
Received December 20, 2021, accepted December 31, 2021, date of publication January 4, 2022, date of current version January 12, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3140166

Supporting Swap in Real-Time Task Scheduling
for Unified Power-Saving in CPU and Memory
SUJI YOON , HEEJIN PARK, KYUNGWOON CHO, AND HYOKYUNG BAHN , (Member, IEEE)
Department of Computer Engineering, Ewha Womans University, Seoul 120-750, South Korea

Corresponding author: Hyokyung Bahn (bahn@ewha.ac.kr)

This work was supported in part by the ICT Research and Development Program of IITP (Institute of Information & communications
Technology Planning & Evaluation) grant funded by the Korea government (MSIT) (2019-0-00074, developing system software
technologies for emerging new memory that adaptively learn workload characteristics) and (2020-0-00121, development of data
improvement and dataset correction technology based on data quality assessment).

ABSTRACT As the size of data grows rapidly in modern IoT (Internet-of-Things) and CPS (Cyber-
Physical System) applications, the memory power consumption of real-time embedded systems increases
dramatically. Unlike general-purpose systems where memory consumes about 10% of the CPU power
consumption, modern real-time systems have the memory power of 20–50% of CPU power. This is because
the memory size of a real-time system should be large enough to accommodate the entire task set, and thus
DRAM refresh operations become a major source of power consumption. In this article, we present a new
swap scheme for real-time systems, which aims at reducing memory power consumption. To support swap
with real-time constraints, we adopt high-speed NVM storage and co-optimize power-savings in CPU and
memory. Unlike traditional real-time task models that only consider the executions in CPU, we define an
extended task model that characterizes memory and storage paths of tasks as well, and tightly evaluate the
worst-case execution time by formulating the overlapped latency between CPU and memory. By optimizing
the CPU supply voltage and the memory swap ratio of given task set, our scheme reduces the energy
consumption of real-time systems by 31.1% on average under various workload conditions.

INDEX TERMS Real-time task scheduling, partial swap, genetic algorithm, power saving, voltage scaling,
deadline, high-speed storage, NVM.

I. INTRODUCTION
With the recent advances in IoT (Internet-of-Things) and CPS
(Cyber-Physical System) technologies, reducing the power
consumption in battery-based real-time systems is becoming
increasingly important [1], [2]. Dynamic voltage scaling is a
widely used technique for CPU power-saving by lowering the
supply voltage of a processor when the computational load
of tasks is less than the processing capacity of CPU [3]–[5].
If we lower the voltage supplied to CPU, the computational
speed of the processor becomes slow, which increases the
execution time of tasks. However, as CPU power consump-
tion is proportional to the square of the supply voltage,
although the execution time is increased, the overall energy
can be saved. Thus, CPU voltage scaling offers flexibilities in
real-time task scheduling by considering the computational
load of tasks and energy-saving effects.

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

Meanwhile, as the size of data grows rapidly in modern
embedded systems, memory power consumption of the sys-
tem increases dramatically [6], [7]. Due to its volatile medium
characteristics, DRAM needs continuous refresh of all cells
in order to maintain its contents although no read/write oper-
ation is performed. As the memory size increases, the power
consumption by refresh also increases, which accounts for a
significant portion of total power consumption in real-time
embedded systems [8].

Unlike general purpose systems, real-time systems keep
the entire footprint of all tasks in memory to guarantee
deadlines, so it is not possible to use virtual memory swap
that loads data from storage on demand [9]. This is because
predicting the time of accessing code or data in storage is
not feasible upon the execution of tasks in CPU. Thus, the
memory size of a real-time system should be large enough to
accommodate the entire task set, whichmakes DRAM refresh
operations the major source of power consumption. Note that
this is not the case for general-purpose systems like laptops,
where the two main sources of power consumption are CPU

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 3559

https://orcid.org/0000-0003-2971-8633
https://orcid.org/0000-0002-7188-3889
https://orcid.org/0000-0001-9315-1788


S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

and display, while DRAM accounts for only 3% of total
power consumption [45]. Specifically, when comparing CPU
and memory power in laptops, memory consumes only 10%
of CPU power consumption [45]. However, this large gap has
been narrowed in modern real-time systems as CPUs adopt
power-saving techniques like voltage scaling but the size of
real-time tasks that should reside in memory continues to
grow. For this reason, thememory power ofmobile embedded
systems and real-time systems has increased to 20-50% of
CPU power [4], [6].

In this article, we present a new swap scheme for real-
time systems, which aims at reducing the DRAM size and
memory power consumption. To support swap with real-
time constraints, we adopt high-speed NVM (non-volatile
memory) storage and accurately estimate the swap latency.
NVM technologies have recently been caught attention and
some commercial products like Intel’s OptaneTM are already
available on the market [12]. As high-speed NVM storage has
low-variance of access time [10], [13], our idea is to place a
certain part of a task in NVM storage rather than shadowing
in memory. This can reduce the size of DRAM and memory
energy consumption in real-time embedded systems.

We, then, integrate our swap scheme with CPU voltage
scaling and formulate the effect of the two techniques as a
unified measure. Although CPU voltage scaling and memory
swap reduce the energy consumption, they increase the exe-
cution time of tasks, possibly resulting in the deadline misses
of real-time tasks. Thus, we define an extended task model
that characterizes memory and storage latency as well as CPU
executions, and accurately estimate the worst-case execution
time when adopting these energy saving techniques. In our
model, we tightly evaluate the worst-case execution time by
formulating the overlapped latency between CPU, memory,
and swap storage. As co-optimizing the power-saving con-
figurations of CPU and memory with real-time constraints is
a complex optimization problem, we use genetic algorithms
to determine CPU voltage level and memory swap ratio of
given task set.

To assess the effectiveness of the proposed scheme, we per-
form simulation experiments for a wide range of workload
conditions. Our experimental results show that the proposed
scheme significantly reduces the power consumption of real-
time systems. Specifically, the energy-saving effect is 31.1%
on average and up to 45.6% without deadline misses. The
main contributions of this article can be summarized as
follows.
• Unlike traditional real-time task models that only con-
sider executions in CPU, we define an extended task
model that also characterizes the memory and storage
paths of tasks.

• We propose a swap scheme for real-time systems, which
partially swaps out a certain portion of a task and restores
it before the task activates, thereby preventing page
faults.

• Our model tightly evaluates the scaled worst-case exe-
cution time of a task, considering the overlapped latency

between CPU, memory, and swap storage, to minimize
overall energy consumption.

• We design a steady-state genetic algorithm to
co-optimize the energy consumption in CPU and mem-
ory without deadline misses by defining appropriate cost
functions and genetic operators.

The remainder of this article is organized as follows.
Section II briefly summarizes previous works related to this
article. In Section III, we explain the partial swap scheme
and integrate it with CPU voltage scaling for energy efficient
real-time task scheduling. Section IV describes the optimiza-
tion of our problem with genetic algorithms. In Section V,
we present experimental results to validate the effectiveness
of the proposed scheme. Finally, we conclude this article in
Section VI.

II. RELATED WORK
A. SWAP IN REAL-TIME SYSTEMS
Traditional memory swap used in general purpose systems
determines the part of a task to be swapped based on the
prediction of re-reference likelihood by the replacement algo-
rithm [19], [28]. For example, the CLOCK algorithm evicts a
page not used recently as it is not likely to be used again in the
near future. However, page faults may occur in these systems
as an evicted page can be used again. Unlike such types of
systems, real-time systems do not allow page faults since
unpredictable I/O latency may incur deadline misses [9].
Thus, the full address space of a task is pinned on the physical
memory once a task starts its execution.

In order to satisfy this semantic, swap in real-time sys-
tems should work in a completely different way from that in
general-purpose systems. To this end, our scheme swaps out a
certain portion of a task during its inactive period, but restores
the swapped part to physical memory before its activation.
Thus, it is guaranteed that an entire footprint of a task resides
in physical memory while the task is active. This indicates
that we do not need to consider the target of swap. Thus, the
main focus of our swap is to determine how much a task’s
memory should be involved in swap rather than considering
the replacement algorithm.

Previous studies on paging systems have suggested some
replacement algorithms for soft real-time tasks. Kim et al.
adopt flash memory as a code storage and present a new
page replacement algorithm in portable media players [21].
Lee et al. present MRT-PLRU (multitasking real-time con-
strained combination of pinning and LRU) that combines
pinning and LRU (least recently used) policies to reduce
the memory size of real-time systems [22]. However, these
studies probabilistically guarantee the real-time task’s dead-
lines without fully satisfying the constraints of hard real-
time systems. Thus, they are different from our approach that
meets the complete real-time constraints with memory swap.

B. REAL-TIME TASK SCHEDULING
Real-time task scheduling has been widely studied for
decades. For periodic tasks, EDF (Earliest Deadline First) is

3560 VOLUME 10, 2022



S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

known to find a schedule that does not miss the deadlines of
all tasks in the task set if there exists any feasible schedule.
However, EDF cannot be used if there are multiple processors
or cores to execute the task set. Baruah et al. present the Pfair
(Proportionate-fair) scheduling that optimally and efficiently
schedules periodic tasks on symmetric multiprocessors [24].
Pfair scheduling differs from traditional real-time scheduling
principles in that tasks are explicitly required to proceed at a
steady rate.

Anderson and Srinivasan present a work-conserving ver-
sion of Pfair scheduling called ER-fair (Early-Release
fair) [30]. ER-fair differs from original Pfair scheduling in
that it allows the execution of the latter part of a task as soon
as the former part of the same task is completed. Anderson
and Srinivasan also define the notion of intra-sporadic task,
in which subtasks of a task may be released late, and present
variants of Pfair and ER-fair scheduling [31]. They prove
the feasibility condition for scheduling intra-sporadic tasks,
and present a polynomial-time algorithm that can be used
to optimally schedule intra-sporadic tasks on 1 or 2 core
processors.

In real-time systems, the utilization test with the worst
case execution time of tasks should be done beforehand as
we need to know if the fixed resources can accommodate
the given real-time task set. However, actual executions may
be completed much earlier than the worst case, which will
lead to the waste of resources significantly. To cope with
this situation, some reactive schemes have been presented.
Chen et al. decide the baseline schedule of the task set in
advance, but while the tasks are actually executed, new proac-
tive schedules are generated by considering the completion of
the tasks or arrival of new tasks, leading to efficient resource
management [32]. This can be adopted in cloud computing
environments where resources can be scaled as the workload
evolves.

Dehnavi et al. utilize the hybrid cloud infrastructure for
scheduling of real-time tasks in industrial systems [33]. They
propose resource provisioning policies to partition a given
workload among different computing tiers, including local
private clouds, edge nodes, fog nodes, and public cloud data
centers. Zhou et al. propose a theoretical model for real-time
scheduling problems in dynamic cloud manufacturing ser-
vices [34]. To improve performances, they also propose a
scheduling policy based on dynamic data-driven simulations.

C. DYNAMIC VOLTAGE SCALING
Dynamic voltage scaling has been studied extensively for
the power-saving of processors in various industrial sys-
tems [1], [2]. Pillai and Shin propose three techniques to
find the lowest voltage level to meet the deadlines of given
real-time task set [1]. They are static, cycle-conserving, and
look-ahead voltage scaling techniques. Static voltage scaling
selects the voltage level of a processor statically, whereas
cycle-conserving voltage scaling makes use of the reclaimed
cycles for decreasing the voltage level of a processor if the
execution of a real-time task finishes earlier than its worst

FIGURE 1. The architecture of the memory swap and CPU voltage scaling
proposed in this article.

case execution time. Look-ahead voltage scaling tries to
lower the voltage level of a processor even more by analyzing
the required amount of computation in the near future and
postpones the scheduling of the task based on the result of
the analysis.

Lee et al. make use of the slack time to lower the voltage
level of a processor [16]. Specifically, the voltage level of
a processor is lowered if some clock cycles are reclaimed
by completing a task before its deadline reaches. Ghor and
Aggoune aim to find the schedules with the least voltage
level of a processor for real-time tasks by utilizing the slack
time [2]. In particular, their algorithm aims at stretching
the worst case execution time of real-time tasks as much
as possible without violating deadlines. Nam et al. present
a task scheduling policy for real-time systems that aims at
reducing the energy consumption of CPU and memory selec-
tively by considering the relative energy-saving effect of the
two layers [4]. To reduce the time overhead of scheduling
and maximize the power saving effect, their policy adopts
dynamic programming with the constraint of resource utiliza-
tion. Bahn et al. present a new task model for hybrid memory
placement in hard real-time systems [15]. Specifically, they
re-evaluate the worst-case execution time of a task by con-
sidering the memory location of each task in heterogeneous
memory environments.

III. THE PROPOSED SCHEME
In our task model, a real-time task set is defined as
0 = {τ1, τ2, . . . , τn}, and the target system has CPU with a
voltage scaling function and main memory supporting swap
as shown in Figure 1. A task τi is characterized by <Ci, Ti,
Mi>, where Ci is the worst case execution time of τi with the
default CPU voltage and no memory swap, Ti is the period
of τi, and Mi is the memory footprint of τi. We consider
periodic real-time tasks, and thus the deadlines are implicitly
determined by the period.

VOLUME 10, 2022 3561



S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

By following the common assumptions of real-time task
models in previous work [4], [16], and considering our partial
swap model, we make the following four assumptions.

Assumption 1: All tasks are independent, and thus the result
of a task does not affect others.

There may be some dependent tasks in real-world task set,
but most real-time scheduling studies make this assumption
to simplify the problem without loss of generality. That is,
dependent tasks can be merged into a single task as they
should be performed sequentially by using the result of the
preceding task as the input to the following task.

Assumption 2: Tasks can be preempted and the overhead of
context switch from one task to another is negligible.

In computer systems, CPU is a representative resource that
allows the preemption of a task during its execution. This is
because the context of a task can be easily saved and restored
without incurring large overhead. Specifically, the context
switch of a processor usually takes 5-10 microseconds, which
is less than 0.01% of the minimum time quantum between
context switch, and thus we can hide it by including in the
actual execution time of a task [35].

Assumption 3: When the target clock frequency is deter-
mined, the supply voltage of CPU can be adjusted
accordingly.

When the clock frequency of a processor increases, the
supply voltage of a processor also becomes higher. Although
they do not have exact linear relations, it is known that the
supply voltage of real processors is adjusted according to
clock frequency based on a linear-like function. For example,
in Transmeta Crusoe processors, when the clock frequency
is changed from 500 MHz to 1 GHz, the supply voltage is
adjusted from 1.35 V to 2.80 V [36].

Assumption 4: The access time of swap storage is
predictable.

This was not possible in HDD or flash storage, where the
access time depends heavily on the internal state of stor-
age [20]. InHDD storage, the access time varies depending on
the disk scheduling and the head movement. In flash memory,
the access time fluctuates greatly when garbage collection is
performed [18], [19]. However, NVM storage has predictable
access time [11], [14], and thus we can estimate the worst
case access time to load storage data to memory if we know
the size of data to be swapped.

A. BASIC MODEL
In ourmodel, theworst case execution timeCi of a task should
be adjusted as we use CPU voltage scaling andmemory swap.
That is, Ci should be recalculated based on the longest time
path between CPU and memory considering the increased
latency due to the lowered supply voltage and swap I/O. Actu-
ally, the scaled worst case execution time is determined by
the slower time component of executing instructions in CPU
and accessing memory since executions in CPU and memory
can be overlapped. That is, we tightly estimate the latency

that may overlap between CPU and memory by defining the
function f for scaling Ci as follows.

f (Ci) = max{fCPU(Ci), fSWAP(Ci)} + εi (1)

fCPU(Ci) and fSWAP(Ci) are the scaled worst case execu-
tion time of τi by applying CPU voltage scaling and swap,
respectively, and εi is the stall factor for executing swap I/O
commands in CPU. fCPU(Ci) and fSWAP(Ci) can be defined as

fCPU(Ci) = Ci/µi (2)

fSWAP(Ci) = Ci + 2 ∗ latencySWAP(ri ∗Mi) (3)

where µi is the relative clock frequency of CPU compared to
the default frequency to execute task τi, ri is the swap ratio
of τi, and latencySWAP is the time required to access the swap
storage as a function of the swap I/O size.

Based on this model, the schedulability test of a real-
time task set can be performed by the following utilization
test, implying that the scaled worst case execution time after
adopting CPU voltage scaling and memory swap should sat-
isfy this inequality.

U =
∑
τi∈0

f (C i)
Ti
≤ 1 (4)

If a real-time task set passes this schedulability test, we can
obtain a feasible schedule for the given set of tasks by the
earliest deadline first (EDF) algorithm [16], [17]. Note that
EDF schedules the task with the nearest deadline first.

Let us look at TABLE 1 to see an example situation of the
utilization test. There are two tasks, τ1 and τ2, whose worst
case execution times C1 and C2 are 4 and 8, respectively, and
their periods are equally 25. The schedulability of the task set
can be tested by calculating the utilization of the tasks, i.e.,
U = 4/25 + 8/25 = 0.48. As U is less than 1, the task set is
schedulable. Figure 2(a) shows the scheduling result for the
example in TABLE 1. As shown in the figure, all the tasks
can be executed within their deadlines, but the scheduling
generates a large portion of idle intervals.

This idle slot can be reduced by lowering the supply volt-
age of CPU, thereby increasing the system utilization. For
example, if a low clock frequency of 0.5 is applied for both
tasks τ1 and τ2, the scaled worst case execution time f (C1)
and f (C2) will be 8 and 16, respectively. As a result, the CPU
utilization increases to U = 8/25 + 16/25 = 0.96, where
U < 1 is still satisfied, so it is schedulable. Figure 2(b) shows
the scheduling result after voltage scaling is adopted. As we
see, the idle slot is greatly reduced compared to Figure 2(a),
which will eventually lead to reduced power consumption.

Now, let us see how the power consumption can be further
reduced by considering the memory system. In real-time sys-
tems, storage I/O does not occur as all tasks reside in memory
and virtual memory swap is not allowed. This is because
storage I/O increases the memory access time excessively
and it makes the prediction of the execution time difficult.
However, we focus on the fact that recently emerged NVM
storage has fast and predictable access time, and thus we
suggest partial swap that places some part of a task in NVM
storage and loads the swapped part to memory before the task

3562 VOLUME 10, 2022



S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

TABLE 1. An example of a task set for schedulability test.

FIGURE 2. Comparison of the scheduled results.

is executed in CPU. This eventually leads to the reduction
of the DRAM capacity, contributing to power-saving of the
system.

As swap-out and swap-in need I/O time, the worst-case
execution time of tasks should be re-evaluated by considering
this latency. If we increase the swap ratio of a task, memory
power can be saved more by reducing the DRAM capacity,
but theworst-case execution time of the taskmay increase due
to the handling of swap I/O. Conversely, if we lower the swap
ratio, the worst-case execution time of a task may increase
less, but the power-saving effect would be reduced.

Meanwhile, there is a trade-off between memory swap
and CPU voltage scaling. For example, if we increase the
swap ratio, the possibility of lowering the CPU voltage is
decreased. Thus, it is necessary to maximize power-savings
by combining these two techniques appropriately. In addition,
as CPU voltage scaling and memory swap can be overlapped,
tight evaluation of the worst case execution time is necessary.

Let us see the situation of our partial swapwith the example
in TABLE 1. Figure 3 shows the result of swap in conjunction
with the CPU voltage scaling of Figure 2(b) with this exam-
ple. The figure showswhen the swap ratio of tasks 1 and 2 are
equally 0.5 and a swap command takes 0.5 time unit in CPU.
Note that the exact locations of the swap command may be
varied in real situations, but we have marked them at the end
of each task for simplicity. Remind that in the schedule of
Figure 2(b), 1 time unit per period remains after adopting
voltage scaling. Thus, swap overhead should not exceed this
remaining time slot. Although the I/O time for swap-out and
swap-in increases as the swap ratio of a task becomes higher,
actual swap I/Os can be overlapped with CPU executions.
Thus, in an ideal case, I/O latency can be hidden and the worst
case execution time will be increased only by the swap I/O
command in CPU. However, as the swap ratio increases, the
swap I/O time of a task may exceed the inactive period of the
task. Due to this reason, the swap ratio of a task is generally

set to less than 1.0. As shown in Figure 3, the swap ratio in our
example is set to 0.5, and the memory size is reduced to 75%
compared to the system without swap. Figure 3 also shows
how the design of the system can be changed by adopting our
swap with this example.

B. EXTENDING THE BASIC MODEL
From now on, we will discuss how the basic model can
be extended for multi-core systems. In our CPU model,
we assume that all cores have the same computing powers
(i.e., symmetric multi-core processor) as in most server and
embedded processor architectures. In this architecture, if a
task executed on one core is interrupted, it can be resumed
later on another core. However, it is not allowed that a task
is executed in multiple cores concurrently as a single task
should be executed in a sequential manner.

Based on this multi-core architecture, the feasibility test in
our basic model can be simply extended by replacing the right
side of Equation (4) by K , where K is the number of cores in
the processor.

U =
∑
τi∈0

f (C i)
Ti
≤ K (4)′

In a single-core processor system, if the schedulability test
is passed, we can use the EDF algorithm to determine a sched-
ule that does not miss the deadlines of all tasks. However,
this does not work in multi-core processors as a single task
is not allowed to be executed in multiple cores concurrently.
To copewith this situation, Pfair (Proportionate-fair) schedul-
ing has been introduced as a way of scheduling periodic
tasks on multi-core/multi-processor systems [24], [30]. The
basic philosophy of Pfair is similar to EDF, but it performs
scheduling based on time quantum to make progress of each
task at steady rates. We determine the schedule of a task set
through Pfair scheduling when it passes the utilization test of
Equation (4)′.

C. ENERGY POWER MODEL
The CPU energy ECPU of a CMOS processor is dominated
by charging and discharging gates in circuits, and can be
formulated as a function of supply voltage and operating
frequency [37], [38], that is

ECPU =
∑
τi∈0

cV 2
i fiti (5)

where c is the effective switch capacitance, Vi is the supply
voltage for task τi, fi is the CPU clock frequency for executing
task τi, and ti is the time to execute task τi under this CPU
mode.

In our model, supply voltage Vi is adjusted according as
the clock frequency fi is varied. It is known that the clock
frequency and the supply voltage have some linear-like rela-
tions, although they do not have the exact linear relation. The
function to model this relation depends on processors, and we
use the ARM Cortex-R52 processor model [39].

VOLUME 10, 2022 3563



S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

FIGURE 3. The effect of adopting partial swap.

The memory energy EMEM is the sum of dynamic energy
EM_dyn and static energy EM_stat [40], that is

EMEM = EM_dyn + EM_stat (6)

The dynamic energy EM_dyn is energy consumed while a read
or a write operation is performed [41], which can be modeled
as

EM_dyn =
∑
τi∈0

(read i∗EM_read + writei ∗ EM_write) (7)

where readi and writei are the number of memory read and
write operations on task τi, respectively, and EM_read and
EM_write are the read and write energy for the default access
size of DRAM, respectively. The static energy EM_stat is the
energy consumed consistently irrespective of any operations
in DRAM memory, which can be calculated as

EM_stat = PM
∑
τi∈0

Mi

(
f (Ci)
Ti
+ (1− ri)

(
1−

f (Ci)
Ti

))
T

(8)

where PM is the static power of DRAM per capacity, ri is the
swap ratio of task τi, and T is the total running time of the
system.

The storage energy ESTR of our swap can be calculated as

ESTR =
∑
τi∈0

Mir i(ESTR_read + ESTR_write)ni (9)

where ri is the swap ratio of task τi, ni is the total number of
swaps performed on task τi, and ESTR_read and ESTR_write are
the read and write energy for the unit access size of NVM,
respectively. Note that we do not consider the static power of

storage as it is non-volatile, and thus does not spend refresh
power.

IV. OPTIMIZATIONS WITH GENETIC ALGORITHMS
Our problem is to select the CPU voltage level and the mem-
ory swap ratio of all real-time tasks in the task set, which aims
at minimizing the energy consumption of the system with
deadline constraints. This is a kind of combinatorial optimiza-
tion problem known as NP-hard. For example, if there are 4
CPU voltage levels and 5 memory swap ratios, the number of
possible states for each task is 20. When the number of tasks
is N , there are 20N cases, and searching all of these is not
feasible even with high-end server systems.

To cope with this situation, we explore our search space
by genetic algorithms [23]. Specifically, we maintain a small
number of candidate solutions that represent the voltage level
and the swap ratio of the tasks, and evolves the solution
set until it converges. Typical genetic algorithms evolve the
solution set by completely replacing an old set with a new one
at each iteration. However, this usually loses some superior
solutions maintained, making convergence difficult. Specifi-
cally, if there are multiple domains to optimize together like
our problem (i.e., CPU and memory), it takes much time to
converge, and in some cases, the solution set does not con-
verge even after a large number of iterations [9]. To resolve
this issue, we replace only a few solutions per iteration. This
type of genetic algorithms is called steady-state GA, which
has the ability of fast convergence [25].

A. ENCODING
In genetic algorithms, a solution is typically represented by a
linear string. As our problem needs to determine the memory

3564 VOLUME 10, 2022



S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

FIGURE 4. Encoding of the problem.

swap ratio and the CPU voltage level of all tasks in the task
set, we use two strings and the length of the string is equal to
the total number of tasks as shown in Figure 4.

In a theoretical aspect, we can set various levels of CPU
voltage and memory swap ratio, but practically we need to
set a certain limited number of levels. The default setting
of our configuration consists of 4 CPU voltage levels and
4 swap ratios. Specifically, in our encoding, each entry in the
CPU string is represented by a 2 bit value {0, 1, 2, 3}, which
represents the clock frequency of CPU {1, 0.5 0.25, 0.125},
respectively. Similarly, entries in the memory string can have
a 2 bit value {0, 1, 2, 3} representing the swap ratio of {0,
0.125, 0.25, 0.5}, respectively. Note that task τ1 in Figure 4 is
executed under the CPU clock frequency of 1 and the swap
ratio of τ1 is 0. Based on this encoding method, we randomly
generate 100 solutions as an initial population.

In genetic algorithms, a cost function is needed to evaluate
the quality of a solution. We define our cost function as the
energy consumption of the system when the scheduling is
performedwith the given resource configurations the solution
represents. If the CPU utilization exceeds 1 and thus the
scheduling is not feasible with the given solution, a penalty
value is added to the cost function. That is,

Cost(i) = Energy(i)+ αPenalty(i) (10)

whereEnergy(i) is the energy consumption of the tasks sched-
uled by solution i, α is the weight factor, and Penalty(i) is the
penalty function of the solution i in case it does not pass the
schedulability test, that is

Penalty (i) =
∑
τi∈0

f (C i)
Ti
− K (11)

B. SELECTION OF PARENT SOLUTIONS
A selection operation chooses two parent solutions in the
current population for generating one or two offspring solu-
tions to evolve the population. This is usually based on a
probabilistic rule that assigns higher probabilities to better
solutions in order to improve the solution set. In our problem,
the goodness of a solution is evaluated based on the cost of the
solution. However, if the selection probability is excessively
biased, the result of selection may be limited to a small
number of extremely superior solutions. This has a risk of pre-
mature convergence to a local optimum as the characteristics
of a few solutionsmay rapidly dominate the entire population.
To cope with this situation, instead of assigning a selection
probability based on the cost of a solution as it is, we rank
the solutions by their cost order and then assign selection
probabilities based on their ranks. Specifically, we normalize
the selection probability such that the best solution in the

population is four times more probable to be selected than
the worst one [23].

C. CROSSOVER AND MUTATION
The crossover operation merges a certain part of the string
from two parents to generate offspring. We use 1-point
crossover that randomly selects a cut point within a string,
and the offspring is generated by copying the left segment
of the cut point from one parent and the right segment from
the other. As we have two strings that represent CPU and
memory configurations, we select the cut point of each string
to perform 1-point crossover independently.

After crossover, a mutation operation is performed for
the offspring generated, which perturbs a certain location of
the strings in order to widely search the problem space not
to stay in a local optimum. Our mutation is performed by
selecting a certain random location of the strings and changes
it to another random value. The mutation probability of our
genetic algorithm is set to 0.01.

D. REPLACEMENT
After an offspring is generated by crossover and mutation,
a new population is produced by substituting a solution in the
current generation by the offspring. In this article, we discard
the worst solution, i.e. a solution that incurs the highest
cost, in the current population and insert the offspring gener-
ated. Note that this is the most commonly used replacement
method in steady-state genetic algorithms [25].

E. STOPPING CRITERIA AND CONVERGENCE
It is not an easy matter to determine the number of itera-
tions repeated for the evolution of genetic algorithms as it is
sensitive to the experimental configurations and the problem
domain. Instead of setting the constant number of iterations,
we repeat the evolution until the population converges [23].
In order to ensure the convergence of our genetic algorithm,
we monitor the cost of each solution and the utilization of
the system when the task set is scheduled by the solution.
Our monitoring results showed that the population converges
within 10,000 generations in all cases, and the average run-
ning time of our genetic algorithm is 8.7 seconds for its
convergence. We also confirmed that our genetic algorithm
does not converge to a local optimum since the utilization of
the final solution approaches the full capacity of the resources
unless the task set is too small to fully utilize the resources.
This proves that our policy have the ability of finding suf-
ficiently good solutions that satisfy real-time constraints as
well as energy efficiency.

The complexity of genetic algorithms is not easy to prove,
but in empirical aspects, we found that our genetic algorithm
converges with a constant number of iterations regardless of
the number of tasks (up to 1,000 tasks we tested), and hence
the complexity of our genetic algorithm can be considered
as O(1). Also, as we consider hard real-time systems where
resource configurations and scheduling possibility should be
determined at the design phase, the running time of our

VOLUME 10, 2022 3565



S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

genetic algorithm does not affect the actual execution of tasks
in target systems.

V. EXPERIMENTAL RESULTS
In this section, we conduct simulation experiments to assess
the effectiveness of the proposed scheme called PSVS-GA
(Partial Swap with Voltage Scaling using Genetic Algo-
rithms). We developed our in-house simulator to evaluate the
effectiveness of PSVS-GA [42]. We compare PSVS-GAwith
three schemes, VS-GA (Voltage Scaling using Genetic Algo-
rithms), PS-GA (Partial Swap using Genetic Algorithms),
and Baseline. Baseline does not use either CPU voltage scal-
ing or memory swap. PS-GA uses partial swap for memory
power-saving similar to PSVS-GA, but does not use CPU
voltage scaling, and VS-GA optimizes the CPU voltage level
for each task, but does not consider memory swap. Similar
to the proposed PSVS-GA, PS-GA and VS-GA make use
of genetic algorithms for their optimizations. This implies
that the improvement of our scheme against PS-GA and
VS-GA is obtained through the tight modeling of worst-case
execution time by hiding the overlapped latency rather than
just thorough optimizations by genetic algorithms.

The experimental configuration of our simulation consists
of 1.6GHz 4-core ARM cortex-R52 real-time processor [39].
For simulating NVM storage, we use PCM (Phase-Change
Memory), which is considered as a type of fast storage media
in many previous studies [27], [29]. The read and write
latency of PCM is set to 100 (ns) and 350 (ns), respectively,
and the read and write energy of PCM is set to 0.2 (nJ/bit)
and 1.0 (nJ/bit), respectively [28]. For simulating DRAM
memory, the read and write latencies are equally set to 50 (ns)
and the read/write energy is set to 0.1 (nJ/bit) following
previous studies [26], [28]. The static power of DRAM is set
to 1 (W/GB) and the default size of DRAM is set to the entire
footprint of workloads in order not to incur any page faults.

Our experiments were conducted under a wide range of
workload conditions. We vary the workload density from
0.1 to 0.8, where the workload density of 1.0 indicates the
saturation of full CPU resources in the system. The number
of real-time tasks is set to 100 and the worst-case execution
time of the tasks is randomly generated between 1ms and
500 ms. The period of a task is determined based on the target
workload density of 0.1 to 0.8. To assess the effectiveness
of the proposed scheme in more realistic target systems, we
performed additional experiments under two realistic work-
load conditions, Robotic Highway Safety Marker (RSM)
workload [43] and IoT workload [44]. RSM is a task set for
the actions of a mobile robot that carries safety markers in a
highway for road construction safety. IoT is a task set for the
actions of a real-time controller in an industry machine hand.
Tables 2 and 3 list the task configurations of the RSM and IoT
workloads, respectively.

Figure 5 depicts the energy consumption of PSVS-GA
in comparison with PS-GA, VS-GA, and Baseline as the
workload density is varied. The values on the y-axis represent
the energy consumption of each scheme normalized to that of

TABLE 2. Task configurations of the IoT workload.

TABLE 3. Task configurations of the RSM workload.

Baseline. That is, the energy consumption of Baseline is set
to 1.0 and the relative value of each scheme scaled to Baseline
is plotted. As shown in the figure, PSVS-GA exhibits the
best results in all cases. Specifically, the energy-saving effect
of PSVS-GA is large when the density of workloads is not
high. The reason is that there are more chances of resource
optimizations with respect to energy-saving when the load of
tasks is low. We can make use of energy-saving techniques
such as voltage scaling and swap more aggressively without
deadline misses in such situations. On the other hand, as the
density of the workload increases, idle time slots are reduced
and hence power-saving techniques become less effective.
For example, lowering the CPU supply voltage is difficult in
these cases as it may incur deadline misses of real-time tasks.

Now, let us compare the results in detail. The reduced
energy consumption of PSVS-GA is 31.1% on average and up
to 45.6% compared to Baseline. When compared to PS-GA
and VS-GA, the energy-saving effect of PSVS-GA is 23.1%
and 14.1%, on average, respectively. When comparing the
relative effect of CPU voltage scaling and memory swap,
VS-GA performs better than PS-GA in most cases, implying
that voltage scaling is more effective than swap in terms
of energy-saving. The only case where PS-GA outperforms
VS-GA occurs when the workload density is 0.1. In that case,
the scheduling incurs toomuch empty time slot, which cannot
be filled even if the CPU voltage is lowered as much as pos-
sible. This will be further discussed in Figure 8, which shows
that the CPU utilization is still low despite applying CPU
voltage scaling maximally. However, in any case, PSVS-GA
outperforms PS-GA and VS-GA, which implies that combin-
ing the voltage scaling and swap techniquesmakes even better
results.

Figures 6 and 7, respectively, show the energy consumption
in CPU and memory for the four schemes as the workload
density is varied. As shown in Figure 6, schemes using CPU
voltage scaling, i.e., PSVS-GA and VS-GA, reduce the CPU
energy consumption significantly compared to those that do
not use it. The power-saving effect of voltage scaling is small

3566 VOLUME 10, 2022



S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

FIGURE 5. Total energy consumptions of baseline, VS-GA, PS-GA, and PSVS-GA as a function of the workload density.

FIGURE 6. CPU energy consumptions of baseline, VS-GA, PS-GA, and PSVS-GA as a function of the workload density.

when the workload becomes heavy because the possibility of
utilizing idle time slots of CPU by lowering the supply volt-
age is reduced. When we compare PSVS-GA and VS-GA,
VS-GA performs slightly better than PSVS-GA with respect
to CPU energy consumption. This is because PSVS-GA
needs additional time to access swap storage, which also
increases the execution time in CPU. However, as shown in
the figure, the effect of swap on CPU energy consumption is
very small.

Now, let us see the energy consumption in memory.
As shown in Figure 7, PSVS-GA and PS-GA that support
swap consume less memory energy than VS-GA and Base-
line, which use memory shadowing. This is because sup-
porting swap has the effect of reducing the DRAM capacity
of the system, which can save the refresh power of DRAM
significantly. Meanwhile, when using swap, additional CPU
time is required for the swap-in and swap-out process, which
may increase the CPU energy consumption. This is shown in
Figure 6 that PS-GA spends more CPU energy than Baseline.
However, such overhead is compensated by the energy-saving
effect in memory as shown in Figure 7. Moreover, although
PSVS-GA also adopts swap, the CPU energy is not increased
compared to VS-GA as shown in Figure 6. This implies that

using CPU voltage scaling along with memory swap and
co-optimizing them can hide the swap overhead in CPU by
overlapping the execution in CPU and I/O. That is, CPU
issues I/O commands and executes other tasks while the
actual I/O is performed. Another notable phenomenon is that
the effectiveness of swap is less influenced by the workload
density. That is, swap is still effective in power-saving even
when the workload becomes heavy as shown in Figure 7,
which is different from the effectiveness of CPU voltage
scaling in Figure 6.

Figure 8 shows the CPU utilization of the four schemes as
a function of the workload density. As we see in the figure,
PSVS-GA exhibits high utilization of almost 1.0 except for
the case of the workload density 0.1. Note that PSVS-GA
makes use of the power-saving techniques as much as pos-
sible to maximize the resource utilization. However, as dis-
cussed previously, when the workload density is 0.1, there
are too much empty time slot, which cannot be filled even
with the full usage of CPU voltage scaling and memory swap.
The utilization of VS-GA is also near 1.0 as we optimize
it by genetic algorithms. However, the energy-saving effect
of VS-GA is lower than PSVS-GA as it does not use swap.
PS-GA also raises the CPU utilization compared to Baseline,

VOLUME 10, 2022 3567



S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

FIGURE 7. Memory energy consumptions of baseline, VS-GA, PS-GA, and PSVS-GA as a function of the workload density.

FIGURE 8. CPU utilizations of baseline, VS-GA, PS-GA, and PSVS-GA as a function of the workload density.

FIGURE 9. DRAM size of baseline, VS-GA, PS-GA, and PSVS-GA as a function of the workload density.

but the effect is limited as it does not make use of CPU power-
saving techniques. The utilization of Baseline is consistently
lower than PSVS-GA and VS-GA, and the gap becomes
wider as the workload density is decreased.

Figure 9 compares the DRAM size used in the four
schemes. As we see in the figure, PSVS-GA reduces the
DRAM size significantly compared to VS-GA and Baseline.

Specifically, the DRAM size used in PSVS-GA is smaller
than these two schemes by 34.3% on average. The effect
of reducing the DRAM size is large when the workload
density becomes low. This is because the inactive period
of a task becomes longer when the workload is not heavy,
implying that the swap ratio can be further increased with-
out deadline misses in this case. When we compare PS-GA

3568 VOLUME 10, 2022



S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

and PSVS-GA, PS-GA reduces more DRAM capacity than
PSVS-GA in synthetic workloads, especially when the work-
load is heavy. As our optimization goal has focused on the
overall energy-saving rather than the DRAM size reduction,
this implies that CPU voltage scaling is more effective than
reducing the DRAM size in an energy-saving effect under
heavy workloads. In real workloads, however, PSVS-GA
performs better than PS-GA as shown in Figure 9(b). This
implies that the density of real workloads we simulated is not
high compared to the synthetic workloads.

VI. CONCLUSION
As the size of data grows rapidly in modern embedded sys-
tems, the DRAM memory of the system keeps increasing,
which accounts for a large portion of the power consumption.
In this article, we presented a new real-time task schedul-
ing scheme that supports partial swap in order to reduce
the DRAM size of the system. To enable swap functions,
we adopted high-speed NVM storage with predictable access
latency, which allows for the feasible estimation of real-time
task’s worst case execution time. Unlike typical real-time
systems that maintain entire footprint of tasks in memory,
we place a certain part of real-time tasks in NVM storage
and perform swapping. The ratio of swap for each task is
determined based on the schedulability and the power-saving
effect.

We also combined our swap scheme with CPU voltage
scaling by formulating the effect of the two techniques as a
unifiedmeasure, and co-optimized the supply voltage of CPU
and the swap ratio of memory for each task with respect to
energy consumption. Our experimental results under a wide
range of workload conditions showed that the energy-saving
effect of the proposed scheme is 31.1% on average without
any deadline misses.

ACKNOWLEDGMENT
(Suji Yoon and Heejin Park contributed equally to this work.)

REFERENCES
[1] P. Pillai and K. G. Shin, ‘‘Real-time dynamic voltage scaling for low-power

embedded operating systems,’’ in Proc. SOSP, Oct. 2001, pp. 89–102.
[2] H. E. Ghor and E. M. Aggoune, ‘‘Energy saving EDF scheduling for

wireless sensors on variable voltage processors,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 5, no. 2, pp. 158–167, 2014.

[3] K. Choi, W. Lee, R. Soma, and M. Pedram, ‘‘Dynamic voltage and fre-
quency scaling under a precise energymodel considering variable and fixed
components of the system power dissipation,’’ in Proc. IEEE/ACM Int.
Conf. Comput. Aided Design, Nov. 2005, pp. 29–34.

[4] S. Nam, K. Cho, and H. Bahn, ‘‘Tight evaluation of real-time task schedu-
lability for processor’s DVS and nonvolatile memory allocation,’’ Micro-
machines, vol. 10, no. 6, Jun. 2019, Art. no. 371.

[5] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, ‘‘Mobile-edge comput-
ing: Partial computation offloading using dynamic voltage scaling,’’ IEEE
Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Aug. 2016.

[6] A. Carroll and G. Heiser, ‘‘An analysis of power consumption in a smart-
phone,’’ in Proc. USENIX Annu. Tech. Conf., 2010, p. 21.

[7] J. Kim and H. Bahn, ‘‘Analysis of smartphone I/O characteristics—Toward
efficient swap in a smartphone,’’ IEEE Access, vol. 7, pp. 129930–129941,
2019.

[8] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn, ‘‘Flikker: Saving
DRAM refresh-power through critical data partitioning,’’ in Proc. ACM
ASPLOS, 2011, pp. 213–224.

[9] S. Yoo, Y. Jo, and H. Bahn, ‘‘Integrated scheduling of real-time and
interactive tasks for configurable industrial systems,’’ IEEE Trans. Ind.
Informat., vol. 18, no. 1, pp. 631–641, Jan. 2022.

[10] E. Lee, H. Bahn, S. Yoo, and S. H. Noh, ‘‘Empirical study of NVM
storage: An operating system’s perspective and implications,’’ in Proc.
IEEE MASCOTS Conf., Sep. 2014, pp. 405–410.

[11] E. Lee and H. Bahn, ‘‘Caching strategies for high-performance storage
media,’’ ACM Trans. Storage, vol. 10, no. 3, pp. 1–22, Jul. 2014.

[12] Intel OptaneTM . Accessed: Dec. 20, 2021. [Online]. Available: https://
www.intel.com/content/www/us/en/products/details/memory-storage/
consumer-ssds/optane-ssd-9-series.html

[13] D. Kim, E. Lee, S. Ahn, and H. Bahn, ‘‘Improving the storage performance
of smartphones through journaling in non-volatile memory,’’ IEEE Trans.
Consum. Electron., vol. 59, no. 3, pp. 556–561, Aug. 2013.

[14] Y. Park and H. Bahn, ‘‘Modeling and analysis of the page sizing prob-
lem for NVM storage in virtualized systems,’’ IEEE Access, vol. 9,
pp. 52839–52850, 2021.

[15] H. Bahn and K. Cho, ‘‘Evolution-based real-time job scheduling for co-
optimizing processor and memory power savings,’’ IEEE Access, vol. 8,
pp. 152805–152819, 2020.

[16] Y.-H. Lee, Y. Doh, and C. M. Krishna, ‘‘EDF scheduling using two-mode
voltage-clock-scaling for hard real-time systems,’’ in Proc. CASES, 2001,
pp. 221–228.

[17] H. Chetto andM. Chetto, ‘‘Some results of the earliest deadline scheduling
algorithm,’’ IEEE Trans. Softw. Eng., vol. 15, no. 10, pp. 1261–1269,
Oct. 1989.

[18] S. Hyun, H. Bahn, and K. Koh, ‘‘LeCramFS: An efficient compressed file
system for flash-based portable consumer devices,’’ IEEE Trans. Consum.
Electron., vol. 53, no. 2, pp. 481–488, May 2007.

[19] J. Park, H. Lee, S. Hyun, K. Koh, and H. Bahn, ‘‘A cost-aware page
replacement algorithm for NAND flash based mobile embedded systems,’’
in Proc. ACM EMSOFT Conf., 2009, pp. 315–324.

[20] O. Kwon, K. Koh, J. Lee, and H. Bahn, ‘‘FeGC: An efficient garbage
collection scheme for flashmemory based storage systems,’’ J. Syst. Softw.,
vol. 84, no. 9, pp. 1507–1523, Sep. 2011.

[21] J.-C. Kim, D. Lee, C.-G. Lee, and K. Kim, ‘‘RT-PLRU: A new paging
scheme for real-time execution of program codes on NAND flash mem-
ory for portable media players,’’ IEEE Trans. Comput., vol. 60, no. 8,
pp. 1126–1141, Aug. 2011.

[22] D. Lee, J.-C. Kim, C.-G. Lee, and K. Kim, ‘‘MRT-PLRU: A general
framework for real-time multitask executions on NAND flash memory,’’
IEEE Trans. Comput., vol. 62, no. 4, pp. 758–771, Apr. 2013.

[23] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Boston, MA, USA: Addison-Wesley, 1989.

[24] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, ‘‘Proportion-
ate progress: A notion of fairness in resource allocation,’’ Algorithmica,
vol. 15, no. 6, pp. 600–625, 1996.

[25] D. Whitley and J. Kauth, ‘‘GENITOR: A different genetic algorithm,’’ in
Proc. Rocky Mountain Conf. Artif. Intell., 1988, pp. 118–130.

[26] E. Lee, J. E. Jang, T. Kim, and H. Bahn, ‘‘On-demand snapshot: An
efficient versioning file system for phase-change memory,’’ IEEE Trans.
Knowl. Data Eng., vol. 25, no. 12, pp. 2841–2853, Dec. 2013.

[27] S. Eilert, M. Leinwander, and G. Crisenza, ‘‘Phase change memory: A new
memory technology to enable newmemory usage models,’’ Micron, Boise,
ID, USA, White Paper 06/23/11 EN.L, 2011, pp. 1–4.

[28] S. Lee, H. Bahn, and S. H. Noh, ‘‘CLOCK-DWF: A write-history-
aware page replacement algorithm for hybrid PCM and DRAM mem-
ory architectures,’’ IEEE Trans. Comput., vol. 63, no. 9, pp. 2187–2200,
Sep. 2014.

[29] E. Lee, S. H. Yoo, and H. Bahn, ‘‘Design and implementation of a journal-
ing file system for phase-change memory,’’ IEEE Trans. Comput., vol. 64,
no. 5, pp. 1349–1360, May 2015.

[30] J. H. Anderson andA. Srinivasan, ‘‘Mixed Pfair/ERfair scheduling of asyn-
chronous periodic tasks,’’ J. Comput. Syst. Sci., vol. 68, no. 1, pp. 157–204,
Feb. 2004.

[31] J. H. Anderson and A. Srinivasan, ‘‘Pfair scheduling: Beyond periodic task
systems,’’ in Proc. IEEE RTCSA, Dec. 2000, pp. 297–306.

[32] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, ‘‘Uncertainty-aware online
scheduling for real-time workflows in cloud service environment,’’ IEEE
Trans. Services Comput., vol. 14, no. 4, pp. 1167–1178, Jul. 2021.

VOLUME 10, 2022 3569



S. Yoon et al.: Supporting Swap in Real-Time Task Scheduling for Unified Power-Saving in CPU and Memory

[33] S. Dehnavi, H. R. Faragardi, M. Kargahi, and T. Fahringer, ‘‘A reliability-
aware resource provisioning scheme for real-time industrial applications
in a fog-integrated smart factory,’’ Microprocessors Microsyst., vol. 70,
pp. 1–14, Oct. 2019.

[34] L. Zhou, L. Zhang, L. Ren, and J. Wang, ‘‘Real-time scheduling of cloud
manufacturing services based on dynamic data-driven simulation,’’ IEEE
Trans. Ind. Informat., vol. 15, no. 9, pp. 5042–5051, Sep. 2019.

[35] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,
9th ed. Hoboken, NJ, USA: Wiley, 2014.

[36] Transmeta Crusoe. Operating Modes for New Generation Processors.
Accessed: Dec. 20, 2021. [Online]. Available: https://en.wikipedia.
org/wiki/Transmeta_Crusoe

[37] D. Zhu, D.Mosse, and R.Melhem, ‘‘Power-aware scheduling for AND/OR
graphs in real-time systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 15,
no. 9, pp. 849–864, Sep. 2004.

[38] J. Zhou, T. Wei, M. Chen, J. Yan, X. S. Hu, and Y. Ma, ‘‘Thermal-
aware task scheduling for energy minimization in heterogeneous real-time
MPSoC systems,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 35, no. 8, pp. 1269–1282, Aug. 2016.

[39] ARM Cortex-R52 Processor Model. Accessed: Dec. 20, 2021. [Online].
Available: https://developer.arm.com/ip-products/processors/cortex-r/
cortex-r52

[40] R. Salkhordeh and H. Asadi, ‘‘An operating system level data migration
scheme in hybrid DRAM-NVM memory architecture,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), 2016, pp. 936–941.

[41] J. Zhan, Y. Zhang, W. Jiang, J. Yang, L. Li, and Y. Li, ‘‘Energy-aware page
replacement and consistency guarantee for hybrid NVM–DRAM memory
systems,’’ J. Syst. Archit., vol. 89, pp. 60–72, Sep. 2018.

[42] PSVS-GA Simulator. [Online]. Available: https://github.com/oslab-
ewha/PSVS-GA

[43] A. Qadi, S. Goddard, and S. Farritor, ‘‘A dynamic voltage scaling algorithm
for sporadic tasks,’’ in Proc. 24th IEEE Real-Time Syst. Symp. (RTSS),
Dec. 2003, pp. 52–62.

[44] Z.Wang, Y. Liu, Y. Sun, Y. Li, D. Zhang, andH.Yang, ‘‘An energy-efficient
heterogeneous dual-core processor for Internet of Things,’’ in Proc. IEEE
Int. Symp. Circuits Syst. (ISCAS), May 2015, pp. 2301–2304.

[45] A. Mahesri and V. Vardhan, ‘‘Power consumption breakdown on a modern
laptop,’’ in Proc. Int. Workshop Power-Aware Comput. Syst., in Lecture
Notes in Computer Science, vol. 347, 2005, pp. 165–180.

SUJI YOON is currently a senior student with the
Department of Computer Science and Engineer-
ing, Ewha Womans University, Seoul, Republic
of Korea. Her research interests include operating
systems, storage systems, embedded systems, sys-
tems optimizations, process scheduling, and real-
time systems.

HEEJIN PARK is currently a senior student
with the Department of Computer Science and
Engineering, Ewha Womans University, Seoul,
Republic of Korea. Her research interests include
operating systems, storage systems, embedded
systems, systems optimizations, real-time sys-
tems, and process scheduling.

KYUNGWOON CHO received the B.S., M.S., and
Ph.D. degrees in computer science and engineer-
ing from Seoul National University, in 1995, 1997,
and 2012, respectively. He is currently a Senior
Researcher at the Embedded Software Research
Center, Ewha Womans University, Seoul, Repub-
lic of Korea. Before joining Ewha, he was a Chief
Officer at the Clunix Research and Development
Center, Seoul. His research interests include mul-
timedia systems, cloud computing, real-time sys-

tems, embedded systems, and operating systems.

HYOKYUNG BAHN (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer sci-
ence and engineering from Seoul National Univer-
sity, in 1997, 1999, and 2002, respectively. He is
currently a Full Professor of computer science and
engineering at Ewha Womans University, Seoul,
Republic of Korea. He has published more than
100 papers in leading conferences and journals,
including USENIX FAST, IEEE TRANSACTIONS ON

COMPUTERS, IEEETRANSACTIONSONKNOWLEDGEAND

DATA ENGINEERING, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, and ACM
Transactions on Storage. His research interests include operating systems,
caching algorithms, storage systems, embedded systems, systems optimiza-
tions, and real-time systems. He also received the Best Paper Awards at the
USENIX Conference on File and Storage Technologies, in 2013.

3570 VOLUME 10, 2022


