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ABSTRACT Fabric defect detection is a challenging task in the fabric industry because of the complex
shapes and large variety of fabric defects. Many methods have been proposed to solve this problem, but
their detection speed and accuracy were very low. As a classic deep learning method and end-to-end target
detection algorithm, YOLOv4 has evolved rapidly and has been applied in many industries, showing good
performance. This paper proposes an improved YOLOv4 algorithm with higher accuracy for fabric defect
detection, in which a new SPP structure that uses SoftPool instead of MaxPool is adopted. The improved
YOLOv4 algorithm with three SoftPools can process the feature map effectively, which has a significant
advantage in reducing the negative side effects of the SPP structure and improving the detection accuracy.
The improved SPP structure is used by the three outputs of Backbone, and in order to ensure that the output
can be inputted into the subsequent PANet successfully, the network structure is improved that a series of
convolution layers after the SPP structure is added for reducing the channel numbers of feature map to
an appropriate value. In addition, contrast-limited adaptive histogram equalization is adopted in advance
to improve the image quality, which results in strong anti-interference abilities and can slightly increase
the mAP. Experimental results show that, compared with the original YOLOV4, the improved YOLOv4
increases themAP effectively by 6%,while the FPS only decreases by 2. The improvedYOLOv4 can identify
the location of defects accurately and quickly, and can also be applied in other defect detection industries.

INDEX TERMS Fabric defect detection, deep learning, YOLOv4, SoftPool, detection accuracy.

I. INTRODUCTION
Fabric defect detection is an important step in the fabric
production process. Human inspection with eyes for fabric
defects is the traditional method used in the fabric indus-
try [1], and visual inspections can identify and locate the
defects. However, the human detection rate only reaches up to
12 meters per minute [2], and is a monotonous job with high
repetition, a wasteful use of human resources and increas-
ing costs, making it unsuitable for use in mass production.
Although human detection is simple, the cloth production
lines and cloth outputs are becoming more complex, which
creates obstacles for workers in correctly identifying the
location of defects. Additionally, cloth defects lead to a reduc-
tion in cloth prices, resulting in losses of 45%-65% [3]for
the cloth manufacturer. Therefore, a new detection method,
which has high detection accuracy and detection speed,
is needed to replace the manual work currently used. With
the advent of CNN (convolutional neural networks), and the
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development of deep learning and machine vision [4], many
detection methods, combining the advantages of deep learn-
ing and machine vision, have emerged, replacing traditional
manual methods and image processing.

In this paper, first, the K-means clustering algorithm is
analyzed to select the optimal anchor value according to
the aims of this paper. Then, the structure of the SPP-net
of the original YOLOv4 is analyzed, and its disadvan-
tages are summarized. In addition, addressing the disadvan-
tages, an improved YOLOv4 algorithm with improved SPP
(Spatial Pyramid Pooling) and CLAHE (contrast-limited
adaptive histogram equalization) is proposed. Finally, the
improved YOLOv4 is compared with four classic algorithms:
YOLOv4with CLAHE, the original YOLOv4, Faster R-CNN
and SSD (Single Shot MutiBox Detector), where the mAP
is the main performance evaluation index. In addition, defect
images and detection effect images are presented, which have
clear contrasts.

The anchor of YOLO and SSD learns from Fast
R-CNN [5]. The final prediction part of YOLOv4 is carried
out in three feature maps, each of which has a grid point with
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three anchors. YOLOobtains thewidth and height parameters
of the BBox (bounding box) in advance. In the regression
prediction phase, only the width and height parameters need
to be adjusted instead of rebuilding the BBox. So the setting
of good anchor parameters can accelerate the rate of con-
vergence of the network training. The K-means clustering
algorithm is used in YOLOv2 to process the Gt BBox (ground
truth bounding box). The original K-means clustering gen-
erally uses a Euclidian distance to complete the clustering
but a large target will result in a large Gt BBox that can lead
to a large anchor, which can enlarge the Euclidian distance of
a large box. The situation is obviously unreasonable, so the
processed IOU is used in YOLOv2 instead of the Euclidian
distance. The processed IOU represents the degree of overlap
between each cluster center and other boxes. The original
IOU indicates that the value of the IOU grows larger as the
degree of overlap is higher, but the Euclidian distance that is
expected in this paper is smaller when the degree of overlap
is higher.

FIGURE 1. Structure of the original YOLOv4.

The network structure of YOLOv4 is shown in Figure 1,
fromwhich CSPdarknet53 is the backbone that references the
residual blocks from ResNet [6], and combines CSPNet [7]
with Darknet53 of YOLOv3. YOLOv4 also references the
ideas of SPP-Net and FPN-Net, which are improved to be
more suitable for defect detection.

The remainder of this paper is organized as follows:
Section II reviews deep learning and the YOLOv4 algo-
rithm. Section III describes the improved YOLOv4 algorithm
and image enhancement. Section IV gives the experimental
results of the improved YOLOv4 compared with three other
algorithms: SSD, Faster R-CNN and the original YOLOv4.
Section V draws the conclusions and summarizes some
important points about this paper.

II. RELATED WORKS
YOLO (You only look once) [8] is an end-to-end neu-
ral network algorithm that has been continuously improved
from YOLOv1 to YOLOv5. Numerous research papers have
shown that YOLO has better speed and accuracy than the

other algorithms. FPS (Frames Per Second) and precision are
considered comprehensively. An improved algorithm based
on YOLOv4 is proposed in this paper, where images from
the dataset are enhanced in advance, and image processing is
combined with deep learning to improve detection results.

Bo et al. proposed the machine vision technique in which
defects are detected by the Gabor filter, which is based on
image processing, however, it has poor detection results for
some types of defects [9]. Wiener filter is used to classify
defective images by converting RGB images into binary
images to improve the detection effect [10]. In addition,
there are other methods to detect fabric defects. For example,
Kazim et al. adopts a thermal-based defect classification
method with K-nearest neighbor algorithm [11] and dimen-
sionality reduction [12] to classify textile defects respec-
tively. Image processing [13] and thermal images [14] are
also used in defect detection. However, image processing
and thermal image can only solve the classification problem.
For these methods, the defects in the images are obvious,
and defects can only be identified and can not be located
correctly.Most of the traditional image processing algorithms
have the shortcomings that only simple background and large
object images can be processed effectively. So the neural
network basedmethods are been studied by some researchers.
Ouyang et al. [15] used an activation layer embedded con-
volutional neural network to detect defects. Liu et al. [16]
combined image processing with deep learning and proposed
a method in which image enhancement is implemented prior
to using convolutional networks; accuracy was improved.
Li [17] adopted focal loss [18] in ResNet50 [19] to solve the
problem of uneven numbers of positive and negative samples.
Although the above algorithms are feasible, there are some
disadvantages; some have slow recognition speeds and others
have low recognition precision. Faster R-CNN [20] is the
most commonly used algorithm in fabric defect detection.
Liu redesigned ROI (region of interest) pooling to consider
the global features of images [21]. Li [22] used an improved
multiscale detection algorithm, I-FPN, to improve the detec-
tion effect for small targets. Zhao [23] proposed an improved
NMS (Non-Maximum Suppression) that considers interclass
similarities in the detection process. Faster R-CNN, and its
improvements, have been adopted by many researchers to
increase the efficiency of detecting small targets. In general,
the following are reasons for using Faster R-CNN. First,
fabric defects have their own remarkable features compared
to common defects. Among all kinds of fabric defects, there
are some that account for a relatively large proportion in the
images, such as WEFTS, WARPS, STAINS, FLOATS and
CRACKYWEFTS, which is usually a very large spot, or the
spot has the same width as the image. Other defects have
small shapes (perhaps only a few pixels), such as NEPS,
HOLE, SNAGS and KNOTS. Second, detection and recogni-
tion are relatively simple for large defects. However, detect-
ing defects is very difficult for small targets, especially holes
with only a few pixels, because the uneven number of pos-
itive and negative samples makes it difficult for a one-stage
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network to learn the features of small targets. Although this
problem can also exist in a two-stage network, a large number
of negative samples has a small impact on detection because
the region proposal network (RPN) eliminates many negative
samples. To solve the imbalance of the number of positive and
negative samples in a one-stage network, Kaiming He pro-
posed the focal loss method, which can reduce the weight of
large sample losses and increases the weight of small samples
in total loss. However, focal loss is not effective in practical
applications, and evenly reduces mAP (mean average preci-
sion) [24]. Therefore, the precision of a two-stage network
is generally higher than its one-stage network counterpart.
However, a two-stage network represented by Faster R-CNN
is generally as lower than the others. Therefore, the two-stage
network is not adopted in this paper.

As one of the typical first-order algorithms, YOLO has
been improved over many generations. YOLO algorithms
have developed rapidly, including YOLOv1 with various
limiting accuracy problems, which was further improved
in YOLOv2 [25] and YOLOv3. Compared with YOLOv1,
YOLOv2 and YOLOv3, YOLOv4 has better performance
and uses tricks [26] to improve the accuracy. For example,
mosaic data augmentation, MISH activation function [27],
K-mean clustering algorithm [28], FPN-net [29],
PAN-net [30], SPP-net [31] and CSPdarknet53 are adopted
as backbones. In addition, ordinary researchers can use a
1080Ti GPU to train a YOLOv4 model, which is beneficial
to many scholars and is convenient for industry applications.
Factories do not need to spend a large amount of time
buying expensive hardware. Compared with the second-order
algorithms, one-order algorithms represented by YOLO can
meet the requirement for real-time detection [32].

For the original YOLOv4, if 416× 416 images are used as
the input of the backbone, the generated sizes of the feature
maps are (52,52,256), (26,26,512) and (13,13,1024) [33], and
will revert to the original size in the final prediction. The
bottom feature map of the backbone of the original YOLOv4
is (13,13), which passes the SPP structure after three convolu-
tions. The original SPP structure of YOLOv4 is different from
SPP-net, which has only three maximum pooling branches,
and the results are converted to a one-dimensional vector,
which then carries out full connecting classification. The SPP
structure in the original YOLOv4 uses four branches. In the
final output, the results of the four channels are superim-
posed, and the final number of channels is quadrupled. After
three convolutions, the number of channels is reduced and
then output to the FPN structure.

The original SPP uses Maxpool that maxs pooling for each
part, and solves the problem that the size of images inputted
into CNN should be fixed. The SPP structure can enlarge
the receptive field effectively, and the context features can
be obtained more comprehensively by combining a pooling
layer with different kernel sizes. The SPP structure has always
been an excellent solution for classification and detection
problems before the CNN appeared in [34]. The mAP of
YOLOv3-SPP is higher than that of its counterpart without an

SPP structure [35]. The pooling layer is the key component
of the CNN network, because the parameters required by the
network are greatly reduced, which can increase the receptive
field of subsequent convolutions [36], [37]. Most frameworks
adopt Max Pooling or AVG Pooling (average pooling). For
example, the SPP structure adopts three max pooling filters
with different kernel sizes, but max pooling will cause some
problems when selecting the maximum value from a specific
range (such as 3× 3). Although max pooling can reduce the
number of parameters, a large amount of information will be
lost in the selection process. In addition, you do not know
whether the information of the background or the target is
lost because it only selects the point with the most obvious
features as the representative of the neighborhood. If the
background is similar to the target, it is easy to lose useful
information. In the detection of fabric defects, as the defects
are very similar to the background, the use of max pooling in
SPP will affect the detection performance and has the risk of
losing important features. In contrast, although AVG pooling
takes into account all the features of the neighborhood and
retainsmore background information, the target feature inten-
sity of the region will be reduced, and the obvious features
will be ignored after the average is taken.

III. THE IMPROVED YOLOV4 AND IMAGE ENHANCEMENT
If a large amount of max pooling is used, such as an
SPP structure, the accuracy of the defect location will be
affected, which is very disruptive for the classification task
of fabric defects in which the targets are similar to the
backgrounds. It is likely, that owing to the use of maximum
pooling, YOLOv4 with three SPP structures has a lower mAP
than its counterpart with one SPP. The improved structure of
SPP is shown in Figure 2.

FIGURE 2. The structure of the improved SPP.

The improved SPP uses Softpool that selects the feature
map in proportion to the corresponding value of the element,
which avoids the advantage of Maxpool that misses some
details. In addition, the improved SPP is adopted after the
three feature maps are output by the backbone; the structure
is shown in Figure 3.

The improved YOLOv4 adopts the improved SPP based on
softmax, and three convolutions are added to the upper and
middle of the improved SPP that uses gradient information to

4286 VOLUME 10, 2022



Q. Liu et al.: Fabric Defect Detection Method Based on Deep Learning

FIGURE 3. The structure of the improved YOLOv4.

improve the training effect, which increases the computation
speed and reduces the running memory.

In order to input PANet (Path Aggregation Network) into
all the feature maps with the improved SPP structure, three
convolutions are added to the upper and middle of the
improved SPP, and the results are adjusted to (52,52,128) and
(26, 26,26,256). To reduce parameters and improve network
speed, 1×1Conv from the two backbone branches is removed,
which allows the data entered into the improved SPP structure
to contain more detailed information.

Compared to the original YOLOv4, the improved network
upgrades mAP by approximately 6%. Soft pooling [38],
as proposed by Stergiou, Poppe and Kalliatakis, can effec-
tively solve the problem of missing details in max pool-
ing. Soft pooling is similar to stochastic pooling [39] and
S3Pool [40], the latter two of which adopt the idea that the
elements of the feature map are selected according to the
probability value, namely, that the probability selected is
larger with a larger value of the element, which is not likemax
pooling, in which only the element with the largest value is
selected. This selection method can result in a random effect
that is good at times and also bad at times. Therefore, a better
and faster soft pooling based on softmax [41] is adopted to
replace max pooling in this paper; the mathematical expres-
sion is as follows:

∧
a =

∑
i∈R

wi ∗ ai (1)

where wi is the weight: wi =
eai∑
j∈R e

aj The significance of the

weight is that the larger the value of this point is, the higher
the influence on the result.

The advantage of soft pooling is that the method of filling
in 0 in soft pooling is different from soft pooling in the back
propagation phase, which differentiates it in having gradient
information to improve the training effect. Furthermore, the
running speed and memory occupied are less than those in
max pooling.

In this paper, similar to the IOU loss, 1− IOU is adopted
to replace the Euclidean distance, which is mathematically
expressed as follows:

distance (i, center) = 1− IOU (i, center) (2)

where distance (i, center) represents the Euclidean distance,
and IOU (i, center) represents the degree of overlap between
the cluster center and the box. In this paper, the width and

height parameters of the Gt BBox detected for fabric defects
are special, which is very different from the default anchor
of the COCO dataset in YOLOv4, because those boxes
only represent the anchor values of 20 classes. Therefore,
a K-means is executed several times and obtains many groups
of parameters, among which the width and height parameters
are averaged to obtain the anchor that is most appropriate
for a regression. The width and height of the 9 anchors are
(6.8,10.4), (8.7,355.3), (10.4,92.3), (14.6,19.5), (19.7,398.7),
(38.8,42.0), (78.7,111.0), (88.5,13.0) and (410.0,34.0),
respectively.

Part of the dataset selected in this paper is from Aliyun-
FD-10500, and the remainder is from Kaggle and the actual
photograph. The defect pictures and categories are shown
in Figure 4.

In Figure 4, there are many serious defects, such as the
WARP or WEFT defects. These defects, SPLICING, THICK
PLACE, THIN PLACE, NEEDLE_LINE, COARSE END
and COARSE PICK, have similar shapes, which are along
the direction of the warp and weft, and are long, thin and
slight. Therefore, the above defects are collectively called
LINE defects in this paper. They often appear in cloth, and
are considered a class in our classification task. FLOATS and
LADDER defects are less common than LINE defects but are
very destructive and almost impossible to repair or remove,
and have distinct features. Viewed from this angle, FLOATS
and LADDER defects are also collectively called FLOATS.
HOLES, KNOTS, NEPS and SNAGS are also commonly
found in fabric but they have small areas, perhaps only a few
pixels, accounting for a small proportion of the entire cloth,
which makes them difficult to detect. Because the features
among these defects are similar, these defects are collectively
called HOLE defects. In addition, the defects of COLOUR
BLEEDING, DYE MASKS and OIL STAIN are similar to
each other, and are collectively called STAINs. In general, the
above classification method meets the practical requirement
that a precise defect class need not be recognized, and only the
general classification is enough; that is, detecting the defect is
crucial and is differentiable from the defects crease and shade.

The reclassified dataset is flipped and blurred to increase
the total number of samples. The number of defect classes is
shown in Figure 5.

Figure 5 refers to the number of defects for the four
classes, not the number of images, because some images
may belong to different defects. The HOLE defects occupy
a much smaller area of pixels than other defects and are not
easy to detect. Therefore, HOLE defects should be given
more attention, and many HOLE defects are adopted in this
paper.

Images from the dataset are enhanced to highlight the con-
trast, which obviously improves the detection accuracy [42].
For image enhancements, many relative methods attempt to
highlight the form of defects in the background; the Canny
edge detection operator and Gabor filter are adopted to
enhance images [43]. However, there is no optimal method
for parameter selection. Finally, the method contrast-limited
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FIGURE 4. Classification of fabric defect.
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FIGURE 4. (Continued.) Classification of fabric defect.

FIGURE 5. Numbers of fabric defect classes.

adaptive histogram equalization is adopted, which results in
an improvement in the mAP of approximately 0.6%.

We carried out image enhancement on the images of the
dataset to highlight the contrast, and the image enhancements
can also slightly increase the detection accuracy. For image
enhancements, we attempted numerous enhancement meth-
ods to highlight the shape of the defect in the background.
We tried to use the Canny edge detection operator and the
Gabor filter to enhance the image but it is very difficult to find
an optimal method for parameter selection. Finally, we adopt
contrast-limited adaptive histogram equalization. The image
enhancement improves the mAP by approximately 0.6%.

CLAHE is an enhanced version of HE (histogram equal-
ization), which is a simple and effective image enhancement
method and can increase the contrast of images by adjusting
the image’s gray distribution. If the pixel value of the orig-
inal image is relatively concentrated in the gray histogram,
HE can increase the range of gray differences between pixels
to obtain a clearer image [44]. The effect of HE is shown
in Figure 6.

Although the images processed by HE are clearer and have
stronger contrasts, some of the gray levels of the enhanced
image will disappear, which leads to the loss of detail
information. Moreover, HE can result in excessive enhance-
ments [45], such as some regions where the brightness is very

FIGURE 6. Comparison of results of processed images.

low and the contrast is too large and become noise points after
images are processed by HE.

In Figure 7, the abscissa represents the gray value with
the range from 0 to 255, and the ordinate represents the
number of pixels with the gray value. Figure 7 (a) is the gray
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FIGURE 7. Gray level histogram comparison.

histogram of the original image, similarly, Figure 7 (b) is the
gray histogram after CLAHE. The comparison shows that the
gray value of Figure 7 (b) is more average and the contrast is
improved.

From the comparison, it can be concluded that the gray
level histogram of image processed by HE has more evenly
distribution in the entire range, namely that the values of
pixels in the original image are redistributed and the numbers
of pixels within certain grey bounds are roughly the same.

The effects of HE and CLAHE processing on images are
shown in Figure 8. CLAHE has a positive effect, and is
adopted in this paper. Most of the image pixels from the
dataset in this paper are 2560 × 1920 or 1984 × 1488,
which were processed by OpenCV. First, the input images are
grayed, and the three channels are processed by CLAHE if the
colorful images are used. However, the effect of the processed
images is not good. For the lighting conditions where the
original image was taken, improving the contrast of the three
channels leads to the appearance of a colored aperture in the
background, which can affect the training and recognition of
STAIN defects.

Based on the above analysis, the following plan is adopted
in which the grayscale image is used as input, which is then

FIGURE 8. The difference between HE and CLAHE.

processed by Gaussian filtering to eliminate noise, and then
further processed by CLAHE to obtain the final images.

IV. EXPERIMENT
The deep learning framework adopted in this paper is
PyTorch 1.2 based on the Windows 10 platform. The com-
puter configuration for this experiment is as follows: CPU:
Inter Xeon W-2245 with 3.90 GHz, GPU: NVIDIA Quadro
P4000, video memory: 8 GB, RAM: 64 GB, SSD: 512G.
The programming language is Python3.6, and OpenCV is
adopted for image processing. The parameters of image size
of the backbone, the learning_rate and the decay_rate are
set to 416 × 416, 0.001 and 0.93, respectively. A learning
rate of 0.93 indicates that the learning rate of each epoch
becomes 0.93 times that of the previous epoch. One thousand
epochs are trained, and the network trains the NECK part for
500 epochs by freezing, and the backbone epochs by unfreez-
ing. The setting for the parameter batch_size has been
adjusted several times based on the theory that the opti-
mal batch_size is between 2 and 32 [46]. batch_size is set
to 16 before freezing and then reset to 4 in consideration
of the computer configuration after thawing. The improved
SPP architecture requires testing to measure its improvement;
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some of the tricks, such as mosaic data augmentation and
cosine dependency schedulers [47], run well sometime and
are sometime unstable. After a thousand iterations, the loss
value fluctuates by approximately 0.4, which proves that the
model proposed in this paper has good performance and has
converged.

The detection results for fabric defects are displayed by
the index mAP in the VOC dataset to evaluate the accuracy
of the model; the visualization of each detection box is not
evaluated. Two indices, precision and recall, are often used to
evaluate the performance of target detection models, before
which they are adopted, and the threshold value of IOU
should be preset. When the degree of overlap between the
prediction box and the real box is greater than the threshold
value of IOU, the corresponding sample is called a positive
sample; Alternatively, the corresponding sample is called a
negative sample. The mathematical expression of the two
indices, precision and recall, is as follows:

precision =
TP

TP+FP
× 100% (3)

recall =
TP

TP+FN
× 100% (4)

where TP is the number of real positive samples, FP is the
number of false positive samples, FN is the number of false
negative samples.

Each of the two indices cannot evaluate the performance
separately, so the index AP is introduced, and the mathemat-
ical expression is as follows:

AP =
∫
R
P (R)dR (5)

where P indicates precision, R is recall and AP is the curve
integral of PR. AP represents the degree, which is the result
of the model’s prediction in the classification task. To obtain
the overall prediction degree, the mAP index needs to be
calculated. The formula is as follows:

mAP =

∑N
n−1 AP (n)

N
(6)

where N is the total number of classes, and mAP is between
0 and 1. The larger the mAP, the better the model perfor-
mance. The IOU threshold set in this paper is 0.5, which is
equivalent to AP.5 and is called AP50 in the COCO dataset.

In this paper, three performance indices, mAP, precision
and recall, are evaluated. In total, five algorithms, YOLOv4
with improved SPP and CLAHE, YOLOv4 with CLAHE,
the original YOLOv4, Faster RCNN and SSD [48], are com-
pared, and the results are shown in Table 1. For mAP and
FPS of the original and improved YOLOv4 are emphasis, and
theoretically, the FPS of SSD and Faster R-CNNmust be less
than the corresponding part of YOLOv4, so the FPS of these
two are not tested.

Table 2 and Table 3 show that, compared with the original
YOLOv4, the improved YOLOv4 proposed in this paper has
improved greatly. For the small fabric defect HOLE, the
improved YOLOv4 greatly increases the recall and precision.

FIGURE 9. The images of loss function.

TABLE 1. Experimental results of five algorithms for all classes.

However, neither the original YOLOv4 nor the improved
YOLOv4 effectively improved recall, which suggests that the
defect LINE is similar to the background, which means that
BBox has a low degree of overlap with GT BBox. Although
it correctly detects the target, resulting in an excessively
low recall. Most importantly, YOLOv3-SPP3 with three SPP
structures has a mAP increase of only 0.9%, compared with
YOLOv3-SPP1 with one SPP structure; however, the rate of
reasoning decreases by 10 ms [49]. In striking contrast, the
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FIGURE 10. Detection results of each algorithm.

improved YOLOv4 with three SPP structures can improve
mAPwhile decreasing FPS, with small changes in amplitude.

The loss function curve of the improved algorithm is shown
in Figure 9.

4292 VOLUME 10, 2022



Q. Liu et al.: Fabric Defect Detection Method Based on Deep Learning

FIGURE 11. Detection results of the original YOLOv4 and improved YOLOv4.
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TABLE 2. Detection performance of the improved YOLOv4 for each class
on the validation set of our dataset.

TABLE 3. Detection performance of the original YOLOv4 for each class on
the validation set of our dataset.

After 1000 iterations, the final total loss of the model
stabilized at approximately 0.4, and the loss of the value set
stabilized at approximately 6. The loss of the model shows
a downward trend, which proves that our model is learning.
In the later stage, we used SGD to manually adjust the learn-
ing rate to further reduce the loss. The detection effects of all
the algorithms are shown in Figure 10.

The above detection results show that whether the area
of defect is big or small, the accuracy of the improved
YOLOv4 has been improved a lot compared with the other
algorithms. And it can be concluded that compared with the
other first-order and second-order algorithms, YOLOv4 owns
excellent performance.

The detection results of the original YOLOv4 and the
improved YOLOv4 are shown in Figure 11.

For the detection time for the same image, the orig-
inal YOLOv4 takes 42ms while the improved YOLOv4
takes 48ms, which are both short. So video streaming from
PC computer can be detected easily by 20FPS.

The above detection results further proves that the
improved YOLOv4 owns stable and higher accuracy, such
as for (D) and (H), the original YOLOv4 and the improved
YOLOv4 has the same detection accuracy 0.98. But for the
other defects, the improved YOLOv4 to varying degrees
increases the detection accuracy.

V. CONCLUSION
The model proposed in this paper has been improved for
small cloth defect areas that are close to the background
shape, and has overcome the low efficiency of the traditional
manual detections. Compared with the original YOLOv4,
the improved YOLOv4 upgrades mAP by 6%, while FPS
only decreases 2. Based on extensive research and a detailed
analysis of fabric defects, our network model is the most
suitable for fabric defect detection. First, we redivided the
anchor according to the characteristics of the defects and took
average values to make the anchor more suitable for the appli-
cation. Then, we usedCLAHE to process the image to remove
irrelevant color information and highlight the contrasts in the
image. Finally, we improved the SPP structure by using soft
pooling instead of max pooling. The improved SPP structure
is used for each feature map. In fact, SPP structure greatly
improves the performance of YOLO model. From YOLOv3-
SPP to YOLOv4, YOLOv5 andYOLOX, thesemodels all use
SPP structure. In YOLOX, SPP structure is put into the back-
bone. The improvement for the SPP structure in this paper can
also be applied in the other YOLO models and theoretically
owns the similar effect. Defects from different materials often
own many similar characteristics. Cracks on steel and road
surface are similar to LINE and FLOAT in fabric defects, and
shadows in medical images are similar to HOLE and STAIN
in fabric defects. Therefore, the improved YOLOv4 proposed
in this paper can be extended to other surface defect detection
fields, among which batch detection of wood surface defects
is one example. The model proposed in this paper has high
precision and excellent real-time performance, and can be
effectively applied for defect detections in industrial fabrics.
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