positive and it is actually positive, FN means that
the prediction output is negative, but it is actually positive,
FP means that the prediction output is positive, while it is
actually negative, and TN means that the prediction output is
negative and it is actually negative.

The ROC curve demonstrates the graphical representa-
tion of the tradeoff relationship between the TPR and FPR
(1-specificity). ROC score is the average value of the area
under the ROC curve. The accuracy curve is a graphical
representation that reflects the tracing curvewith the accuracy
percentage for all training iterations (epochs). In contrast,
the loss curve is a graphical representation that reflects the
tracing curve with the loss percentage for all training itera-
tions (epochs).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
This section introduces extensive experimental results, more
discussions, and comprehensive detection and complexity
analysis for the performance validation of the proposed AMD
model. Leopard Android dataset that originally contained
an imbalanced number of malware and benign APKs was
used by the proposed model. All training and classification
simulations are performed using MATLAB 2020b software
on a personal laptop with 8GB RAM and Intel Core i7-4500
processor.

In the experimental results, two binary classification
scenarios for validating the performance of the proposed
vision-based AMDmodel are tested. The first scenario tested
the detection efficiency of the proposed model using imbal-
anced Android samples, as presented in section IV-A. The
second scenario tested the detection efficiency of the pro-
posed model using balanced Android samples, as introduced
in section IV-B. These two classification scenarios are inves-
tigated to demonstrate the succeeding performance of the
developed fine-tuned CNN algorithms even when applied on
different sizes of balanced and imbalanced datasets without
utilizing data augmentation techniques employed in the con-
ventional malware detection and classification approaches.

Furthermore, for these two aforementioned classification
scenarios, additional extensive experiments for the devel-
oped 16 fine-tuned CNN algorithms utilized in the proposed
AMD model have been presented using two different image
modalities. So, the detection accomplishment of the sug-
gested vision-based AMD model was validated using both
visual color and grayscale images of Android benign andmal-
ware apps. These comprehensive experiments have been run
for the suggested AMD model to confirm its high detection
capability and elevated classification efficiency on different
representations of visual images.

For simplicity in displaying the detection evaluation out-
comes, the confusion matrix, the loss & accuracy curves, the

FIGURE 5. Binary confusion matrix.

ROC curve, and the other estimated assessment parameters
are introduced in detail for Xception, the superior performed
fine-tuned CNN algorithm amongst the 16 different tested
CNN algorithms. In addition, the average outcomes of all
estimated detection assessment metrics have been offered for
the other CNN algorithms to deliver in-depth comparisons
and evaluations among them.

In addition, a complexity analysis in terms of the storage
capacity and execution time of the utilized Android datasets
and CNN algorithms is presented in section IV-C. Finally,
a comparative detection analysis between the proposed
vision-based AMD model and other recent AMD models
that used the same Android Leopard mobile apps dataset is
discussed in section IV-D. This comparative study is pre-
sented to confirm the superiority of the proposed automated
vision-based AMDmodel in comparison of recent related and
conventional DL and ML-based AMD models in detecting
and identifying Android malware attacks.

A. PERFORMANCE ANALYSIS ON COLOR AND GRAYSCALE
IMAGES OF IMBALANCED ANDROID SAMPLES
This section provides the performance analysis of the pro-
posed vision-based AMD model using imbalanced color and
grayscale visual images (14733 malware images and 2486
benign images). So, more experiments were carried out for
testing the proposed model performance using the 16 differ-
ent fine-tuned CNN algorithms utilizing the imbalanced color
and grayscale malware and benign images.

The training and testing accuracy & loss curves of the
superior fine-tuned Xception CNN algorithm utilizing the
imbalanced visual color and grayscale images across ten
epochs are demonstrated in Figs. 6 and 7, respectively. It is
observed from these curves that both the accuracy and loss
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curves of the training and testing processes for the color
and grayscale images are compatible with each other. There
is only little overfitting in the loss curves, resulting from
the imbalanced samples of both visual color and grayscale
images of the malware and benign apps. But the validation
losses in both image cases are still lower than 0.1 at epoch
10, which are acceptable values. In general, both curves for
the loss and accuracy of the training and testing operations of
the imbalanced visual color and grayscale images were stable
before less than five epochs. Thus, as noticed, the employed
Xception CNN algorithm achieved high detection efficiency
at a lower number of iterations (epochs) for both imbalanced
color and grayscale images. So, it is highly advocated for
recognizing malware attacks efficiently and accurately in
Android cybersecurity applications. Similarly, it is noticed
analogous loss and accuracy curves for the other examined 15
different fine-tuned CNN algorithms of all tested experimen-
tal scenarios on color and grayscale images.

The confusion matrices obtained for the superior
fine-tuned Xception CNN algorithm utilizing the imbalanced
visual color and grayscale images are presented in Fig. 8.
These are binary confusion matrices for the examined benign
and malware color and grayscale images of the imbalanced
Android samples. It is observed that the accomplished TP, FP,
TN, and FN values for the visual color images are better than
those of the grayscale images. But, in general, the obtained
values of both image visualizations for the fine-tuned Xcep-
tion CNN algorithm were acceptable, especially in the detec-
tion situation of the highly imbalanced Android datasets.
Thus, the fine-tuned Xception CNN algorithm accomplished
98.05% and 97.93% of accuracy in correctly detecting mal-
ware and benign samples for imbalanced color images and
imbalanced grayscale images, respectively. These results are
also confirmed and supported by the obtained outcomes for
the fine-tuned Xception CNN algorithm that achieved high
sensitivity, specificity, and ROC values of 0.9095, 0.9925,
and 0.9957, respectively, for the visual color images. Also,
this CNN algorithm attained high sensitivity, specificity, and
ROC values of 0.9074, 0.9915, and 0.9953, respectively, for
the visual grayscale images. These all achieved results are
excellent due to exploiting the benefits of transfer learning
and fine-tuning the hyperparameters and CNN layers of the
suggested CNN algorithms.

In addition, the detection performance capability of all 16
analyzed fine-tuned CNN algorithms in recognizing color
or grayscale benign and malware images have quantita-
tively examined. So, the accuracy (Acc.), recall (Rec.), pre-
cision (Prec.), NPV, specificity (Spec.), FNR, FPR, FOR,
FDR, misclassification rate (Mis. Class. Rate), F1-Score, and
AROC score are computed for the suggested CNN algo-
rithms. Table 4 demonstrates the detection outcomes of the
employed CNN algorithms on the imbalanced visual color
images. Similarly, the detection outcomes of the examined
CNN algorithms on the imbalanced visual grayscale images
are depicted in Table 5. These obtained detection compar-
isons disclosed that the proposed fine-tuned Xception CNN

algorithm accomplishes superior and substantial values than
the other CNN algorithms for all considered and calculated
detection assessment parameters for both color and grayscale
image representations. Consequently, this CNN algorithm is
remarkably advised to detect Android malware attacks of
visualized Android apps effectively.

B. PERFORMANCE ANALYSIS ON COLOR AND
GRAYSCALE IMAGES OF BALANCED
ANDROID SAMPLES
This section provides the performance analysis of the pro-
posed vision-based AMD model using balanced color and
grayscale visual images (2486 malware images and 2486
benign images). So, more experiments were carried out for
testing the proposed model performance using the 16 differ-
ent fine-tuned CNN algorithms utilizing the balanced color
and grayscale malware and benign images.

The training and testing accuracy & loss curves of the
superior fine-tuned Xception CNN algorithm utilizing the
balanced visual color and grayscale images across ten epochs
are demonstrated in Figs. 9 and 10, respectively. It is observed
from these curves that both the accuracy and loss curves of
the training and testing processes for the color and grayscale
images are fully compatible with each other. In general, both
curves for the loss and accuracy of the training and testing
operations of the balanced visual color and grayscale images
were stable before less than five epochs. Thus, as noticed,
the employed Xception CNN algorithm achieved high detec-
tion efficiency at a lower number of iterations (epochs) for
both balanced color and grayscale images. So, it is highly
advocated for recognizing malware attacks efficiently and
accurately in Android cybersecurity applications. Similarly,
it is noticed analogous loss and accuracy curves for the
other examined 15 different fine-tuned CNN algorithms of all
tested experimental scenarios on color and grayscale images.

The confusion matrices obtained for the superior
fine-tuned Xception CNN algorithm utilizing the balanced
visual color and grayscale images are presented in Fig. 11.
These are binary confusion matrices for the examined benign
and malware color and grayscale images of the balanced
Android samples. It is observed that the accomplished TP,
FP, TN, and FN values for the visual color images are
better than those of the grayscale images. But, in general,
the obtained values of both image visualizations for the
fine-tuned Xception CNN algorithm were highly recom-
mended and good. These all attained results are excellent due
to exploiting the benefits of transfer learning and fine-tuning
the hyperparameters and CNN layers of the suggested CNN
algorithms. Thus, the fine-tuned Xception CNN algorithm
achievedmalware and benign samples detection accuracy that
reached 99.40% and 99.20% for balanced color images and
balanced grayscale images, respectively. These results are
also confirmed and supported by the obtained outcomes for
the fine-tuned Xception CNN algorithm that achieved high
sensitivity, specificity, and ROC values of 0.9940, 0.9940,
and 0.9995, respectively, for the visual color images. Also,
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FIGURE 6. Training and testing accuracy curves of the superior fine-tuned Xception CNN algorithm on imbalanced samples of (a) visual color
images and (b) visual grayscale images.

TABLE 4. Outcomes of detection assessment of the employed CNN algorithms on the imbalanced visual color images.
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FIGURE 7. Training and testing loss curves of the superior fine-tuned Xception CNN algorithm on imbalanced samples of (a) visual color images
and (b) visual grayscale images.

FIGURE 8. Confusion matrix of the superior fine-tuned Xception CNN algorithm on imbalanced samples of (a) visual color images
and (b) visual grayscale images.

this CNN algorithm attained high sensitivity, specificity, and
ROC values of 0.9920, 0.9920, and 0.9998, respectively, for
the visual grayscale images.

Furthermore, the detection performance capability of all 16
analyzed fine-tuned CNN algorithms in recognizing balanced
color or grayscale benign and malware images has examined.
So, the accuracy (Acc.), recall (Rec.), precision (Prec.), NPV,
specificity (Spec.), FNR, FPR, FOR, FDR, misclassification
rate (Mis. Class. Rate), F1-Score, and AROC are computed
for the suggested CNN algorithms. Table 6 demonstrates the
detection outcomes of the employed CNN algorithms on the
balanced visual color images, while the detection outcomes

of the empoyed CNN algorithms on the imbalanced visual
grayscale images as depicted in Table 7. These obtained
detection comparisons disclosed that the proposed fine-tuned
Xception CNN algorithm accomplishes superior and substan-
tial values than the other CNN algorithms for all considered
and calculated detection assessment parameters for balanced
color and grayscale image representations. Consequently, this
CNN algorithm is remarkably advised to detect Android
malware attacks of visualized Android apps effectively.

Overall, the whole examined and suggested fine-tuned
CNN algorithms accomplished recommended detection find-
ings, and thus, they can be utilized effectively for detecting
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TABLE 5. Outcomes of detection assessment of the best four performed CNN algorithms on the imbalanced visual grayscale images.

FIGURE 9. Training and testing accuracy curves of the superior fine-tuned Xception CNN algorithm on balanced samples of (a) visual color
images and (b) visual grayscale images.

malware attacks in the form of visual color or grayscale
images using imbalanced or balanced Android datasets.

Furthermore, as observed, the whole accomplished results for
the visual color images are better than those of accomplished
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TABLE 6. Outcomes of detection assessment of the employed CNN algorithms on the balanced visual color images.

FIGURE 10. Training and testing loss curves of the superior fine-tuned Xception CNN algorithm on balanced samples of (a) visual color images
and (b) visual grayscale images.

results for the visual grayscale images either for balanced or
imbalanced samples. This is because color images contain
more visualization features and texture details than those
included in the grayscale images. Also, as noticed, the whole
obtained detection results on testing the balanced Android
samples are better than those obtained for testing imbal-
anced Android samples for all examined fine-tuned CNN
algorithms.

C. COMPLEXITY ANALYSIS
This section discusses the complexity performance in terms
of the storage capacity, experimental analysis, and exe-
cution time of the utilized Android datasets and CNN

algorithms. So, the quantitative computational analysis of
the utilized CNN algorithms in the proposed automated
vision-based AMD model is examined in terms of (1) stor-
age capacity of the used color and grayscale Android
samples of the imbalanced and balanced datasets, (2) exper-
imental analysis in terms of the (a) number of layers,
(b) storage capacity, (c) total number of the trainable and
non-trainable parameters, and (d) reduction percentage in
the training parameters of the examined CNN algorithms
used in the detection experiments, and (3) execution time
analysis of the examined CNN algorithms of the color and
grayscale Android samples of the imbalanced and balanced
datasets.
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TABLE 7. Outcomes of detection assessment of the employed CNN algorithms on the balanced visual gray-scale images.

FIGURE 11. Confusion matrix of the superior fine-tuned Xception CNN algorithm on balanced samples of (a) visual color images and
(b) visual grayscale images.

TABLE 8. Total number of Android malware and benign samples over
imbalanced and balanced datasets.

Table 8 shows the total number of Android malware and
benign samples over imbalanced and balanced datasets used
in the experiments. Table 9 introduces storage capacity anal-
ysis of the color and grayscale Android samples of the imbal-
anced and balanced datasets. It is noticed from the last row
in Table 9 that color images cause an extra storage capacity
of 3.4% compared to grayscale images for the imbalanced
Android samples and 5.3% for the balancedAndroid samples.
However, this additional storage capacity is considered low
comparing to the achieved detection accuracy when using
color images, as explained in subsections IV-A and IV-B.

TABLE 9. Storage capacity (MB) analysis of the color and grayscale
Android samples of the imbalanced and balanced datasets.

Table 10 presents the experimental analysis of the exam-
ined CNN algorithms used in the detection experiments.
This experimental analysis is represented by (i) size (storage
capacity) of the employed CNN algorithm on a disk,
(ii) depth (layers) of the studied CNN algorithm containing
the number of successive parallel or series fully connected
or convolutional layers on a path from the input layer to the
output layer utilized for feature extraction purposes, (iii) total
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TABLE 10. Experimental analysis of the examined CNN algorithms used in the detection experiments.

TABLE 11. Execution time analysis of the examined CNN algorithms of the color and grayscale Android samples of the imbalanced and balanced datasets.

parameters of the tested CNN algorithm from the input layer
to the output layer, (iv) trainable parameters of the unfrozen
CNN layers, (v) non-trainable parameters of the frozen CNN
layers, and (vi) reduced percentage in the training parameters
of the examined CNN algorithm. It is observed from Table 10
that number of layers, non-trainable parameters, and trainable
parameters vary from one CNN algorithm to another. Also,
due to exploiting transfer learning advantages in the proposed
AMD model, there is a considerable reduction in training
parameters of the whole employed CNN algorithms. So, most
of the layers and training parameters of the employed CNN
algorithms were frozen, as discussed in subsection III-B.
For example, the best accurate fine-tuned Xception algo-
rithm used in the proposed vision-based AMD model trained
only 4,096 parameters from 22,900,000 parameters that were
existed in the original Xception CNN algorithm.

Table 11 illustrates the execution time analysis of the exam-
ined CNN algorithms for the color and grayscale Android
samples of the imbalanced and balanced datasets. So, the

computational overhead of the CNN algorithms used in the
proposed vision-based AMD model is estimated in terms of
(1) the total computational time of the validation and training
processes and (2) the average computational time to identify
Android malware or benign sample, which is calculated by
dividing the whole computational time by the total number
of Android malware and benign samples. It is noticed from
Table 11 that the computational overhead is varied from
one CNN algorithm to another due to the variation in the
number of layers and parameters amongst the employed CNN
algorithms as demonstrated in Table 10. Nevertheless, the
obtained outcomes proved that the average computational
time spent to detect Android malware or benign sample is
adequate for all examined CNN algorithms. For example,
the best accurate fine-tuned Xception algorithm used in the
proposed vision-based AMD model accomplished low com-
putational times of 0.4565 sec and 0.60335 sec to identify
the Android sample in the imbalanced and balanced datasets,
respectively.
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TABLE 12. Comparison between the proposed vision-based AMD model and the recent conventional vision-based AMD models tested on the Leopard
Android dataset.

D. COMPARATIVE ANALYSIS WITH RELATED MODELS
This section compares the detection and classification perfor-
mance of the proposed automated vision-based AMD model
with the most recent vision-based AMDmodels. The purpose
of this comparison is to highlight and demonstrate the pro-
posedAMDmodel’s superior accomplishment in recognizing
and detecting visualized Android malware attacks using the
Leopard mobile apps dataset, either with balanced or imbal-
anced Android samples.

Table 12 demonstrates the comparison between the
proposed AMD model using fine-tuned Xception CNN
algorithm and the recent conventional AMD models. It is
remarked that the suggested AMD model achieved supe-
rior detection accuracy that reached 98.05% for imbalanced
color dataset and 99.40% for balanced color dataset. These
attained detection accuracies are higher than those of all other
baseline-related AMD models that used the same Leopard
Android mobile dataset. The proposed model did not employ
any augmentation algorithms or feature engineering tech-
niques like other conventional detection models.

Thus, in contrast to almost recent related vision-based
AMD models that used some additional stages of feature-
engineering or/and data augmentation techniques in
their malware detection models, the proposed automated
vision-based AMD model avoids the need for these compu-
tational stages. As observed, the proposed model achieved
higher classification performance and higher detection effi-
ciency than the conventional models by employing only
transfer learning and fine-tuning algorithms for the uti-
lized CNN algorithms; to detect Android malware attacks
efficiently.

V. CONCLUSION AND FUTURE WORK
There are enormous limitations and difficulties in process-
ing and analyzing unknown and massive Android malware
samples using dynamic analysis, static analysis, or tradi-
tional ML techniques. Subsequently, there is an essential
need to develop innovative artificial intelligence algorithms
to mitigate the critical cybersecurity problems resulting from
Android mobile malware attacks.

The vision-based DL techniques utilized for recognizing
Android malware samples have significant detection mer-
its by avoiding feature-engineering steps required to obtain

hand-crafted features that increase the complexity of malware
detection algorithms. Thus, this paper introduced an auto-
mated vision-based AMD model that composed 16 different
fine-tuned CNN algorithms to efficiently and quickly detect
Android malware attacks. The proposed AMD model was
developed based on the visualization of Android APKs,
transfer learning concept, and fine-tuning process; to pro-
ficiently classify benign APKs from malware APKs with-
out extensive computations, reverse engineering, or feature
extraction stages. Different experiments have been carried
out using balanced and imbalanced Android samples of
color and grayscale images generated from the benchmark
Leopard dataset. The purpose of these comprehensive exper-
iments is to extensively and sufficiently validate the detection
and classification achievement of the suggested automated
vision-based AMD model.

The experiments results of various classification assess-
ment metrics revealed that the 16 different fine-tuned CNN
algorithms included in the proposed AMD model have effi-
ciently performed with the visualized color and grayscale
images in case of balanced and imbalanced Android apps
datasets. Moreover, compared to the related and conventional
AMD models, the proposed AMD model achieved higher
detection accuracy, lower computational overhead, and better
recognition performance without employing any augmenta-
tion algorithms or complicated features-engineering tools.

Future work can consider further enhanced versions of the
designed CNN algorithms that perform adequately with other
highly imbalanced Android datasets. So, different Android
datasets of new malware attack families can be examined
and investigated. In addition, the authors intend to collect
and build our Android dataset that composes ransomware
attacks. This is to test further the classification efficiency of
the developed CNN algorithms and their detection capabil-
ities in identifying and recognizing different recent families
of Android malware or ransomware attacks. Moreover, the
authors intend to propose and develop an image-based real-
time Android malware detection system in our future work.
So, the authors have already started developing an Android
mobile application and a cloud-based back-end web service
that can detect malware APK files while downloading the
APK files from the google store by first converting them into
images.
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