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ABSTRACT This paper studies the event-triggered optimal tracking control (ETOTC) problem of
continuous-time (CT) unknown nonlinear systems. In order to solve the ETOTC problem, an augmented
system composed of the error system dynamics and the reference dynamics is used to introduce a new
discounted performance index function (DPIF). A novel event-triggered (ET) adaptive dynamic program-
ming (ADP) method is developed to solve the ETHamilton-Jacobi-Bellman equation (HJBE). The presented
method is implemented via an identifier-critic architecture, which consists of two neural networks (NNs): an
identifier NN is applied to estimate the unknown system dynamics, and a critic NN is constructed to obtain
the approximate solution of the ET HJBE. The augmented closed-loop system and the critic estimation
error are proved to be ultimately uniformly bounded (UUB) by the Lyapunov direct method. Finally, two
simulations illustrate the effectiveness of the developed method.

INDEX TERMS Adaptive dynamic programming, event-triggered mechanism, optimal tracking control,
nonlinear system.

I. INTRODUCTION
Adaptive dynamic programming (ADP), a branch of the rein-
forcement learning, is widely concerned in solving optimal
control problems in recent years [1]. On the basis of the neural
network (NN) technology, the reinforcement learning and the
dynamic programming (DP), ADP is an effective solution
method in the Hamilton-Jacobi-Bellman equation (HJBE) of
complicated nonlinear systems, and it can also overwhelm the
‘‘dimensionality curse’’ of the traditional DP [2]. Its essence
is to use the online or offline data to estimate the system
performance index function (PIF) and obtain the approximate
optimal control law according to the Bellman’s optimality
principle [3].

In the past decade, researches have proposed differ-
ent ADP-based control methods to solve the problems
of optimal control, trajectory tracking and robust stabi-
lization in discrete-time (DT) or continuous-time (CT)
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systems [4]–[12]. As a human learning and decision-
making process, ADP possesses several synonyms, such
as approximate dynamic programming [13], adaptive critic
designs [14], neuro-dynamic programming [15], relax-
ing dynamic programming [16], and reinforcement learn-
ing [17]. Based on different structures, ADP techniques
can be classified into several categories, such as heuristic
dynamic programming (HDP), dual HDP (DHP), globalized
DHP (GDHP) and their action dependent form [18]–[22].
Based on different iteration methods, there are two major
categories of ADP techniques, which are value iteration (VI)
and policy iteration (PI) algorithms, respectively [23]–[29].

Most of the existing control methods are based on sam-
pling with the period or triggering with the time. However,
from the perspective of the resource allocation, the traditional
methods have some disadvantages. For example, when the
system works in a stable state, periodic sampling will cause
the unnecessary waste of resources. For networked control
systems, the periodic sampling can increase the computa-
tional cost as well as the communication burden [30]–[33].
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In order to reduce the burden of computing and commu-
nication, researchers have proposed event-triggered control
(ETC). The system signal sampling and the controller opera-
tion are driven by a specific event instead of the time instant.
There are many types of the event which can be a variable of
the system exceeding the limit value or a packet arriving at a
node in the network control. Overall, the sampling period of
the ETC system is time-varying, and the signals are sampled
and transmitted according to the needs of the system [34].
Therefore, ETC is an effective control method for reducing
computational costs and has a wide range of applications
in areas such as the network system control and the com-
plex system tracking [35]–[37]. ETC mainly discusses the
introduction of the event-triggered (ET) mechanism, the sta-
bility analysis and the design method of ET condition, etc.
Eqtami et al. [38] proposed an ETC method for DT systems,
which uses the input-to-state stable technique to extend the
ET conditions of CT systems to DT systems with guaranteed
system stability. Wang and Lemmon [39] developed an ET
mechanism for CT nonlinear systems and gave the minimum
time interval between two adjacent triggered events. Li and
Xu [40] designed a trigger condition that can guarantee the
asymptotic stability of the CT nonlinear system according to
Lyapunov’s stability theorem.

Nowadays, more attention is paid to ETC methods based
on ADP with the development of ADP theory. Zhong and
He [41] presented an ET ADP control algorithm with a state
observer based on the input and output data. For nonlinear DT
systems, Dong et al. [42] designed a new ET condition basd
ADP and analyzed the stability of the system. Using a single
NN approximation structure, Wang et al. [43] dealt with the
nonlinear optimal regulation problem in the framework of the
adaptive critic NN based on the ET mechanism. The optimal
control law can be derived by training the critic NN. The
decentralized ETC strategy was designed in [44] for a class
of nonlinear systems with uncertain cross-linked terms. It is
shown in this paper that the decentralized ETC policy for the
whole system can be represented by optimal ETC policies
of auxiliary subsystems. Luo et al. [45] studied the problem
of event-triggered optimal control (ETOC) for CT systems
and provide formal performance guarantees by proving a
predetermined upper bound. In [46], a critic NN was used
to obtain an approximate solution to the ET HJB equation,
and the weights of the critic NN were updated using gradient
descent and empirical replay techniques.

In this paper, a novel ETOTC ADP method is developed
for unknown CT affine nonlinear systems. First, an aug-
mented system composed of the error system dynamics and
the reference dynamics is used to introduce a new discounted
performance index function (DPIF) for ETOTC. Second,
a NN-based identifier is designed to obtain the unknown
system dynamic. Third, for the identified augmented sys-
tem, a particular ET adaptive implement method is devel-
oped without initial stable control law, and the closed loop
identified augmented system and the critic weight estimation
error are proved to be ultimately uniformly bounded (UUB).

Different from the existing methods, the contributions are
summarized as follows.

1) We extend the ADP-based ETC method to address the
optimal tracking control problem. It makes the actual tra-
jectory of the unknown system track its desired one. Com-
pared with the related ADP-based ET tracking methods, the
developed ETOTC method does not require a steady-state
control law or a feedforward control law, which is easier to
implement in practical engineering.

2) We establish a new ET condition of the error system,
which ensures the signals in the augmented closed loop
system and the critic weight estimation error to be UUB.
Compared with the offline system identification, the devel-
oped ETOTC uses real-time data online to achieve system
identification.

3) Under the ET mechanism, we propose a novel NN
weights update law for optimal tracking of unknown systems
without requiring an initial stable control law, which is an
extension time-triggered optimal control methods.

In this paper, Section II formulates the problem of ETOTC
of CT nonlinear systems without the steady-state control law.
Section III develops the NN-based identifier and critic, and
the ET learning rule of the critic weights is proposed with the
stability analyses. Section IV shows the detailed simulations
and analyses. Section V gives some conclusions.

Notations: We use R to represent the set of real num-
bers. R+ is the set of nonnegative real numbers. Rm is the
Euclidean space of dimension m. Rn×m is the set of n × m
real matrices. N is the nonnegative integer set. 1n is the
column vector of n ones. ‖ · ‖ is the vector norm on the
Euclidean space. λmax(·) and λmin(·) are the maximum and
minimum eigenvalues of a matrix, separately. �a = {x ∈
Rn
: ‖x‖ ≤ a, a ∈ R+} is a compact subset of Rn. A(�a) is

the admissible control set on �a. C1(�a : R+) is the set of
once differentiable functions with respect with its argument
on �a. diag(·) is a diagonal matrix operator.

II. PROBLEM FORMULATION
Let us take the following CT time-invariant nonlinear system
into account

ẋ(t) = f (x(t))+ g(x(t))u(t) (1)

where x(t) ∈ Rn and u(t) ∈ Rm are n-dimensional state
and m-dimensional control input. f (x(t)) ∈ Rn and g(x(t)) ∈
Rn×m are local Lipschitz continuous and differentiable on a
compact set �a with f (0) = 0 and g(0) 6= 0.
The desired reference trajectory xd (t) satisfies

ẋd = fd (xd (t)) (2)

where fd (xd (t)) is local Lipschitz continuous and differen-
tiable on the compact set �a with fd (0) = 0. Then, the
tracking error can be defined as

ed = x(t)− xd (t) (3)

and according to (1), the tracking error system is

ėd (t) = f (x(t))+ g(x(t))u(t)− fd (xd (t)). (4)

VOLUME 10, 2022 9507



K. Wang et al.: Adaptive ET Near-Optimal Tracking Control for Unknown CT Nonlinear Systems

Inspired by [50]–[52], we define the augmented system

ẋa(t) = fa(xa(t))+ ga(xa(t))u(t) (5)

where xa(t) = [eT
d (t), x

T
d (t)]

T
∈ R2n is the augmented state,

fa(xa(t)) = [f (ed (t) + xd (t)) − fd (xd (t)), fd (xd (t))]T is the
augmented internal dynamic, ga(xa) = [g(ed (t)+ xd (t)), 0]T

is the augmented input dynamic function.
Then, we define the infinite-horizon DPIF of the aug-

mented system as

V (xa(t))=
∫
∞

t
e−γ (τ−t)

[
xT
a (τ )Qaxa(τ )+ u

T(τ )Ru(τ )
]
dτ

(6)

where

Qa =
[
Q 0n×n

0n×n 0n×n

]
,Q ∈ Rn×n > 0 (7)

R ∈ Rm×m > 0, and γ > 0 is the discount factor.
Remark 1: For the standard solution to the optimal track-

ing control problem, the desired reference satisfies

ẋd (t) = f (xd (t))+ g(xd (t))ud (t). (8)

The premise of founding (8) is that the inverse of the input
dynamic function g(xd (t)) exists, then the steady-state control
law is acquired as

ud (t) = g−1(xd (t))(ẋ(t)− f (xd (t))). (9)

However, g−1(xd (t)) can not be solved exactly due to the rank
deficient input dynamic function g(xd (t)). Thus, the standard
solution to the optimal tracking control problem is invalid.

With regard to any integral time T > 0, the related DPIF
satisfies∫ t+T

t
e−γ (τ−t)

[
xT
a (τ )Qaxa(τ )+ u

T(τ )Ru(τ )
]
dτ

+e−γTV (xa(t + T ))− V (xa(t)) = 0. (10)

For all xa(t) = xa, if V (xa) ∈ C1(�a : R+), we let
T → 0 in (10), and obtain the time-triggered nonlinear
Lyapunov equation as follows:

0 = ∇TV (xa)(fa(xa)+ ga(xa)u(t))+ xT
aQaxa

+uT(t)Ru(t)− γV (xa). (11)

The Hamiltonian of the augmented system (5) is defined as

H (xa, u(xa),∇V (xa))

= ∇
TV (xa)(fa(xa)+ ga(xa)u(xa))

+xT
aQaxa + u

T(xa)Ru(xa)

−γV (xa). (12)

According to the well-known Bellman’s principle of optimal-
ity, it follows from (6) that the optimal DPIF is

V ∗(xa)

= min
u∈A(�a)

∫
∞

t
e−γ (τ−t)

[
xT
aQaxa + u

T(τ )Ru(τ )
]
dτ

(13)

which satisfies the time-triggered HJBE

min
u∈A(�a)

H (xa, u(xa),∇V ∗(xa)) = 0 (14)

and the time-triggered optimal tracking control law is

u∗(xa) = −
1
2
R−1gTa (xa)∇V

∗(xa). (15)

On the basis of event-triggered mechanism, the triggered
instants are a monotone increasing sequence {tj}∞j=0 deter-
mined by the event-triggering condition, where t0 = 0 and
tj < tj+1, j ∈ N are the sampling instants. Then, the sampled
augmented system state is

xaj = xaj(t) =

{
xa(t), t = tj
xa(tj), t ∈ [tj, tj+1)

(16)

where j ∈ N, and tj+1− tj is called the execution interval. The
corresponding ETOTC is derived as

µ(xaj) = u∗(xaj) = −
1
2
R−1gT

a (xaj)∇V
∗(xaj) (17)

where ∇V ∗(xaj) = ∂V ∗(xa)/∂xa|xa=xaj and by leading into
the zero-order hold (ZOH), µ(xaj) becomes a continuous
function with respect to xaj. Notice that the ETOTC (17)
depends on the solution of the HJBE (14).

Next, We define the error between the sampled augmented
state xaj(t) and the real state xa(t) as

eaj(t) = xa(t)− xaj(t). (18)

According to the (5), (15) and (18), the closed augmented
system is

ẋa = fa(xa)+ ga(xa)µ(xaj)

= fa(xa)−
1
2
ga(xa)R−1gT

a (xaj)∇V
∗(xaj)

= fa(xa)−
1
2
ga(xa)R−1gT

a (xa − eaj)∇V
∗(xa − eaj). (19)

Remark 2: With regard to the time-triggered optimal
tracking control u∗(xa), the sampling time of the augmented
system (5) is always triggering. Different from u∗(xa), the
ETOCT (15) remains unchanged in the execution interval,
i.e. sampled time xa(tj) at instant tj is maintained until the
new sampled augmented sate xa(tj+1) is transmitted into
the controller at instant tj+1, which significantly reduces the
computational and communication burden.

9508 VOLUME 10, 2022



K. Wang et al.: Adaptive ET Near-Optimal Tracking Control for Unknown CT Nonlinear Systems

III. ADAPTIVE-IDENTIFIER-CRITIC DESIGN BASED
EVENT-TRIGGERED OPTIMAL TRACKING CONTROL
In this section, a NN-based identifier is first designed, and
the identifier error and the identifier weight estimation error
are UUB, which is proved in Theorem 1. Then, for the iden-
tified augmented system, a particular ET adaptive implement
method is developed without initial stable control law, and
the closed loop identified augmented system and critic weight
estimation error are proved to be UUB in Theorem 2.

A. NN-BASED IDENTIFIER DESIGN
The rewritten system dynamic can be expressed as follows

ẋ = Ahx +WT
f σf (x)+W

T
g σg(x)u+ εx(x) (20)

where Ah ∈ Rn×n is a Hurwitz matrix, Wf ∈ Rn×n, Wg ∈

Rn×n, σf (x) ∈ Rn, σg(x) ∈ Rn×m. The ideal NN weight
matrices Wf and Wg satisfy WT

f Wf ≤ Af and WT
g Wg ≤ Ag

where Af and Ag are prior known positive definite matrices.
On the compact set �x̃ , the activation functions σf (x) and
σg(x) need to satisfy

‖σf (x1)− σf (x2)‖ ≤ Kf ‖x1 − x2‖ (21)

‖σg(x1)1m − σg(x2)1m‖ ≤ Kg‖x1 − x2‖ (22)

where 1m = [1, 1, . . . , 1]T ∈ Rm.
Then, the reconstruct system dynamic is

˙̂x = Ahx̂ + ŴT
f σf (x̂)+ Ŵ

T
g σg(x̂)u+ B(x − x̂) (23)

where B = diag(b0, b1, . . . , bn) > 0 is the designed matrix.
The error dynamic of identifier is

˙̃x = Ahx̃ + W̃T
f σf (x̂)+ W̃

T
g σg(x̂)u+W

T
f σ̃f (x, x̂)

+WT
g σ̃g(x, x̂)u− Bx̃ + εx(x) (24)

where x̃ = x− x̂, W̃f = Wf −Ŵf , W̃g = Wg−Ŵg, σ̃f (x, x̂) =
σf (x)− σg(x̂), σ̃g(x, x̂) = σg(x)− σg(x̂).
Theorem 1: For affine unkown nonlinear system (19),

if the weight of NN-based identifier (23) has the update rules

˙̂Wf = Pf σf (x̂)x̃TP0 (25)
˙̂Wg = Pgσg(x̂)ux̃TP0 (26)

where P0, Pf and Pg are the predefined positive definite
matrices. Then, the identification error x̃(t) converges to the
following compact set

�x̃ =

{
x̃ : ‖x̃‖ ≤

εxM
√
λmin(Q0)+ 2λmin(BP0B)− K0

}
(27)

where K0 > 0 is the constant parameter which can be
determined in the following proof. Besides that, the weight
estimation errors W̃f and W̃g of the NN-based identifier are
assured of the UUB.

Proof: Choose the Lyapunov function candidate as
follows:

L1(t) =
1
2
x̃TP0x̃ +

1
2
tr(W̃T

f P
−1
f W̃f + W̃T

g P
−1
g W̃g) (28)

Since Ah is a Hurwitz matrix, there exists a positive-definite
symmetric matrix P0 satisfy Lyapunov’s equation

AT
hP0 + P0Ah = −Q0 (29)

The time derivative of (28) can be expressed as

L̇1(t) =
1
2
˙̃xTP0x̃+

1
2
x̃TP0 ˙̃x+tr(W̃T

f P
−1
f
˙̃Wf +W̃T

gP
−1
g
˙̃Wg)

= −
1
2
x̃T(AT

hP0 + P0Ah)x̃ + x̃
TP0W̃T

f σf (x̂)

+x̃TP0W̃T
g σg(x̂)u+ x̃

TP0WT
f σ̃f (x, x̂)

+x̃TP0WT
g σ̃g(x, x̂)u− x̃

TP0Bx̃ + x̃TP0εx(x)

−tr(W̃T
f σf (x̂)x̃

TP0 + W̃T
g σg(x̂)ux̃

TP0) (30)

Observing tr(A1A2) = tr(A2A1) = A2A1 for A1 ∈ Rn×1

and A2 ∈ R1×n. Furthermore, according to Cauchy–Schwarz
inequality, (30) becomes

L̇1(t) ≤ −
1
2
x̃TQox̃ +

1
2
x̃TP0WT

f Wf P0x̃T

+
1
2
σ̃T
f (x, x̂)σ̃f (x, x̂)+

1
2
x̃TP0WT

g WgP0x̃T

+
1
2
uTσ̃T

g (x, x̂)σ̃g(x, x̂)u− x̃
TBP0Bx̃

+
1
2
x̃TP20x̃ +

1
2
εT
x (x)εx(x)

≤ −
1
2
λmin(Q0)‖x̃‖2 +

1
2
λmax(P0Af P0)‖x̃‖2

+
1
2
K 2
f ‖x̃‖

2
+
1
2
λmax(P0AgP0)‖x̃‖2+

1
2
u2MK

2
g ‖x̃‖

2

−λmin(BP0B)‖x̃‖2+
1
2
λmax(P20)‖x̃‖

2
+
1
2
‖εxM‖

2

=
1
2
(λmax(P20)+ λmax(P0Af P0)+ λmax(P0AgP0)

−λmin(Q0)− 2λmin(BP0B)+ K 2
f

+u2MK
2
g )‖x̃‖

2
+

1
2
‖εxM‖

2 (31)

In order to guarantee that λmax(P20) + λmax(P0Af P0) +
λmax(P0AgP0)−λmin(Q0)−2λmin(BP0B)+K 2

f +u
2
MK

2
g < 0,

the parameter matrices B andQ0 need to be selected properly.
Then, L̇(t) < 0 as long as the identifier error x̃ satisfies the
following inequality:

‖x̃‖ >
εxM

√
λmin(Q0)+ 2λmin(BP0B)− K0

(32)

where K0 = λmax(P20) + λmax(P0Af P0) + λmax(P0AgP0) +
K 2
f +u

2
MK

2
g . According to the Lyapunov’s direct methods, the

identifier error x̃ converges to �x̃ and the weight estimation
errors W̃f and W̃g are UUB. This completes the proof. �

B. ADAPTIVE-CRITIC DESIGN BASED EVENT-TRIGGERED
OPTIMAL TRACKING CONTROL
In this part, we present an online implementation method
based on NNs. We have the fact that the unknown nonlinear
system (1) can be approximated by identifier NN with in
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a sufficiently small compact set �x̃ . According to (23), the
identified augmented system can rewritten as follows:

˙̂xa = Fa(x̂a)+ Ga(x̂a)u(t) (33)

where x̂a = [êT
d (t), x

T
d (t)]

T, êd = x̂(t)− xd (t),

Fa(x̂a) =
[
Ah(êd + xd )

0

]
+

[
B(ed + xd − êd − xd )

0

]
+

[
ŴT
f σf (êd + xd )− fd (xd )

fd (xd )

]
(34)

and

Ga(x̂a) =
[
ŴT
g σg(êd + xd )

0

]
. (35)

Then, we assume that the optimal value function V ∗(x̂a) ∈
C1(�a;R+) exists. By the universal approximation property
of feed-forward NNs [47], a critic NN is used to construct
V ∗(x̂a) on the compact set �a as

V ∗c (x̂a) =
l∑
i=1

Wciσci(x̂a)+ εc(x̂a)

= (Wc)Tσc(x̂a)+ εc(x̂a) (36)

where Wc = [Wc1,Wc2, . . . ,Wcl]T is the ideal NN weight
vector, σc(x̂a) = [σc1(x̂a), σc2(x̂a), . . . , σcl(x̂a)]T is the acti-
vation function vector satisfying that σci ∈ C1(�a;R) and
σci(0) = 0, and l is the quantity of activation functions with
liml→∞ εc(x̂a) = 0. Generally, the activation functions are
chosen to be linearly independent. However, the ideal critic
NN weight vectorW ∗c which offers the best approximation to
the tracking HJBE is always unknown, then the optimal value
function V̂ (x̂a) can be approximated by

V̂c(x̂a) =
l∑
i=1

Ŵciσci(x̂a) = ŴT
c σc(x̂a). (37)

According to the rewritten augmented system (33), (36)
and (37), the optimal event-triggered control law and approx-
imate event-triggered control law are derived separately.

µ(x̂aj) = −
1
2
R−1GT

a (x̂aj)(∇
Tσc(x̂aj)Wc +∇εc(x̂aj)) (38)

and

µ̂(x̂aj) = −
1
2
R−1GT

a (x̂aj)∇
Tσc(x̂aj)Ŵc (39)

where

x̂aj(t) =

{
x̂a(t), t = tj
x̂a(tj), t ∈ [tj, tj+1).

(40)

According to the approximate event-triggered control
law (39), the identified closed-loop system is

˙̂xa = Fa(x̂a)+ Ga(x̂a)µ̂(x̂aj). (41)

The triggering condition of the identified nonlinear system is

‖eaj(t)‖2 ≤
2((1− ξ2)λ(Q)‖ed‖2 + ‖Rµ̂(x̂aj)‖)

‖3‖2‖R−1‖2(G2
aML2

σcM
+ d2σcML

2
GaM )‖Ŵc‖

2
.

(42)

Before implementing the classical adaptive-critic design
approach, a special NN weight vector needs to be chosen in
order to create an initial stable control law, and the critic NN
weights can be trained by the classical approach. However,
the special NN weight vector is difficult to choose, which
may lead to the instability for the closed loop system. Inspired
by [45], [48], [49], we adopt an auxiliary Lyapunov function
to improve the learning criterion and employ it to tune the
critic NN weights. Moreover, the following assumption is
introduced.
Assumption 1: Consider that La(x̂a) ∈ C1(�a;R+) is

an auxiliary differentiable Lyapunov function candidate, and
La(x) satisfies the following inequality.

∇
TLa(x̂a)(Fa(x̂a)+ Ga(x̂a)µ(x̂aj)) ≤ 0. (43)

In addition, let Pa ∈ Rn×n be a positive definite matrix, and
the following condition is true on the compact set �a.

∇
TLa(x̂a)(Fa(x̂a)+ Ga(x̂a)µ(x̂aj))

≤ −λmin(Pa)‖∇La(x̂a)‖2. (44)

Remark 3: During the realization process, we can choose
a polynomial, such as x̂T

a x̂a, to determine the auxiliary Lya-
punov function La(x̂a), which guarantees the stability of the
augmented state vector x̂a and critic NN weights Ŵc.
Due to the fact that it is difficult to obtain the ideal

critic NN weight vector Wc, we design a online learning
approach to approximate Wc by employing the real-time
data. Furthermore, V ∗c (x̂a) and µ(x̂aj) satisfy the event-
triggered HJBEH (x̂a, µ(x̂aj),∇V ∗(x̂a)) = 0. Thus, we define
the approximate error between H (x̂a, µ(x̂aj),∇V ∗(x̂a)) and
Ĥ (x̂a, µ̂(x̂aj),∇V̂ (x̂a)), that is

ec(x̂a, Ŵc)

= Ĥ (x̂a, µ̂(x̂aj),∇V̂c(x̂a))− H (x̂a, µ(x̂aj),∇V ∗c (x̂a))

= Ĥ (x̂a, µ̂(x̂aj),∇V̂c(x̂a))

= ŴT
c ∇σc(x̂a)(Fa(x̂a)+ Ga(x̂a)µ̂(x̂aj))+ x̂T

aQax̂a
+µ̂T(x̂aj)Rµ̂(x̂aj)− γ ŴT

c σc(x̂a). (45)

The critic NN weight vector Ŵc can be tuned by minimiz-
ing the square approximate errors Ec(x̂a, Ŵc) = (1/2)eT

c ec.
Furthermore, in order to avoid L̇µ̂a (x̂a) = ∇TLa(x̂a)(Fa(x̂a)+
Ga(x̂a)µ̂(x̂aj)) > 0, the auxiliary term is introduced into the
tuning law for Ŵc, which can be derived as follow.

˙̂Wc = −η1
1

(1+ (δµ̂(x̂a))Tδµ̂(x̂a))2
∂Ec(x̂a, Ŵc)

∂Ŵc

−η2
∂(∇TLa(x̂a)(Fa(x̂a)+ Ga(x̂a)µ̂(x̂aj)))

∂Ŵc
(46)
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where η1 > 0 is a learning rate parameter,

δµ̂(x̂a) = ∇σc(x̂a)(Fa(x̂a)+ Ga(x̂a)µ̂(x̂aj))− γ σc(x̂a) (47)

the term (1+ δT(x̂a)δ(x̂a))2 is the normalization of the tuning
process, and η2 is a constant parameter which is designed to
avoid the instability of the closed-loop system.

Moreover, according to the approximate event-triggered
control (39), the weights tuning law (46) becomes

˙̂Wc = −η1
δµ̂(x̂a)

(1+ (δµ̂(x̂a))Tδµ̂(x̂a))2
ec(x̂a, Ŵc)

+
1
2
η2∇σc(x̂aj)Ga(x̂aj)R−1GT

a (x̂a)∇La(x̂a). (48)

The critic NN weights tuning law (48) is contained with
decreasing the HJBE approximate error and stabilizing the
closed-loop system. Thus we can select initial critic NN
weights Ŵc(0) arbitrarily without considering the initial sta-
bilizing control law.

C. THEORETICAL ANALYSIS
In this part, we show the theoretical analysis of the ACD
based ETOTC method. The critic error vector between Wc
and Ŵc is defined as W̃c = Ŵc − Wc, and we further have
˙̃Wc =

˙̂Wc. By introducing δ1 = δµ̂(x̂a)/(1+(δµ̂(x̂a))Tδµ̂(x̂a)),
δ2 = 1+ (δµ̂(x̂a))Tδµ̂(x̂a), The critic error vector dynamic is

˙̃Wc = −η1δ1δ
T
1 W̃c + η1

δ1

δ2
∇

Tεc(x̂a)(Fa(x̂a)

+Ga(x̂a)µ̂(x̂aj))+
1
2
η2∇σc(x̂aj)Ga(x̂aj)R−1

×GT
a (x̂a)∇La(x̂a). (49)

where ecH = ∇Tεc(x̂a)(Fa(x̂a)+Ga(x̂a)µ̂(x̂aj)) is the residual
error of reconstruct HJBE, and is norm bounded, i.e. ‖ecH‖ ≤
eM [43], [53]. During the training process, the persistence of
excitation (PE) condition ensures λmin(δ1δT

1 ) > 0, which is
necessary in the stability analysis [54], [55].

Before proceeding the stability analysis, some essential
assumptions are employed to support the analysis.
Assumption 2: The identified augmented input dynamic

function Ga(x̂a) is local Lipschitz continuity on the compact
set �a such that ‖Ga(x̂a) − Ga(x̂aj)‖ ≤ LGaM ‖eaj(t)‖, where
LGaM is a positive constant, and Ga(x̂a) is norm bounded,
i.e. ‖Ga(x̂a)‖ ≤ GaM , where GaM is a positive constant.
Assumption 3: The derivative of the activation function
∇σc(x̂a) is local Lipschitz continuity on the compact set �a
such that ‖∇σc(x̂a) − ∇σc(x̂aj)‖ ≤ LσcM ‖eaj(t)‖, where
LσcM is a positive constant, and the terms ∇σc(x̂a), ∇εc(x̂a)
and V ∗c (x̂a) are norm bounded, i.e. ‖∇σc(x̂a)‖ ≤ dσcM ,
‖∇εc(x̂a)‖ ≤ dεcM and ‖V ∗c (x̂a)‖ ≤ VcM .
Theorem 2: For the identified system (33) associated with

the approximate error of the event-triggered HJBE (45), let
Assumptions 2–3 hold. The event-triggered approximate opti-
mal control law (39), the critic weight tuning rule (48) and the
event-triggered condition (42) guarantee that the closed loop
system state and the weight estimation error are UUB.

Proof: Choose the Lyapunov function candidate as
follows

L2(t) = V ∗c (x̂a)+ V
∗
c (x̂aj)+ 2η2La(x̂a)+ W̃T

c W̃c (50)

Case 1: When t ∈ [tj, tj+1) for all j, there is no triggering in
events.We can take the time derivative of (50) along with (19)
and (49), the we have

L̇2(t) = V̇ ∗c (x̂a)+ V̇
∗
c (x̂aj)+ 2η2L̇a(x̂a)+ W̃T

c
˙̃Wc. (51)

For the first term of the right-hand side of (50), according to
the Assumptions 2–3, we have

V̇ ∗c (x̂a) = ∇
TV ∗c (x̂a)(Fa(x̂a)+ Ga(x̂a)µ̂(x̂aj))

= −x̂Ta Qax̂a + (u∗(x̂a))TRu∗(x̂a)

−2(u∗(x̂a))TRµ̂(x̂aj)+ γV ∗c (x̂a)

= −êT
dQêd + γV

∗
c (x̂a)+ (3u∗(x̂a))T3u∗(x̂a)

−2(3u∗(x̂a))T3µ̂(x̂aj)+ (3µ̂(x̂aj))T3µ̂(x̂aj)

−(µ̂(x̂aj))TRµ̂(x̂aj)

≤ −êT
dQêd + γV

∗
c (x̂a)− λmin(R)‖µ̂(x̂aj)‖2

+‖3‖2‖‖u∗(x̂a)− µ̂(x̂aj)‖2

≤ −êT
dQêd + γV

∗
c (x̂a)− λmin(R)‖µ̂(x̂aj)‖2

+
1
4
‖3‖2‖R−1‖2(‖GT

a (x̂a)(∇εc(x̂a)

−∇
Tσc(x̂a)W̃c)‖2 + ‖GT

a (x̂a)∇
Tσc(x̂a)

−GT
a (x̂aj)∇

Tσc(x̂aj)‖2‖Ŵc‖
2)

≤ −êT
dQêd + γV

∗
c (x̂a)− λmin(R)‖µ̂(x̂aj)‖2

+
1
4
‖3‖2‖R−1‖2(2‖Ga(x̂a)‖2(‖∇εc(x̂a)‖2

+‖∇σc(x̂a)‖2‖W̃c‖
2)+ 2(‖(∇σc(x̂a)

−∇σc(x̂aj))Ga(x̂a)‖2 + ‖∇σc(x̂aj)(Ga(x̂a)
−Ga(x̂aj))‖2‖Ŵc‖

2))

≤ −êT
dQêd + γV

∗
c (x̂a)− λmin(R)‖µ̂(x̂aj)‖2

+
1
2
‖3‖2‖R−1‖2(G2

aMd
2
εcM
+ G2

aMd
2
σcM
‖W̃c‖

2

+(G2
aML2

σcM
+ d2σcML

2
GaM )‖eaj(t)‖

2
‖Ŵc‖

2). (52)

On the basis of the definition of x̂aj(t) and (40), x̂aj(t) is
unchanged on t ∈ [tj, tj+1). Thus, the second term of the right-
hand side of (50) becomes

V̇ ∗c (x̂aj) = 0. (53)

For the third term of the right-hand side of (50), the derivative
of La(x̂a) is expressed as

L̇a(x̂a) = ∇TLa(x̂a)(Fa(x̂a)+ Ga(x̂a)µ̂(x̂aj)). (54)

According to (48), (49) and Young’s inequality, the forth term
of the right-hand side of (50) is

W̃T
c
˙̃Wc ≤ −2η1W̃T

c δ1δ
T
1 W̃c + 2η1

δ1

δ2
W̃T
c ∇

Tεc(x̂a)(Fa(x̂a)

+Ga(x̂a)µ̂(x̂aj))+ η2W̃T
c ∇σc(x̂aj)Ga(x̂aj)R−1

×GT
a (x̂a)∇La(x̂a)
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≤ −(2η1 − 1)λmin(δ1δT
1 )‖W̃c‖

2
+ η21e

2
M

+η2W̃T
c ∇σc(x̂aj)Ga(x̂aj)R−1GT

a (x̂a)∇La(x̂a)

= −(2η1 − 1)λmin(δ1δT
1 )‖W̃c‖

2
+ η21e

2
M

+2η2∇TLa(x̂a)Ga(x̂a)µ∗(x̂aj)
+η2∇

TLa(x̂a)Ga(x̂a)R−1∇εc(x̂aj)
−2η2∇TLa(x̂a)Ga(x̂a)µ̂(x̂aj). (55)

Combining (52)–(55), and taking the optimal ET control
law (38) into consideration, the overall time derivative of
L2(t) is

L̇2(t) ≤ −êT
dQêd + γV

∗
c (x̂a)− λmin(R)‖µ̂(x̂aj)‖2

+
1
2
‖3‖2‖R−1‖2(G2

aMd
2
εcM
+ G2

aMd
2
σcM
‖W̃c‖

2

+(G2
aML2

σcM
+ d2σcML

2
GaM )‖eaj(t)‖

2
‖Ŵc‖

2)

+2η2∇TLa(x̂a)(Fa(x̂a)+ Ga(x̂a)µ∗(x̂aj))
−(2η1 − 1)λmin(δ1δT

1 )‖W̃c‖
2
+ η21e

2
M

+ξ2η2∇
TLa(x̂a)Ga(x̂a)R−1∇εc(x̂aj)

≤ −λmin(Q)ξ2‖êd‖2 + (ξ2 − 1)λmin(Q)‖êd‖2

+γVcM − λmin(R)‖µ̂(x̂aj)‖2

+M1‖W̃c‖
2
+M2‖eaj(t)‖2‖Ŵc‖

2

−2η2λmin(Pa)‖∇La(x̂a)‖2 + η21e
2
M

+
1
2
‖3‖2‖R−1‖2G2

aMd
2
εcM

+η2‖R−1‖G2
aMdεcM ‖∇La(x̂a)‖

= −ξ2λmin(Q)ξ2‖êd‖2 + (ξ2 − 1)λmin(Q)‖êd‖2

+γVcM − λmin(R)‖µ̂(x̂aj)‖2

+M1‖W̃c‖
2
+M2‖eaj(t)‖2‖Ŵc‖

2

−2η2λmin(Pa)

(
‖∇La(x̂a)‖ −

‖R−1‖G2
aMdεcM

4λmin(Pa)

)2

+η21e
2
M +

1
2
‖3‖2‖R−1‖2G2

aMd
2
εcM

+
‖R−1‖2G4

aMd
2
εcM

16λ2min(Pa)
(56)

whereM1 =
1
2‖3‖

2
‖R−1‖2G2

aMd
2
σcM
− (2η1−1)λmin(δ1δT

1 ),
M2 =

1
2‖3‖

2
‖R−1‖2(G2

aML2
σcM
+ d2σcML

2
GaM ). When the ET

condition (42) satisfies, (56) becomes

L̇2(t) ≤ −ξ2λmin(Q)ξ2‖êd‖2 +M1‖W̃c‖
2

+γVcM +M3 (57)

whereM3 is formed as a positive constant

M3 = η
2
1e

2
M +

1
2
‖3‖2‖R−1‖2G2

aMd
2
εcM

+
‖R−1‖2G4

aMd
2
εcM

16λ2min(Pa)
(58)

According to (57), L̇2(t) < 0, provided êd lies out of the set

�êd =

{
êd : ‖êd‖ ≤

√
γVcM +M3

ξ2λmin(Q)

}
(59)

or W̃c lies out of the set

�W̃c
=

{
W̃c : ‖W̃c‖ ≤

√
γVcM +M3

−M2

}
(60)

with the conditionM2 < 0.
Case 2: If the sate jumps at the ET time t = tj+1, the time

difference of the Lyapunov function candidate L2(t) is

1L2(t) = L2(x̂aj+1)− L2(x̂a(t
−

j+1))

= V ∗c (x̂aj+1)− V
∗
c (x̂a(t

−

j+1))+ V
∗
c (x̂aj+1)

−V ∗c (x̂aj)+ η2(La(x̂aj+1)− La(x̂a(t
−

j+1)))

+
1
2
(W̃T

c (x̂aj+1)W̃c(x̂aj+1)

−W̃T
c (x̂a(t

−

j+1))W̃c(x̂a(t
−

j+1))) (61)

where x̂a(t
−

j+1) = limε→0− x̂a(tj+1+ ε). According to the fact
that x̂a and V ∗(x̂a) are continuous in time interval [tj, tj+1),
and L2(t) < 0 when êd lies out of the set �êd and W̃c lies out
of the set �W̃c

, we can obtain

1L2(t) ≤ V ∗c (x̂aj+1)− V
∗
c (x̂aj)

≤ −κ(‖x̂aj+1 − x̂aj‖) (62)

where κ(·) is a class κ−function. Therefore, the Lyapunov
function 1L2(t) < 0 at all the ET time tj+1.

On the basis of the above two cases, L̇2(t) < 0 in the time
interval [tj, tj+1), and 1L2(t) < 0 at the each ET time tj+1
for all j ∈ N as long as êd lies out of the compact set�êd
and W̃c lies out of the set �W̃c

. Therefore, the triggering
condition (42) and the inequalities (59) and (60) ensure that
the identified closed-loop system (41) and the critic weight
error dynamic are UUB. This completes the proof. �
Remark 4: For the ETOTC, the minimal intersampling

time

1tmin = min
j∈N

{
tj+1 − tj

}
(63)

may be zero, which lead to the notorious Zeno behaviour.
On the basis of the result in [43] and [56], the minimal
intersampling time 1tmin of the ETOTC has the nonzero
positive lower bound. Thus, the Zeno behaviour is avoided.

IV. SIMULATION STUDY
In this section, we provide two numerical examples to show
the effectiveness of the adaptive-identifier-critic design based
ETOTC method.

A. EXAMPLE 1
Consider a CT linear mass-spring-damper system [51] as[

ẋ1
ẋ2

]
=

[
x2

−
κ
mx2 −

l
mx1

]
+

[
0
1
m

]
u (64)

where x1, x2, κ , l and m are the position, velocity damping,
stiffness of the spring and mass; The initial value of [x1, x2]T

is set to [−1, 1]T; u is the one dimensional control input; The
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true parameters are set as κ = 5N/m, l = 0.5N · s/m, and
m = 1kg. Then, the desired reference trajectories are

xd1(t) = cos(
√
5t)−

√
5
5

sin(
√
5t) (65)

xd2(t) = − cos(
√
5t)−

√
5 sin(
√
5t) (66)

which are given by using the following command generator
dynamics [

ẋd1
ẋd2

]
=

[
xd2
−5xd1

]
. (67)

jh According to (64) and (67), we construct the augmented
system indicated as below
ėd1
ėd2
ẋd1
ẋd2

=


0 1 0 0
−

l
m −

κ
m 5− l

m −
κ
m

0 0 0 1
0 0 −5 0



ed1
ed2
xd1
xd2

+

0
1
m
0
0

 u
(68)

and the augmented system state vector [ed1, ed2, xd1, xd2]T is
denoted as xa.
Due to the unavailable knowledges of the system, the

identifier NNs are employed and the identifier gains are

Ah =
[
−1 0
0 −1

]
,B = Q0 =

[
1 0
0 1

]
. (69)

The activation functions σf (x) and σg(x) are

σf (x) =
[
x1
x2

]
, σg(x) =

[
1
1

]
. (70)

The learning rate matrices of the identifier NNs are

Pf =
[
20 20
20 20

]
,Pg =

[
10 10
10 10

]
. (71)

During the identifying process, an excitation signal u =
70 sin(10t) cos(10t) is selected to guarantee that the identifier
NNs weights converge to the real value. For the ETOTC
problem, the parameters in the DPIF are chosen as γ = 0.1,
Q = diag(10, 10), and R = 1. The DPIF from t = 0 is

V (xa(0)) =
∫
∞

0
e−γ τ

[
xT
aQaxa + u

TRu
]
dτ. (72)

Then, the initial augmented system state vector is set as
xa(0) = [−1, 1,−1, 1]T and the local critic NN is con-
structed to approximate the optimal value function which
is defined as

V̂ (xa) = Ŵc1e2d1 + Ŵc2e2d2 + Ŵc3x2d1 + Ŵc4x2d2
+Ŵc5ed1ed2 + Ŵc6ed1xd1 + Ŵc7ed1xd2
+Ŵc8ed2xd1 + Ŵc9ed2xd2 + Ŵc10xd1xd2. (73)

For relaxing the condition of the initial stability con-
troller, the auxiliary Lyapunov function is set as La(xa) =
e21d + e22d . Moreover, for obtaining the satisfied simula-
tion results, we set η1 = 12, η2 = 3, ξ2 = 0.5, and

FIGURE 1. Identification errors of the system in example 1.

FIGURE 2. Convergence of the critic NN weights in example 1.

G2
aML2

σcM
+ d2σcML

2
GaM = 0.8. During the training pro-

cess, 0.3 exp(−0.1t) sin(10t) cos(10t) is selected as exploring
noise to satisfy the PE condition.

The simulation results are presented in Figs. 1–6. The
system identification errors converge to a small region of
the equilibrium point in Fig 1. The weight vector converges
to [0.0019, 8.0012, 0.1163, −0.5010, −1.9534, −0.0029,
−0.0151, 0.08228, −0.9805, −0.2113]T, which is shown in
Fig. 2. From Fig. 2, the values of the initial critic weights are
all set to zeros, which means that the initial stable control law
is unnecessary. Fig. 3 displays the sampling interval under the
ETmechanism, which indicates that our developed algorithm
avoids the Zeno behaviour.

Using the trained critic NN, we can obtain the approx-
imate ET control law and the closed loop tracking system
which are shown in Fig. 4 and 5, separately. On the basis
of the ET mechanism, a stairstep graph of the controller
is shown in Fig. 4. In Fig. 5, the desired trajectories can
be tracked well and the triangles is the ET instants. Fig. 6
presents the evolution of samples. The ET controller only
uses 675 samples of the state while the time-triggered con-
troller needs 9047 samples, which greatly saves bandwidth
and computational resources (or particularly, 92.54%).
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FIGURE 3. Sampling period in the learning process in example 1.

FIGURE 4. Control input for the proposed method in example 1.

FIGURE 5. Evolution of tracking trajectories in example 1.

B. EXAMPLE 2
Consider a CT mass-spring-damper system with the nonlin-
earity k(x) = −x3 in [51] as[

ẋ1
ẋ2

]
=

[
x2

−x32 − 0.5x1

]
+

[
0
1

]
u (74)

FIGURE 6. Evolution of sample times in example 1.

with the initial state [−1, 1]T, then the Corresponding aug-
mented system is
ėd1
ėd2
ẋd1
ẋd2

=


ed2
−5(ed1+xd1)3−0.5ed2+5xd1−0.5xd2

xd2
−5xd1

+

0
1
0
0

u.
(75)

On account of the unavailable knowledges of the system,
the identifier NNs are employed and the identifier gains are

Ah =
[
−1 0
0 −1

]
, B = Q0 =

[
1 0
0 1

]
. (76)

The activation functions σf (x) and σg(x) are

σf (x) =

x31x1
x2

 , σg(x) =
[
1
1

]
. (77)

The learning rate matrices of the identifier NNs are

Pf =

10 10 10
10 10 10
10 10 10

 , Pg =
[
5 5
5 5

]
. (78)

During the identifying process, an excitation signal u =
60 sin(10t) cos(10t) is selected to guarantee that the identifier
NNs weights converge to the real value.

The parameters in the DPIF are chosen as xa =

[ed1, ed2, xd1, xd2]T with xa(0) = [−1, 1,−1, 1]T, γ = 0.1,
Q = diag(10, 10), and R = 1. The local critic NN is
constructed to approximate the optimal value function which
is defined as

V̂ (xa) = Ŵc1e2d1 + Ŵc2ed1ed2 + Ŵc3ed1xd1 + Ŵc4ed1xd2
+Ŵc5e2d2 + Ŵc6ed2xd1 + Ŵc7ed2xd2 + Ŵc8x2d1
+Ŵc9xd1xd2 + Ŵc10x2d2 + Ŵc11e4d1 + Ŵc12e3d1ed2
+Ŵc13e3d1xd1 + Ŵc14e3d1xd2 + Ŵc15e2d1e

2
d2

+Ŵc16e2d1ed2xd1 + Ŵc17e2d1ed2xd2 + Ŵc18e2d1x
2
d1

+Ŵc19e2d1xd1xd2 + Ŵc20e2d1x
2
d2 + Ŵc21ed1e3d2
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FIGURE 7. Identification errors of the system in example 2.

FIGURE 8. Convergence of the critic NN weights in example 2.

+Ŵc22ed1e2d2xd1 + Ŵc23ed1e2d2xd2
+Ŵc24ed1ed2x2d1 + Ŵc25ed1ed2xd1xd2
+Ŵc26ed1ed2x2d2 + Ŵc27ed1x3d1 + Ŵc28ed1x2d1xd2
+Ŵc29ed1xd1x2d2 + Ŵc30ed1x3d2 + Ŵc31e4d2
+Ŵc32e3d2xd1 + Ŵc33e3d2xd2 + Ŵc34e2d2x

2
d1

+Ŵc35e2d2xd1xd2 + Ŵc36e2d2x
2
d2 + Ŵc37ed2x3d1

+Ŵc38ed2x2d1xd2 + Ŵc39ed2xd1x2d2 + Ŵc40ed2x3d2
+Ŵc41x4d1 + Ŵc42x3d1xd2 + Ŵc43x2d1x

2
d2

+Ŵc44xd1x3d2 + Ŵc45x4d2. (79)

Similarly in order to relax the condition of the initial
stability controller, the auxiliary Lyapunov function is set as
La(xa) = e41d + 0.5e22d + x

4
d1 + x

4
d2. Moreover, for obtaining

the satisfied simulation results, we set η1 = 10, η2 = 0.1,
ξ2 = 0.5, and G2

aML2
σcM
+ d2σcML

2
GaM = 15. During the

training process, 0.3 exp(−0.1t) sin(10t) cos(10t) is selected
as exploring noise to satisfy the PE condition.

The simulation results are presented in Figs. 7–12. The
system identification errors converge to a small region of
the equilibrium point in Fig 7. Due to the nonlinearity
of the mass-spring-damper system, we use the activation

FIGURE 9. Sampling period in the learning process in example 2.

FIGURE 10. Control input for the proposed method in example 2.

FIGURE 11. Evolution of tracking trajectories in example 2.

function of 45 neurons. The weight vector converges to
[0.0355, −0.2710, −0.7961, −0.0101, 2.2610, 3.2280,
−0.3924, 0.0008, 2.5255, −0.2337, −6.7478 × 10−6,
−0.0460, −0.0033, −0.0011, 0.1247, 0.0823, −0.0280,
0.0417, 0.0122, 0.0049, −0.2205, −0.1825, −0.0712,
−0.3003,−0.1297,−0.1272,−0.9095,−0.0102,−0.2464,
−0.0103, 2.2806, 1.6184, −1.2697, 2.1372, −0.7450,
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FIGURE 12. Evolution of sample times in example 2.

2.8976, 3.6685, −0.4582, 1.0886, −0.0738, 0.1980,
2.9358, −0.2684, 0.5267, −0.0629]T, which is shown in
Fig. 8. The sampling interval under the ET mechanism is dis-
played in Fig. 9, which indicates that our developed algorithm
avoids the Zeno behaviour.

Using the trained critic NN, we can obtain the approximate
ET control law and the closed loop tracking system which
are shown in Fig. 10 and 11, separately. On the basis of
the ET mechanism, a stairstep graph of the controller is
shown in Fig. 10. In Fig. 11, the desired trajectories can
be tracked well and the triangles is the ET instants. Fig. 12
presents the evolution of samples. The ET controller only
uses 412 samples of the state while the time-triggered con-
troller needs 9679 samples, which greatly saves bandwidth
and computational resources (or particularly, 95.74%).

V. CONCLUSION
In this paper, for the tracking control of the unknown
continuous-time systems, an ET ADP-based method is devel-
oped. To handle the unknown systems, the identifier NNs are
employed to learn the system dynamics. Then, the tracking
control problem is transformed into the regulation problem of
the identified augmented system. Only a critic NN is derived
to reconstruct the DPIF and the actor is update by the ET
condition. A novel online weight tuning law without requir-
ing the initial admissible control is designed. Finally, the
simulation results of the mass-spring-damper system show
the effectiveness of the developed method. The deficiency of
this method and the future works are discussed as follows.

1) The unknown systems studied in this paper are widely
concerned. In these researches, the identifier process and the
critic design are independent each other. In out future work,
we will develop a new online learning method which the
identification and the control are carried out simultaneously.

2) The actuator saturation is a common phenomenon in
control systems, which reduces the system dynamic perfor-
mance and induces the system instability. The research on the
constrained systems will be one of our future work.

3) The critic NN structure used in this paper is simple and
has limited expression ability. In our future work, the deep
learning method will be employed, which can decrease the
fitting error effectively.
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