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ABSTRACT Effective fault detection and classification play essential roles in reducing the hazards such as
electric shocks and fire in photovoltaic (PV) systems. However, the issues of interest in fault detection and
classification for PV systems remain an open-ended challenge due to manual and time-consuming processes
that require the relevant domain knowledge and experience of fault diagnoses. This paper proposes a hybrid
deep-learning (DL) model-based combined architectures as the novel DL approaches to achieve the real-
time automatic fault detection and classification of a PV system. This research employed the wavelet packet
transform (WPT) as a data preprocessing technique to handle the PV voltage signal collected and feeding
them as the inputs for combined DL architectures that consist of the equilibrium optimizer algorithm (EOA)
and long short-term memory (LSTM-SAE) approaches. The combined DL architectures are able to extract
the fault features automatically from the preprocessed data without requiring any previous knowledge,
therefore can override the traditional shortages of manual feature extraction and manual selection of optimal
features from the extracted fault features. These desirable features are anticipated to speed up the fault
detection and classification capability of the proposed DL model with higher accuracy. In order to determine
the performance of the proposed fault model, we carried out a comprehensive evaluation study on a 250-kW
grid-connected PV system. In this paper, symmetrical and asymmetrical faults have been studied involving
all the phases and ground faults such as single phase to ground, phases to phase, phase to phase to ground,
and three-phase to ground. The simulation results validate the efficacy of the proposed model in terms of
computation time, accuracy of fault detection, and noise robustness. Comprehensive comparisons between
the simulation results and previous studies demonstrate the multidisciplinary applications of the present
study.

INDEX TERMS Deep distributed energy, equilibrium optimizer algorithm (EOA), fault detec-
tion and classification, grid-connected photovoltaic systems, optimal feature selection, wavelet packet
transform (WPT).

NOMENCLATURE TABLE CBM  Condition-based maintenance
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DWT Discrete wavelet transform

ELM Extreme learning machine

EOA Equilibrium optimizer algorithm

GCPV Grid-connected photovoltaic

GHz Gigahertz

GP Generation probability

GPU Graphics processing unit

GW Gigawatt

Hz Hertz

IEEE Institute of electrical and electronics engineers
IRENA  International Renewable Energy Agency
kHz Kilohertz

km Kilometer

kv Kilovolt

kVA Kilovolt-ampere

kW Kilowatt

LSTM Long short-term memory

MLP Multilayer perceptron

MOPSO Multiobjective particle swarm optimization
MVA Megavolt-ampere

ms Millisecond

MW Megawatts

PCC Point of common coupling

PSM Preventive scheduled maintenance

PV Photovoltaic

RPNN Ridgelet probabilistic neural network

S Seconds

SAE Stacked autoencoders

SCADA  Supervisory control and data acquisition
SLT Slantlet transform

SNR Signalto noise ratio

ST Stockwell transform

SV Support vector

SVM Support vector machine

Tl Transformer number one

WP Wave packet

WPT Wavelet packet transform

I. INTRODUCTION

The importance of renewable energy sources has gained more
attention in recent years due to rapidly growing concerns
on environmental pollution issues [1], [2]. Despite the eco-
nomic slowdown brought by the COVID-19 pandemic, the
additional global renewable energy capacity generated in the
year 2020 has exceeded the earlier estimation and all histor-
ical records. Based on the latest data issued by International
Renewable Energy Agency (IRENA), the world has increased
more than 260 GW (gigawatt) of renewable energy capacity
in 2020, i.e., around 50% higher than the energy generation
in 2019 [3].

Among all existing types of renewable energy sources, the
utilization rates of both solar and wind energy sources have
increased dramatically. The power generation of solar-based
has gained significant attention worldwide because of the

VOLUME 10, 2022

environmental and economic benefits offered. At the end of
2019, a cumulative volume of solar power of 629 GW was
settled around the world. The top country for solar power in
early 2020 was China, with 208 GW [4], [5], which accounts
for one-third of worldwide installed solar capabilities. By the
end of 2020, not less than 37 countries around the world have
generated a cumulative photovoltaic (PV) capacity of more
than 1 GW. Despite the significant environmental and eco-
nomic benefits offered, the existing PV systems are subjected
to numerous faulty issues due to the harsh outdoor operating
environment. The undesirable issues such as power losses
and potential safety hazards might occur if these faulty issues
remain unnoticed and hidden in the PV system [3]. It is of the
utmost importance to design effective protection techniques
that can monitor and diagnose the occurrence of faults in a PV
system. Substantial efforts have been attempted in literature
to provide safe and secure protection schemes for the grid-
connected PV system.

Recently, different artificial intelligence (AI) techniques
were incorporated as the core methodologies of PV fault
detection and classification due to their excellent capabilities
in addressing feature extraction and classification problems.
Some notable Al approaches such as the convolutional neural
network [6] and sequential probabilistic neural network [7]
were applied to improve the accuracy of fault classifica-
tion in a PV system. Apart from fault classification, some
supervised machine learning techniques were also applied
to focus on the feature extraction process in [8], whereas
an adaptive neuro-fuzzy inference system (ANFIS) was used
in [9] to address the tracking and detection of faulty issues
in PV. For this reason, many computational fault detection
models based on machine learning algorithms were pro-
posed [7], [8], [10]-[12]. Substantial amounts of literature
studies revealed that the availability of labeled fault data
is one of the key factors that enable these intelligence-
based algorithms to perform effective fault diagnosis for
PV systems [12]. For instance, a combination of slant-
let transform (SLT) and ridgelet probabilistic neural net-
work (RPNN) was offered to detect and classify the grid faults
in a grid-connected PV system [13].Given the properties of
SLT and the decomposed waveform features together with
the RPNN algorithm, important information or features can
be extracted from a fault signal and used to determine the
type of fault that occurred in the islanding problem. Numer-
ical features, for instance, the energy, mean, minimum and
maximum values, standard deviation, and log energy entropy
for the decomposition coefficients of the distorted signal,
were determined and used as input dataset features for RPNN.
Support vector machine (SVM) has gained its increasing pop-
ularity in the machine learning domains because of the com-
mendable and superior performances demonstrated against to
other machine learning models. A hybrid framework of SVM
with a wavelet multi-resolution singular spectrum entropy
was considered for the fault detection and classification in a
Canadian system [14]. Notably, the training process of SVM
model was formulated as a complex quadratic programming
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problem that could incur high computational complexity and
computing time cost. This demerit could restrict the prac-
ticability of SVM model in addressing the real-world fault
detection and classification issues that involved the presence
of large datasets.

Fault location approaches share an essential role in the
management of outages and faults, subsequently the safety
of electrical supply [15]. In [16] and [17], different machine
learning models such as multilayer perceptron (MLP) and
extreme learning machine (ELM) were combined with a
signal processing technique known as discrete wavelet trans-
form (DWT) to improve the performances in detecting, clas-
sifying, and locating the fault events in the radial distribution
grid. In [18], Aljohani et al. proposed a hybrid technique
based on the machine learning and Stockwell transform (ST)
to detect, locate and classify the single-line-to-ground fault
in a modeled distribution feeder. In [19], an improved ST
technique was used with machine learning to extract useful
features to locate and identify the fault section. In [15],
an impedance-based equation with recorded voltage and cur-
rent was designed as a new fault location approach to identify
the fault sections of power distribution networks incorporated
with distributed generations. However, this approach is not
applicable in various conditions and modes. In [20], a novel
method of impedance-based was proposed to identify the
precise fault location, in terms of fault point and distance,
in the distribution networks of electric energy. One of the
main drawbacks of this methodology is the necessity of cate-
gorizing the faults before being able to define their locations.
This is for the reason that the resources of distributed gen-
eration are currently broadly implemented in the distribution
networks and might not be neglected.

Over the years, different combined architectures of deep
learning approaches were covered extensively in the liter-
ature. The combined DL architectures have the ability of
automatic learning and accurately define the deep features of
faults that are generally unlabeled and cannot be precisely
identified using the traditional fault approaches. Several
approaches are reported in the literature to address this issue.
For example, research has provided evidence for a combina-
tion of two deep learning architectures (i.e., SAE and LSTM)
to detect the condition of an anomaly in a fully unsupervised
mode [21]. Li et al. [21] also combined the SAE-LSTM
with wavelet packet decomposition (WPD) to examine and
validate the anomaly detection performance in a rotating
machine. In [22], Tovar et al. proposed a hybrid model of
CNN-LSTM (convolutional neural network) for predictions
of PV power, where the CNN method was used to extract and
select the local features, while LSTM was used for extracting
the temporal features of the real data in Mexico Temixco.
The hybrid model of CNN-LSTM introduced by [22] has
better prediction than the single prediction model. In [23],
Ahmadipour ef al. built a novel technique by combining
the wavelet packet transform (WPT) and probabilistic neu-
ral network (PNN) for islanding detection in a PV system,
where WPT was applied to extract the islanding feature and
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PNN was used for islanding detection. In [24], Kumar et al.
studied the detection and diagnosis of online PV faults based
on Wavelet Packets and the instantaneous measurement to
distinguish the partial shading condition from faults for over-
coming false fault detecting and system falling. However, this
method has the disadvantage of not being applicable for large
plants, especially when the irradiance amongst PV modules
is dissimilar.

Apart from the above approaches, the idea of using SAE
to extract features in deep learning architecture has also been
deliberated in other studies. In [25], Gao et al. built the DL
architecture based on the stacking of SAE and an improved
multi-grained cascade forest that can perform the automatic
feature extraction for the diagnosis of multiple faults. In [26],
Chen et al. built a model that combined the SAE and con-
tractive autoencoder (CAE) to enhance the ability of data
learning and the strength of feature extraction of autoencoder
in DL architecture. Chen et al. also employed the quantum ant
colony algorithm to contribute to the parameter optimization
of the particular location and used multiple autoencoders to
achieve better performance in planetary gear fault diagnosis.
In [27], Qi et al. proposed an enhanced diagnosis technique
based on SAE, and the results show that the proposed SAE is
able to extract extra distinctive high-level features and deliver
superior performance in fault diagnosis when compared with
the conventional ML methods. Referring to be abovemen-
tioned works, it can be observed that the combinations of
SAE, LSTM, and WPT methods in DL architecture have
demonstrated promising performance to improve the accu-
racy of fault detection and diagnosis in application domains.

Other protection techniques were also proposed to solve
the fault detection and classification issues of grid-connected
PV systems based on Thevenin Equivalent Resistance [28],
radial basis function networks [29], wavelet transform [24],
statistical monitoring [30], fuzzy inference [31] and etc. Fur-
thermore, several studies were proposed to diagnose the PV
faults used in different applications by first identifying the
root causes of these faulty situations and then proposing
the corresponding solutions to prevent their occurrence in
the future, including the fault diagnosis [32], [33], predic-
tion [34], cost irradiance monitoring [35], maintenance [10],
and islanding [36]—-[38]. Fault monitoring and diagnosing are
the effective maintenance mechanisms used by most existing
PV systems to prevent the occurrence of faulty issues and
corresponding consequences. The initial detection and clas-
sification of failure modes are also useful for maintenance
applications in order to identify the hazard patterns for main-
tenance reliability and machine availability [39], [40].

Despite having the substantial amounts of related works
published in this research area, there is still lacking the robust
methods that are able to detect and classify the PV faults
accurately with low computational time [41], [42].

Nevertheless, most of these existing methods encoun-
tered the challenges of attaining high accuracy of fault
detection and classification because of the manual feature
extraction process that is not only time-consuming but also
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requires substantial amounts of domain knowledge in the
PV fault diagnosis. Furthermore, most of these existing
methods are also observed not able to overcome the chal-
lenges of manual feature extraction and feature selection
simultaneously [43]-[45].

The research gaps observed from previous literature, such
as the limitation of manual feature extraction and selection
as well as the time-consuming process of PV fault classifi-
cation, have motivated the current study to develop a new
hybrid deep learning (DL) model that aims to achieve better
accuracy of PV fault classification within shorter computa-
tional time. In particular, several intelligence methods known
as the wavelet packet transform (WPT), the deep-stacked
encoder (SAE), equilibrium optimizer algorithm (EOA), and
long short-term memory (LSTM) are hybridized into the
proposed DL model, aiming to obtain an optimal feature
subset required for the unsupervised fault classification in
achieving the maintenance scheduling and failure prevention
of PV system.

In contrary to many existing works, the proposed DL
model is unique because it aims to fill the gaps for all three
stages (i.e., features extraction, optimal feature selection,
and fault classification) simultaneously when learning and
optimizing the fault detection model for PV electrical units
even under the presence of the noisy environment. These
competitive advantages enable the proposed hybrid DL model
to perform the fault detection and classification of PV plants
in faster and more reliable manners without leaving them
unnoticed, which in turn can result in undesirable conse-
quences such as power losses and safety hazards in the PV
systems.

To that end, the most significant contributions of the
present study are summarized as follows:

o A novel hybrid DL model is proposed to tackle the
PV fault detection problems, where the key challenges
of feature extraction, optimal feature selection, and
fault classification encountered on the proposed hybrid
DL model are addressed simultaneously via strategic
hybridization of WPT, SAE, LSTM, and EOA methods.

« Hybrid mathematical methods are proposed to extract
and select the optimal features required for PV fault
detection in addressing the drawbacks of manual feature
selection and excessive time incurred in the training
process of PV fault classification and detection.

o The proposed hybrid DL model enables unsupervised
learning from the unlabeled PV measured signals,
implying that the proposed approach is not only able
to extract the significant fault features automatically but
also can optimize the number of selected features and
processing time of fault classification.

« The proposed hybrid DL model is expected to contribute
to PV researches, particularly in the aspects of fea-
ture extraction, feature selection, and fault classification.
It is envisioned that the same proposed method can
be applied in fault diagnosing and prevention for other
industrial applications, even in a noisy environment.
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« Anextensive study is conducted to evaluate the effects of
high-level noises on the protection performance offered
by the proposed hybrid DL model. This analysis is cru-
cial to verify the applicability of the proposed method to
be deployed in the actual microgrid system, i.e., an issue
that was frequently overlooked in the previous studies.

The rest of the paper is structured as follows: Section II
presents the proposed methodology of the hybrid DL model.
Section III describes the data processing and mechanisms
incorporated into each subsystem of the proposed hybrid DL
model, followed by Section IV that outlines the case study
used to evaluate the performance of the proposed hybrid
DL method. Section V presents the simulation results and
discussion used to validate the proposed hybrid DL model.
Finally, conclusions are drawn in Section VI.

Il. THE OVERALL ARCHITECTURE OF THE

PROPOSED METHODOLOGY
In this section, a hybrid DL model is proposed to achieve

better performances in terms of fast PV fault detection with
feature reduction capability by combining the wavelet packet
transform (WPT), deep-stacked autoencoders (SAE), and
equilibrium optimizer algorithm and long short-term mem-
ory (EOA-LSTM) approaches. Fig.1 displays the proposed
hybrid DL model used for fast PV fault detection and classi-
fication with reduced features.

Data preprocessing is first performed on the initial data set
because this step is crucial to ensure the effectiveness and
accurateness of data mining models [46]. It is suggested in the
literature that different methods can be used to initialize and
preprocess the dataset in order to attain better classification
performance.

Firstly, the WPT method is applied for data preprocessing
of the collected PV voltage signal. Secondly, an SAE is
employed to extract the fault features automatically from the
preprocessed data, aiming to override the shortages of tradi-
tional manual feature extraction. Then, the EOA algorithm is
applied to choose the optimal features automatically from the
extracted fault features without requiring any previous knowl-
edge. An EOA algorithm is constructed with multiple LSTM
to speed up the fault detection and classification as well as to
enhance the feature learning capability of the LSTM model.
Finally, the LTSM is adopted as a PV fault classification
model, in which the dataset of extracted features is divided
into two portions. Specifically, 80% of the dataset is used for
training the intelligent LTSM model, and the remaining 20%
of the dataset is used for testing the performance of LTSM in
fault detection and classification. After that, the trained model
can be deployed to alert decision-makers for preparing the
appropriate maintenance tasks in order to prevent hazardous
faults in the future.

Ill. DATA AND METHODS
A. DATA PREPROCESSING
Wavelet transform is commonly used as a signal processing

tool for many power system applications due to its ability to
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FIGURE 1. Proposed hybrid DL model for PV fault detection and classification.

detect the non-stationary transients encountered during signal
measurement. Nevertheless, wavelet transform tends to suffer
from some drawbacks such as the low immunity for noise and
disturbances, batch processing, and varying frequency sub-
band. In order to address the challenges brought by wavelet
transform, wavelet packet transform (WPT) is used as a signal
processing tool in this paper because it can offer more robust
noise immunity with signal properties for enhanced feature
extraction and time resolution [47].

In contrary to wavelet transform, WPT has demonstrated
its promising capability to analyze the local discontinuities
within an input signal that might contain more significant
features for fault diagnosis. For this reason, WPT is consid-
ered as a more appropriate signal processing tool for handling
the non-stationary and steady-state during the data ingestion
process. In general, the decomposition depends on the sam-
pling frequency; for this study, the sampling rate is set as
19.8 kHz (Kilohertz) because we were simulating the system
according to UK standards and the study by [14]. The 8-level
is selected to cover all frequency bands in order to have a more
evident observation on the band that has arisen fault. Accord-
ing to the experimental findings of [13], [48], daubechy
mother wavelet (db4) is proven suitable to be employed as
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the mother wavelet because of its high performance, i.e., high
precision detection with short processing time. Other rele-
vant fault parameters are selected according to the operative
requirements in IEEE 1547 standard, the practicable topology
of the operational network, and testing practices are recom-
mended by protection relay manufacturers. More details of
technical operations for the electrical system considered in
the current case study can be found in [23].

During the decomposition process, the original input signal
can be divided into the low-frequency coefficient of Al and
the high-frequency coefficient of D1. It is noteworthy that
the conventional orthogonal wavelet method only considers
low-frequency regions during the decomposition process and
neglects the high-frequency regions that might contain the
significant features that appear in these local discontinu-
ities of the signal. On the contrary, the WPT structure can
overcome the deficiency of the orthogonal wavelet method
by providing a well-adjusted structure analysis and precise
frequency resolution. In this paper, WPT is used to provide
the time-frequency function of PV signals, enabling the more
effective detection of faulty events. Equations (1) to (8) are
presented to provide further explanations on mathematical
formulations involved in WPT. The computation of wave
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packet functions(WP) W,’; « can be expressed as follows [49]:
Wi (1) = V2IWi@l — k) )

where [ and k are the scales and translation parameters respec-
tively, and i is the oscillation index (i =0,1,...2! ) .

The first two WP functions for i = 0 and i = 1 are shown
in (2) and (3), respectively, i.e.,

9 (1) =Wy =W’ () 2
Y1) =Wy () =W' @) )

where ¢(¢) and ¥ (¢) denote the scaling function and mother
wavelet, respectively, where /| = k = 0. Meanwhile, the
remaining WP functions with i = 2,3, ..., 2! (where 2! is
the number of decomposed packets) are expressed as follows:

W () = > ) Wi, () @)
k

W) =Y gy W, ) )
k

where both £ (k) and g (k) represent the functions of low-pass
and high-pass filters, respectively, that are defined as follows:

h (k) = 1/¥/2(p(t), p(2t — k) (6)
g (k) = 1/V2(y (1), (2t — k) )

The above-mentioned low-pass and high-pass filters are
orthogonal, where g (k) = (=D h(1 = k). According to (6)
and (7), the following WP functions can therefore be further
expressed as:

W2 (1) = V2> h(k)y W' (2t — k) ®)
k

W2 () = V2 gy W2t — k) ©)
k

Generally, the wavelet packet coefficient of Cli(k) for a
continuous signal of x (¢) is represented as:
+00
Cl(k) = (x, W},) = / X (W, 1) at (10)
—00
For discrete signal, the coefficients of WPT decomposition
can be calculated as:

CHi(0) = (. Wi,) =Y h(k—21)Citk) (11)
k

Ciil ) = @ W) =) gk —20)Cjh) (12)
k

Classical WPT-based measures can produce various fea-
tures such as entropy, energy, standard variation, etc., from
the WP coefficients obtained using (10) to (12). Energy
and entropy are the most popular measurements that can be
applied to determine the irregular features of normal and
faulty signals. Both the energy and entropy can vary with
the frequency and time components of different signals and
conditions. In this paper, the energy characteristics of WPT
nodes are considered to perform fault detection and classi-
fications. Both of the energy and entropy measures can be
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determined through the coefficients of WPT extracted from
(10)-(12). The Shannon entropy is calculated as:

N 2 2
Energy; = — Y. |Clun|"log |Cf () (13)

n=1

The logarithmic energy entropy can be determined as:

Energy, ; = i log [(Cl",k(n)ﬂ2 (14)
n=1

where N denotes the sampling point number; Cli,k is the
coefficients extracted from the /-th level of the i-th frequency
band with i = 2/ — 1.

B. FAULT FEATURE EXTRACTION

It is essential to design an effective feature extraction process
from the measurement signals so that the proposed method
is able to accurately discriminate different kinds of faults
that appear in the PV system. In this paper, an unsupervised
deep learning model known as stacked autoencoder (SAE)
is employed as the feature extraction method because of its
promising performances in extracting important information
from the signals of condition monitoring system concerning
the analysis difficulties [50]. SAE has the excellent capability
of performing dimensionality reduction on the input signal
into any desired sizes by leveraging its hidden layer as a
feature extractor, as well as can predict the output and the
same input data without requiring labels. For this reason, SAE
is able to automatically extract the significant fault features
from input signals without requiring any data labeling and
yet can offer better descriptions of fault features than the
original data [51]. Fig. 2 shows the network structure of a
three-layer SAE (such as input layer, hidden layer, output
layer). The mapping and reconstructing processes of SAE can
be attained through the encoder (i.e., from input vector into
a hidden vector) and decoder (i.e., from hidden vector into
output vector) networks, respectively.

Suppose that a training sample set denoted as x? =
M . . .
[xf, xg, TN x/‘f,,] € RM is mapped into the hidden layer

features by (15), where d = 1,2,...,M and M repre-
sent the number of samples in the dataset {x? }szl. Denote
h = [hd, hg, cee hz]T € R¢ as the feature vector of the
hidden map, where e represents a dimension of hidden unit,
it is then calculated as:

n = fFwDx? 4 pD) (15)

where f(-) is an activation function; WD and b are two
matrices containing the weight and bias values between the
input and hidden layers, respectively. During the decoding
process, the feature vector of the hidden layer is transformed

into an output vector of 4 = [fcf fcg, cee fcf/l]M eRM je.,
3 = fWPn? 4 p?) (16)
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Decoder network

FIGURE 2. SAE neural network Structure.

where W® and hPare two matrices containing the weight
and bias values between the hidden and output layers, respec-
tively. The reconstruction error L(xd , x4 ) between %4 and x4
is then expressed as follow:

L (xd,fcd) - % de _3d ‘2 17)

The overall cost function of SAE is depicted as:

I EE B il

JW.by=|=> L(x3)|+= W)

Md:l 21:1 i=1 j=1 ’
(18)

where A denotes the decay weight parameter; Wj(l.l) is alinking
weight for neurons i into j with layer (I, [+ 1); n; and s; are the
network layer number and neuron number for layer [, respec-
tively. Notably, the second term in (18) is used to measure the
differences between the input vector of all training samples
and their corresponding reconstructed vectors.

Suppose that p, is the average value for activating the g-th
hidden unit, where g denotes the neuron index in the hidden

layerwithg =1, 2, - - - , e. The averaging for activated values
is calculated as follow:
1 e
A d
Pe =37 21 19)
g=1

Furthermore, the network weight and bias values are adjusted
to avoid over-fitting during the training process using gradient
descent. Therefore, the cost function of SAE can be redefined
as follow:

e
0

Jsparse W, b) =J(W,b)+06 Z (plog /3_
g=1 8

1—
(0= p)log T2 (20)
8

where 6 is the sparsity penalty parameter, which is used
to control the relative significances for reconstruction and
penalty; p denotes a sparsity parameter.
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C. OPTIMAL FEATURE SELECTION

A deep equilibrium optimizer algorithm (DEOA) is proposed
to select the optimal combinations of features used by the
proposed hybrid DL model to perform real-time automatic
detection and classification of PV faults. Equilibrium opti-
mization (EOA) was developed in [52] based on the equi-
librium of dynamic mass for control volume by seeking the
balanced states of the system in order to solve optimization
problems. EOA is a competitive optimization algorithm due
to its several advantages, such as the good balancing of
exploration and exploitation searches, simplicity of imple-
mentation, and good population diversity. Recently, EOA
has been successfully applied across different fields such as
network reconfiguration of the power system [53], image seg-
mentation [54], dynamic model of the fuel cell [55], param-
eter estimation of PV cell [56], [57], and automatic voltage
regulator system [58]. Despite the benefits offered, EO has
the drawbacks of lacking attention on fitness assignment, and
it is not able to satisfy the contradictory goals brought by
the multiobjective functions simultaneously due to its high
tendency of reaching equilibrium in one objective and failing
in the remaining objectives.

In order to overcome the drawbacks of EOA, the DEOA is
proposed in this paper to deal with optimal feature selection
that is commonly formulated as a multiobjective optimization
problem. The proposed DEOA employs a hyper learning
approach that can leverage the concepts of personal best and
personal worst states during the solution updating process in
solving the multiobjective feature selection problem. Without
loss of generality, DEOA consists of n sub-swarms of particle
concentration (position) vector denoted as X to search for
the optimum subset of features by referring to the fitness
values of candidate solutions. Each sub-swarm of DEOA has
identical search mechanisms with those of the single-swarm
EOA. In contrary to single-swarm EOA, the proposed DEOA
can leverage the advantage of an external shared pool to
facilitate the sharing of equilibrium state experiences between
different subswarms, enabling their particles to approach the
exact Pareto front more effectively.

The search procedures of the proposed DEOA are
described as follows. At the beginning of the optimization
process, the initial position of each i-th particle, i.e., X; for
i=1,2,..., np, can be generated as follow:

Xinitial = rand (ny, d) x (ub — Ib) + Ib 21)

where n, is the population size, d is the dimensional size
of a given problem; /b and ub denote the lower and upper
boundary values of decision variables, respectively. After
completing the initialization process, the four best equilib-
rium particles (i.e., Xeg,1, Xeg,2, Xeg,3, Xeq,4) and the aver-
age position (i.e., X4 ) of the population are identified to
construct an equilibrium pool Xeg pool that can offer several
promising search patterns as follows:

Xeq,pool = (Xeq,l s Xeq,2v Xeq,3’ Xeq,4a Xeq,av) (22)
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For each iteration, the original position X,;; of each par-
ticle in every sub-swarm is updated by interacting with a
solution member X,, randomly selected from an equilibrium
pool Xeq pool- The solution updating mechanisms of each
particle can be achieved as follows:

G
Xnew = Xeq + X(I_F) + Xog — Xeq) x F (23)

F = aysign (r—0.5) (e_“ — 1) (24)

where X,;s and Xpew are the current and new position vectors
of particles, respectively; r is the random number with a value
ranges between O and 1; aj is constant (i.e., aj = 2); A
is a random vector with the value ranges between O and 1.
An iteration counter ¢ can be calculated as follow:

T aZ(T/Tmax)
t=11- (25)
( Tmax)
where a, is constant (i.e., ao = 1); Ty and T denote

the maximum iteration number and current iteration counter,
respectively. The generation rate G can be obtained as:

. if r, > GP
G = 0.5 %rz_G 26)
0 if r, < GP

where r; and 7, denote the random numbers with range
between 0 and 1; GP denotes a generation probability and
it is set as 0.5.

The proposed DEOA is modified from EOA through the
incorporation of external archive dominance criteria to find
an appropriate set of solutions in tackling the multiobjective
optimization problems that are generally described as:

Min FOXO = {fi @), o () s .., fu(@))

Subjected to: {51 X) =0 i=12.=q 0

hX)=0 i=1,2,...1

where F(x) is the vector of multiobjective functions; g; (X)
and A; (X) denote the g inequality constraints and [ equal-
ity constraints, respectively. Fig. 3 shows the flowchart of
the proposed deep equilibrium optimizer algorithm. In every
iteration, a new set of solutions are identified and updated
in the external archive. This archive updating process enables
the exchange of useful information between particles during
the optimization process.

The solution quality of each equilibrium particle is evalu-
ated iteratively by using the multiobjective functions to deter-
mine the optimal feature set from all generated features [59].
In this paper, two objective functions of minimizing the clas-
sification error ER (X)and minimizing the number of selected
features S(X) are formulated to solve the feature selection
problems as follows:

Minimize: ER (X), S(X)X € R" (28)

Without loss of generality, the fitness function used to
evaluate the quality of each particle can be simplified as
following [60], [61]:

IS|

| Fit = «BR + ﬂ(ﬁ) (29)
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FIGURE 3. The proposed deep equilibrium optimizer algorithm (DEOA).

where |S| and |O| denote for the sizes of selected feature
subset and original feature set, respectively; « and 8 are two
weight infectors used to indicate the influences of classifi-
cation error and size of the selected feature on the fitness
function, where a€[0, 1] and 8 = 1 — o [62], [63].

D. TIME SERIES FAULT DETECTION

In this subsection, an LSTM is adopted by the proposed
hybrid DL model to perform the time-series fault classifi-
cation and detection of a PV system. LSTM is chosen due
to the presence of its recurrent connections in the network
that facilitates the memorization of data received earlier.
This characteristic enables LSTM to learn the long-term time
dependencies, hence can overcome the drawbacks of gradient
vanishing and backflow [64]. RNNs are offered to evaluate
the vague in sequential patterns of the temporal and spatial
sequential data [65]. Furthermore, the connections of the
peephole also allow LSTMs to identify the timed patterns
accurately and compute the internal states in the cost and
weight matrices [66].

Fig. 4 shows the multilayers’ structure of LSTM employed
to enhance the performance of the deep neural network,
where the activation data from the first layer is fed to the
second layer for further processing in order to deal with time
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sequence problems. By connecting the LSTM layers, every
layer in the LSTM is a hierarchy, which obtains input from
the hidden state of the earlier layer. The sequence patterns of
time series can be recognized by the training of multilayer
LSTM. Therefore, the structure of connected multi-memory
cells was introduced to recognize the dependency and long-
term sequence of time series. As shown in Fig. 4, layer 1 of
multilayer LSTM takes input from data C,;_;, whereas the
input of layer two is obtained from its earlier time step of h§2_)1

And the output of the present time step of layer one, i.e., hgl).

The mechanisms of LSTM cells can be explained
through the mathematical formulations presented in (30) to
(35). For the first layer, the forget gate of the input x; at time ¢
can be determined as:

ar =0(Wq. [hi—1, %]+ by) (30)

where [-] refers to a concatenate operation; W, and o denote
for the weight matrix of «-th layer and the sigmoid function,
respectively. Denote B; and y; as the input gate layer and tanh
layer, respectively, where:

Br = o(Wg. [h;—1, %] + bg) (€29)
yr = tanh (W, [;—1, 5] +by) (32)

Meanwhile, the current state C; can be updated from the
previous state C;_1 as:

C=0,.C1+ Brvt (33)

The output gate of the sigmoid function layer denoted as oy,
it can be computed as:

0 =0(Wo.[hi—1, %]+ bo) (34)

Referring to C; and oy, the current hidden layer state of 4; can
be calculated as:

h; = 0¢ tanh (C[) (35)

where the related layer biases are represented as by, bg, by,
and b, ; the related layer weights are represented as Wy, W,
W,,, and W,. Finally, the final state of the LSTM network
can be determined by using the softmax(-) activation function
described as follows:

hiinal = softmax(hy) (36)
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FIGURE 4. LSTM Layer for time series.
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IV. CASE STUDY

A. DESCRIPTION OF PV SYSTEM

In this study, a 250 kW (kilowatt) grid-connected photo-
voltaic (GCPV) system adopted from [23] is considered and
modeled using Matlab (2019) for performance evaluation
purposes. This system consists of a PV array linked to a25 kV
utility grid with a three-phase DC/AC inverter, an inverter
choke, a small harmonic filter, and a setup transformer val-
ued at 25 kVA (Kilovolt-ampere) with the frequency of
60 Hz. As shown in Fig. 5, there is a point of common cou-
pling (PCC) that connects the PV array to a 25 kV(kilovolt)
electrical grid part. This electrical grid consists of two feeder
lines 1 and 2, with lengths of 14 km(kilometer) and 8 km,
respectively, connected to the PCC. The remaining part of
this electrical system includes a ground transformer that is
installed between Line 1 and Transformer T1. More technical
details of this inverter control system operation are described
in [23]. The descriptions of the considered electrical system
in the current case study are presented in Table 1.

B. DATA SET GENERATIONS

A dataset of signal grid faults can be obtained from three
main sources, including the operative requirements in IEEE
1547 standard, the practicable topology of the operational
network, and testing practices proposed by protection relay
manufacturers. All faulty cases are simulated using Matlab
(R2019a). Notably, all faulty cases are generated at random
times. For example, the grid faults can occur at the time
period of t = 0.3 s, and these faults will be significantly
cleared after 150 ms (millisecond). The sampling frequency
and sampling time are set as 19.8 kHz and 1.5s, respectively.
Table 2 summarizes the fault conditions considered in this
study. Accordingly, a total of 264 fault cases are generated
from datasets based on different operating conditions that
include 11 types of grid faults, three types of fault locations,
four types of fault resistance values, and two types of operat-
ing modes. The voltage signals were analyzed. The purpose of
the analysis is to create the estimated power of the inspected
PV module. The analysis of the voltage signals can be used to
estimate the error among the simulated PV records compared
to the threshold voltage.

V. RESULTS AND DISCUSSION
A. DATA PREPROCESSING USING WPT
In this step, WPT is applied to preprocess the PV voltage
signals and analyze the incoherence of the signal in order to
discover the important features used for PV fault detection.
The time-frequency functions of PV signals can be obtained
using (1)-(8) based on the fault conditions considered in the
current study, as summarized in Table 2. Feature vectors are
subsequently created from the decomposition process and fed
into the network inputs of SAE in order to extract the fault
features automatically.

Fig. 6 illustrates the voltage waveform observed from the
case of an ABC-G fault with the resistance of 200 ohm that
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TABLE 1. Descriptions of studied electrical system.

Equipment Descriptions

Grid 120 kV, 2500MVA source

Transformer T1 120 kV/25 kV, 47 MVA(megavolt-ampere)
Transformer T2 25kV/0.48 kV

Grounding 0.025 Q for resistance of zero-sequence, 0.75 for reactance of zero-sequence
Distribution Sun-power type (SPR-415E-WHT-D), 88 parallel strings, 7-madule.
generation (DG)

250-kW for output power,480 V for DC source voltage, 60 Hz with 2 kHz for carrier frequency. proportional gains are 2 for

voltage and 0.3for current. Integral gains are 400 for voltage and 20 for current.

Transmission line
L3=30 MW+2 MVar.

R=3.75E-04€Q2, C=0.8F, L=9.935E-05H, Line 1 is 250 kW, 25 kV with 14 km length, Line 2 is 2 MW, 25 kV with § km length,

PCC

Line 1

Inverter
— ||| loverterchoke
VDJ; L | ? E—
Capacitor l
PWM CONTROLER

FIGURE 5. The considered electrical system in the current case study [23].

TABLE 2. Overall dataset generation.

Conditions Descriptions Number
Grid fault type ABC, ABC-G, AB, BC, AC, A-G, 11
B-G, CG, ABG, BCG, and AC-G
Fault location At the PCC location, at 8 km far 3
from the PCC, at 14 km far from
the PV system.
Fault resistance 3, 10,75, and 200 ohms 4
Mode of operation  Islanded and grid connected 2
Total Faulty Cases 264

occurs at 14 km far from the PCC in Line 1. It is noteworthy
that negligible variations of voltage amplitude are observed
during the faulty event, and this undesirable scenario could
be challenging for protection devices to detect the fault.
Meanwhile, the effective values of voltage for different types
of faulty events such as A-G, AB, AB-G, and ABC-G are
also measured. The notable changes in effective voltage val-
ues can be observed at different phases for different faulty
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events, as shown in Fig. 7. In particular, the amplitudes of
the effective voltage signal in Phase A have decreased signif-
icantly for most of the faulty events except for the AB fault.
The amplitudes of effective voltage signals in Phase B are
increased during the A-G fault, whereas the remaining fault
events have shown a drastic drop of effective voltage signals.
For Phase C, the amplitudes of effective voltage signals are
increased for two cases of A-G and AB-G faults, but the
decreasing of effective voltage signals is observed from the
remaining faulty events. Notably, the variations of effective
voltage signal can exceed the adjusted range of protection
relays operation and result in the malfunction of relays. From
Fig. 7, itis evident that the effective value of the voltage signal
measured in the time domain can be considered as one of the
fault features used to characterize the operating conditions of
PV systems.

Fig. 8 illustrates the changes of frequency under different
fault conditions at different locations. Accordingly, some of
the faulty events, such as the ABC-G fault that occurs at
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different locations, are observed to violate the upper limit of
frequency constraint imposed by the grid standards. Although
the presence of AB-G, AB, and A-G faults also increase
the frequency value, no violation of frequency constraints
is observed from these fault events. In order to prevent the
malfunctions of relays during the faults, a detection method
is required to quickly detect and classification of grid faults
in accurate and robust manners.

B. PERFORMANCE COMPARISON ON THE EXTRACTION
AND SELECTION OF FAULT FEATURES

Feature extraction is one of the most significant steps used
to govern the performance of a deep learning model. In this
paper, an unsupervised learning approach known as SAE is
employed to extract the fault features of a given voltage signal
automatically. Proper selection of network structure for SAE
is influenced by various factors such as the dimension of
data and the types of preprocessing techniques used. The net-
work structure of deep SAE considered in this study consists
of five hidden layers (200-100-30-10-5) with the learning
rate (n = 0.3-0.3-0.3-0.3-0.2) and sparsity penalty (¢, =
0.001, 0.154, 0.131, 0.05, 0.202) to obtain the fault features
from unlabeled measured voltage signals [S1]. In order to
ensure good accuracy of SAE, a trial and error approach is
used to determine its numbers of hidden layers [26].

When SAE is applied as the powerful feature extrac-
tion method, a large feature set consisting of 69 features
is obtained. It is noteworthy that not all extracted fea-
tures have high discriminatory impacts on the detection

and classification performances of the proposed hybrid DL
model. The presence of redundant and irrelevant features may
consume longer training time but only produce the mod-
els with lower classification accuracies. Despite suffering
from these technical drawbacks, most previous fault detec-
tion studies did not carefully address the feature selection
issue [59]. In order to overcome these challenges, a deep equi-
librium optimizer algorithm (DEOA) is proposed to select the
optimal combinations of feature subsets from all extracted
features.

The abovementioned feature selection problem described
in (28) and (29) is solved using the proposed DEOA by
minimizing the classification error and number of selected
features simultaneously. The convergence curves produced
by the proposed DEOA, EOA [67], and MOPSO [68] in
solving the feature selection problem are illustrated in Fig. 9.
Accordingly, the proposed DEOA is able to obtain better
fitness values than the other two competing algorithms after
20 iterations, implying the effectiveness of the proposed algo-
rithm in searching for better feature subsets within a shorter
timeframe. Furthermore, DEOA is also observed to have a
more competitive convergence speed than EOA and MOPSO
because the proposed algorithm is able to converge to the best
fitness function values at the iteration numbers of 85. On the
other hand, the fitness values obtained by both EOA and
MOPSO at the same iteration numbers are still much larger
(i.e., worse) than that of DEOA. These observations imply
that the optimal combinations of feature subsets obtained
by DEOA have more promising quality than those of EOA
and MOPSO.

Type of fault (ABC-G)

1.0

0.0

Amplitude of voltage (P.U)

-1.0

T .
Fault occurrence
—

0.5 00 ‘\1 A A

I T T T T T T T T 1
0.0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 1.0 1.1 1.2 1.3 14 15
Time (Sec)

FIGURE 6. The amplitude of voltage for an ABC-G fault event that occurs at 14 km far

from PCC.
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FIGURE 7. The effective values of voltage for different types of fault events in (a) Phase A, (b) Phase B, and (c) Phase C.
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FIGURE 8. The change of frequency during fault conditions in different locations.
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C. PERFORMANCE COMPARISON ON THE FAULT
DETECTION AND CLASSIFICATION

In this subsection, an LSTM model is implemented together
with the proposed DEOA to select the optimal feature subset
required for learning the long-term date dependencies before
detecting and classifying the PV faults precisely. A total
of 2,000 data samples have been collected to solve the PV
fault detection and classification problems, where 80% of
these samples are employed as training datasets, and 20%
of samples are used as the testing dataset. The training of
the offered DL model is executed with TensorFlow-GPU
on an NVIDIA-GeF-RTX2060 and Core i7/4.74+8700GHz
(gigahertz). The variation of classification accuracy produced
by the proposed hybrid DL model throughout the training and
validation processes is illustrated in Fig. 10.

In order to assess the performances of the proposed hybrid
DL model in detecting and classifying the PV faults, a total
of 264 cases of fault events are simulated by varying the
fault types, locations, resistances, and mode of operation as
described in Table 2 . The overall confusion matrix produced
by the proposed hybrid DL model when handling the noise-
less data is presented in Table 3 . Accordingly, the proposed
hybrid DL model has successfully achieved an overall accu-
racy of 99.93%, implying its effectiveness in detecting and
classifying the PV faults for noiseless data.

The resistance of fault is one of the elements disturbing the
accuracy of fault location. For the influence of the fault resis-
tances, the simulation for different faults with fault locations
and resistances was performed. The percentages of error for
various faults at different resistances and locations are shown
in Table 4 . The results confirm that fault distance has little
effect on the proposed model even if resistance is greater than
75 2. The low percentages of error reported imply the high
accuracy of the proposed model.

From a practical point of view, the signals measured from
an actual PV system contain random noises due to the influ-
ences of electromagnetic on distribution lines. Therefore, the
performance of the proposed hybrid DL model to detect and
classify PV faults under noisy environments is further inves-
tigated in this subsection. Particularly, the white Gaussian
noises are added to the measured voltage signals in order
to simulate three different noise levels of 20 dB, 30 dB,
and 40 dB when evaluating the performance of the proposed
hybrid DL model to detect and classify PV faults. Table 5
shows the computational time, classification accuracy, and
error values produced by the proposed hybrid DL model
under different levels of noise environments. The benefits
of incorporating the proposed DEOA to select the optimal
subset of fault features for the proposed DL model are also
further investigated in Table 5 . Accordingly, the proposed
hybrid DL model has shown good robustness towards the
noise environment because it is able to detect and classify the
PV faults with an accuracy rate higher than 90% for different
noise levels regardless of the presence of DEOA in searching
for optimal feature subsets. Furthermore, the notable per-
formance gains in terms of computing time, classification
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FIGURE 9. Comparison of convergence curves produced by the EOA,
MOPSO, and DEOA.

accuracy, and errors are also demonstrated by the proposed
hybrid DL model when DEOA is incorporated to tackle the
feature selection issue. Particularly, DEOA is able to reduce
at least 76% of redundant features for the proposed hybrid
DL model in detecting and classifying the PV faults with a
minimum accuracy level of 96.57%. The computational time
incurred by the proposed hybrid DL model to perform the PV
fault detection and classification is less than 0.4 seconds due
to the significant reduction of fault features.

The effectiveness of the proposed hybrid DL model
in detecting and classifying PV faults is further investi-
gated through the performance comparisons with three other
machine learning models, namely the LSTM [69], SAE [25],
and the multilayer perceptron (MLP) [11]. The accuracy and
computational time produced by all compared methods in
detecting and classifying the PV faults with different numbers
of selected features (i.e., all 69 features, 16 features, and 8
optimal features) are presented in Table 6 . The proposed
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FIGURE 10. The training and validation accuracy of the proposed DL
model.
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TABLE 3. Overall confusion matrix of the proposed model for noiseless data.

ABC ABC-G AB BC AC A-G B-G CG ABG BCG AC-G
ABC 264 0 0 0 0 0 0 0 0 0 0
ABC-G 1 263 0 0 0 0 0 0 0 0 0
AB 0 0 264 0 0 0 0 0 0 0 0
BC 0 0 0 264 0 0 0 0 0 0 0
AC 0 0 0 0 264 0 0 0 0 0 0
A-G 0 0 0 0 0 264 0 0 0 0 0
B-G 0 0 0 0 0 0 264 0 0 0 0
CG 0 0 0 0 0 0 0 264 0 0 0
ABG 0 0 0 0 0 0 0 0 264 0 0
BCG 0 0 0 0 0 0 0 0 0 264 0
AC-G 0 0 0 0 0 0 1 0 0 0 263
Overall Accuracy = 99.93%
TABLE 4. The percentage of error for various faults at different resistances and locations.
Percentage of error for different faults
Fault Fault Distance &)
Resistance Q &) &) 0 Q O ) Q o} Y
(ohms) (lem) % % © g A < < m © % 8 %
3 At the PCC location 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
At 8 km far from the 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
PCC
At 14 km far from the 0.11 0.11 0.10 0.10 0.10 0.09 0.09 0.09 0.08 0.08 0.08
PV system
10 At the PCC location 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.02 0.02 0.02
At 8 km far from the 0.03 0.03 0.02 0.02 0.04 0.05 0.05 0.05 0.04 0.04 0.04
PCC
At 14 km far from the 0.35 0.35 0.20 0.20 0.20 0.14 0.14 0.14 0.20 0.20 0.20
PV system
75 At the PCC location 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.02 0.02 0.02
At 8 km far from the 0.03 0.03 0.02 0.02 0.02 0.05 0.05 0.05 0.04 0.04 0.04
PCC
At 14 km far from the 0.35 0.35 0.20 0.20 0.20 0.14 0.14 0.14 0.20 0.20 0.20
PV system
200 At the PCC location 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.04
At 8 km far from the 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.08 0.08 0.08
PCC
At 14 km far from the 0.96 0.96 0.62 0.62 0.62 0.44 0.44 0.44 0.64 0.64 0.64
PV system
TABLE 5. Experimental classification.
Noise SNR Classification with DEOA Classification without DEOA
(dB) Selected Features Time  Accuracy  Error No. of Time  Accuracy  Error
(s) (%) Selected (s) (%)
Features
Noiseless 2, 13, {7, 19, 24, {46, £52, f60 0.161 99.93 0.0007 8 1.347 99.53 0.0047
20 f1,£2,£3,4,£7,f14,f17,£19,123,124,£31,f40,46,£52,60,f62  0.367 96.57 0.0343 16 1.767 91.57 0.0843
30 f1,£2,£3,14,17,f14,f19,£23,124,£31,f40,f46,£52,160 0.284 97.37 0.0263 14 1.448 95.24 0.0476
40 2,3,f4,£7,£14,£19,£24,31,146,£52,160 0.208 99.49 0.0051 11 1.426 98.59 0.0141
TABLE 6. Comparison of results between the proposed model and other models.
. . . . o Computational Time (s)
Models Training/testing data set Classification accuracy (%) All features 16 features Optimal features
LSTM [69] 80/20 95.31 2.126 0.4721 0.1656
SAE [25] 80/20 97.52 2.136 0.7152 0.1693
MLP [11] 80/20 92.91 6.025 2.5634 1.5454
Proposed 80/20 99.93 1.347 0.367 0.161

hybrid DL model is observed to produce the best accuracy
rate of 99.93%, followed by SAE, LSTM, and MLP with
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the accuracy rates of 97.52%, 95.31%, and 92.91%, respec-
tively. Although the computational times incurred by all
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compared methods to detect and classify PV faults increase
with the number of features considered, the proposed hybrid
DL model is observed to incur the shortest computational
times for all cases, followed by the LSTM, SAE, and MLP.
The excellent performance of proposed hybrid DL model,
in terms of accuracy rate and computational time, can be
justified through the automatic feature extraction and reduc-
tion achieved by the SAE and DEO, respectively. These
mechanisms enable the proposed hybrid DL model to focus
on essential features and exclude those redundant ones with-
out jeopardizing its capability to perform PV fault detection
and classification. From a practical application point of view,
the automatic feature extraction and reduction process is
crucial to reduce the computational speed and memory con-
sumption of processing equipment to be implemented with
the proposed hybrid DL model. The excellent capabilities of
the proposed hybrid DL model to perform PV fault detection
and classification with high accuracy rate and short computa-
tional time under noisy environments are expected to benefit
the young and experienced electrical engineers in protecting
the equipment during maintenance activities.

After detecting and classifying the faults successfully using
the proposed DL hybrid model, the decision-makers can
select the appropriate maintenance tasks by referring to the
final classification results. These classification results are
expected to offer the decision-makers a clear vision of the
drawbacks of a PV system and then make adequate decisions
systematically. As reported by [39], CBM (condition-based
maintenance) task is assigned for high-risk failure, PSM (pre-
ventive scheduled maintenance) for medium risk, and CM
(corrective maintenance) for low risk.

VI. CONCLUSION AND FUTURE WORK

Manual feature extraction and feature selection are the main
challenges of PV fault detection and classification because
the huge feature database consists of different sensing signals
under a noisy environment. In order to tackle the PV fault
detection and classification problems effectively, a hybrid DL
model is proposed in this paper through the proper combina-
tion of discrete wavelet transform (DWT), stacked autoen-
coders, deep equilibrium optimization algorithm (DEOA),
and long short-term memory (LSTM). In contrary to most
existing works, the proposed hybrid DL model is able to per-
form the automatic feature extraction and feature selection via
SAE and DEOA, respectively, in order to determine the opti-
mal feature subsets that can play decisive roles in detecting
and classifying PV faults. Extensive performance analyses
have demonstrated the excellent capability of the proposed
hybrid DL model to solve the PV detection and classification
problems with good accuracy and short computational time.
Furthermore, the proposed hybrid DL model also shows its
good robustness under noisy environments. The competitive
fault detection and classification performances demonstrated
by the proposed hybrid DL model are anticipated to benefit
the electrical engineers in diagnosing the healthy conditions
of PV plants during maintenance activities.

13866

As the extended works of current studies, it is worth
examining further the performance of the proposed hybrid
DL model with different datasets and different multiobjective
optimization problems. The same hybrid DL model can also
be applied by the decision-makers in other hazardous areas
such as the nuclear and gas electrical plants to evaluate and
classify the risk levels in order to prevent future failures.

Motivated by the limitation of the current study, the fault
location will be considered by a new method inspired by the
proposed DL model and SCADA system. This method is able
to detect the location of faults accurately and use to design an
auto-protection control process to determine the location of
simultaneous faults.

Finally, itis also possible to improve the existing hybrid DL
model for online fault diagnosis in order to further reduce the
undesirable effects of abnormal disturbances during the fault
diagnosis.
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