
Received December 11, 2021, accepted December 29, 2021, date of publication January 4, 2022, date of current version January 13, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3140083

Non-Ionic Deep Learning-Driven IR-UWB
Multiantenna Scheme for Breast
Tumor Localization
PATTARAPONG PHASUKKIT , (Member, IEEE)
School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

e-mail: pattarapong.ph@kmitl.ac.th

This work was supported in part by the King Mongkut’s Institute of Technology Ladkrabang (KMITL) Research and Innovation Services
(KRIS) of King Mongkut’s Institute of Technology Ladkrabang.

ABSTRACT This research proposes a deep learning-driven impulse radio ultra-wideband (IR-UWB)
multiantenna scheme for non-ionic breast tumor localization. The structure of the multiantenna scheme
consists of one side slot Vivaldi transmitting (Tx) and nine side slot Vivaldi receiving (Rx1 – Rx9) antennas.
To mitigate the attenuation and improve the diagnostic accuracy, the multiantenna scheme is rotated
clockwise in 90◦ increments around the breast, with the angular position of the Tx antenna of 0◦, 90◦, 180◦,
and 270◦. The deep learning algorithm is utilized to detect and localize the breast tumor, with 17 classification
outputs, consisting of classifications 1 – 16 which correspond to 16 vertically discretized segments of the
breast and classification 17 for cancer-free. Experiments were carried out using heterogenous breast replicas
with a tumor of 1 cm in diameter, and the breast replicas possess the dielectric property and Hounsfield
units (HU) similar to those of human breasts. The experimental results were compared with the computed
tomography (CT) scan images. The results reveal that the multiantenna scheme could efficiently detect and
accurately localize the breast tumor for nearly all classifications, with the total accuracy (average of F1
scores) of 99.11 %. Specifically, the novelty of this research lies in the use of deep learning with the IR-
UWB technology to effectively localize breast tumors.

INDEX TERMS Deep learning, breast tumor localization, IR-UWB, multiantenna, breast replica.

I. INTRODUCTION
Globally breast cancer is one of the leading causes of
untimely death for women, claiming more than 1.8 million
lives annually [1]. As a result, early detection of breast cancer
or tumors is critical to effective treatment, given a 97 %
survival rate [2].

Existing ionic cancer diagnostic technologies, including
X-ray mammography, computed tomography (CT), and
magnetic resonance imaging (MRI), normally yield low-
resolution images and require human interpretation, render-
ing it susceptible to interpretation error. Besides, the ionic
cancer diagnostic technologies subject the patients to ionizing
radiation. Specifically, when ionizing radiation interacts with
cells, it can cause damage to the cells and genetic material
(i.e., deoxyribonucleic acid or DNA). Such damage can result
in cell death or harmful changes in theDNA. The detectability
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of the existing diagnostic technologies is also impeded
for tumors residing deep inside the breast. Furthermore,
the diagnostic time of the ionic technologies is relatively
lengthy.

In [3] and [4], a combination of X-ray mammography and
MRI was employed to diagnose patients with benign and
malignant tumors. The combined scheme however achieved
an accuracy rate of merely 75.6 %, revealing certain flaws
inherent in the current technologies (i.e., expertise and
experience of the radiologists). Meanwhile, to address the
issue of ionization associated with the ionic cancer diagnostic
technologies, non-ionizing diagnostic techniques based on
microwave imaging (MWI, 0.3 – 300 GHz) and terahertz
(THz, 0.3 – 10 THz) radiography have been developed
and proposed as an alternative to the existing diagnostic
techniques [5]. The MWI and THz technologies produce
high-resolution images but the technologies are complex and
cumbersome [6].
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Unlike the ionic diagnostic systems, the non-ionizing
THz radiography causes minimal harm to human health,
particularly in the lower frequency band; and is sensitive to
water-absorption tissue cells. However, the THz radiography
encounters several drawbacks, including high attenuation due
to low transmitting power of less than one µW per dose
and black body radiation at room temperature. Besides, the
ionization risks increase with increase in THz frequency.
In comparison, the THz radiography is more complicated and
costlier than MWI [7].

In [8], ultra-wideband (UWB) microwave imaging with
Bayesian inverse scattering algorithm was proposed for
detection of breast tumors. In [9], simulations were carried
out using electromagnetic (EM) waves with a feed-forward
backpropagation neural network model to detect and localize
early-stage breast cancer/tumors.

In [10], support vector machine (SVM)-based UWB
technology was used to classify breast tumors into two
categories: cancerous and cancer-free. In [11], the authors
investigated the cancer growth over time using SVM based
on UWB backscattered signals from successive scans of a
dielectrically heterogeneous breast.

In [12], radar-based UWB microwave imaging was first
applied to clinically diagnose breast tumors in patients.
In [13], radar-based UWB technology was used to detect
tumors of varying sizes in breast replicas, with the smallest
tumor of 1 cm in diameter. In [14], the convolution neural
network (CNN) was used to diagnose medical images of
breasts for tumors. In [15] and [16], the UWB technology
together with K-nearest neighbors was used to detect the
presence of breast cancer, but the technology is unable to
localize the cancerous cells.

In [17], UWBmicrowave imagingwas used to visualize the
locations of cancer in breast replicas. In [18], an SVM-based
flexible antenna scheme that fits the breast configuration was
proposed to detect breast tumors. In [19], the UWB radar
system with SVM was proposed to detect breast tumors of
varying shapes and sizes.

Specifically, the ionizing radiation technologies, e.g.,
X-ray mammography, MRI, and CT scan, yield low-
resolution images and chiefly rely on human interpretation
for diagnostic results. Besides, the ionic technologies subject
the patients to ionization risks and potential health hazards.
Meanwhile, the capability of the existing non-ionizing UWB
technologies for breast tumor detection, e.g., SVM, K-nearest
neighbors-based schemes, are severely limited.

The rationale behind using impulse radio ultra-wideband
(IR-UWB) signal for breast tumor localization is that
the IR-UWB technology is low-cost and non-ionic, with
high-resolution image quality. IR-UWB propagates short-
pulse microwave signal with high penetration, rendering
it operationally applicable to detecting small tumors in
the breast. In addition, the IR-UWB technique identifies
the breast tumor by the differential between the dielectric
constants of the malignant and normal tissues (by the ratio
of 5:1); and by the differential between the conductivity

FIGURE 1. The proposed IR-UWB multiantenna scheme: (a) Tx and Rx1 –
Rx9 antennas with breast outline, (b) the schematic of the proposed
multiantenna scheme with the main components.

of the malignant and normal tissues (by the ratio
of 10:1) [20]–[23].

As a result, this research proposes a non-ionic deep
learning-driven IR-UWB multiantenna scheme to detect
and localize breast tumors. The proposed multiantenna
scheme consists of one transmitting and nine receiving
antennas. Unlike the existing breast tumor detection schemes,
deep learning algorithm is incorporated into the proposed
multiantenna scheme to efficiently detect and accurately
localize the breast tumor. In addition, experiments were
carried out using heterogenous breast replicas and results
compared with the CT scan images.

II. IR-UWB MULTIANTENNA SCHEME FOR BREAST
TUMOR LOCALIZATION
The structure of the proposed IR-UWBmultiantenna scheme
for breast tumor localization is of 10 side slot Vivaldi
antennas, consisting of one transmitting (Tx) antenna and
nine receiving (Rx) antennas (Rx1 – Rx9), as shown in
Fig. 1(a). The antennas (Tx and Rx1 – Rx9) are uniformly
and angularly arranged (individually at 36◦) to encircle the
patient’s breast during diagnosis. In this research, the Tx and
Rx antennas are of side slot Vivaldi type, following [29],
with the impedance bandwidth between 2.8-7.0 GHz and the
antenna gain of 6 dBi (Table 3). The antenna substrate is of
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Rogers RT/duroid 5870, with 35µmcopper on either side and
1.57 mm in height. The relative permittivity and loss tangent
of the substrate are 2.33 and 0.0012.

The inner diameter of the multiantenna scheme is
adjustable to fit the patient’s breast, with the largest inner
diameter of 10 cm. In the experiment, the tumor size is 1 cm
in diameter [14].

In Fig. 1(b), the Tx antenna is connected to an IR-UWB
source (Anritsu MP1763C), and the Rx1 – Rx9 antennas
are connected to an RF-Switch (DOW-Key Microwave 5A1-
5208). The signals fromRx1 – Rx9 antennas are subsequently
fed to a digital oscilloscope (Tektronix TDS7404B) whose
function is to convert analog to digital signal (ADC). The
walls of the multiantenna scheme are lined with the anechoic
absorbers.

In the breast tumor diagnosis, the 10 antennas (Tx and
Rx1 – Rx9) of the proposed multiantenna scheme are rotated
clockwise by a stepping motor in 90◦ increments around
the breast, consisting of four rotating steps with the angular
position of the Tx antenna at 0◦ for the first rotating step,
at 90◦ for the second rotating step, at 180◦ for the third
rotating step, and at 270◦ for the last rotating step. Since
attenuation increases with the distance between the Tx
antenna and tumor, the circular rotation of the Tx antenna
is utilized to mitigate the attenuation of transmitting signals
while improving the tumor detection accuracy.

Given the nine Rx antennas (Rx1, Rx2, Rx3, . . . , Rx9)
and four angular positions of Tx antenna (0◦, 90◦, 180◦,
270◦), the number of received signals of the multiantenna
scheme is 36 per round of scanning of one single breast (i.e.,
36 received signals per round per breast). In addition, deep
learning algorithms are utilized to efficiently localize breast
tumors.

Fig. 2 shows the IR-UWB signal in time and frequency
domain. In this research, the IR-UWB signal is generated by
a pulse/pattern generator (Anritsu MP1763C) with a pulse
width 0.56 ns. The pulse repetition frequency (PRF) as
measured by the digital oscilloscope (Tektronix TDS7404B)
is 20 MHz, and the amplitude of the operating frequency is
verified by a spectrum analyzer (Anritsu MS8609A). The IR-
UWB bandwidth is between 110MHz – 3.125 GHz, given the
Federal Communications Commission’s (FCC) normalized
magnitude of ≥ −10 dB. The fractional bandwidth is 1.864,
given the FCC’s UWB criterion of ≥0.25. As a result, the
transmitting signal emitted from the Tx antenna is of UWB.

Fig. 3 graphically illustrates the diagnosis of breast tumor
using the non-ionic IR-UWBmultiantenna scheme where the
patient lies on top of the proposed multiantenna scheme in
the prone position. The multiantenna scheme for breast tumor
localization is outfitted from the underneath through the
opening in the examination bed. In the breast tumor diagnosis,
the non-ionic multiantenna scheme is hydraulically lifted
from underneath the examination bed and fitted to either
breast. Once the examination is complete, the antenna scheme
is hydraulically retracted and motioned to fit the other breast.
The examination time is between 1 – 2 minutes per breast.

FIGURE 2. Impulse radio ultra-wideband (IR-UWB) signal in time domain
and frequency.

FIGURE 3. The diagnosis of breast tumor using the non-ionic deep
learning-driven IR-UWB multiantenna scheme.

Fig. 4 illustrates the operation principle of the deep
learning-driven IR-UWB multiantenna scheme for breast
tumor localization. The multiantenna scheme consists of one
Tx and nine Rx1 – Rx9 antennas encircling the diagnostic
breast. This research used the breast replicas of semicircular
shape with almost identical dielectric properties [24] and
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FIGURE 4. The operation principle of the deep learning-driven IR-UWB
multiantenna scheme for breast tumor localization.

Hounsfield units (HU) [25]–[27] to those of the real women’s
breasts. The HU is a relative quantitative measurement of
radio density used by radiologists in the interpretation of CT
images.

As shown in Fig. 3, given the Tx angular position of 0◦, the
Tx antenna first transmits IR-UWB signal (2.0 – 7.0 GHz)
through the breast replica to the nine Rx antennas
(Rx1 – Rx9). The received signals are then independently
processed by the deep learning algorithms of nine different
receiving antennas. Specifically, the received signals (i.e.,
input data) of Rx1, Rx2, . . . , Rx9 are independently
processed by the deep learning algorithm of Rx1, Rx2, . . . ,
and Rx9, respectively. Each Rx antenna (Rx1 – Rx9) yields
17 classification outputs (i.e., 17 classifications), consisting
of classifications 1 – 16 which correspond to locations
1 – 16 of the tumors in the breast replicas and classification
17 for cancer-free. The aforementioned procedure is repeated
at Tx = 90◦, 180◦, and 270◦. In this research, the
breast is vertically discretized (along the breast length)
into 16 segments and labeled classifications 1 – 16. The
segmentation of the breast is to be discussed in subsequent
section.

In the operation, the received signal by each receiving
antenna (Rx1, Rx2, Rx3, . . . , Rx9) at Tx = 0◦, 90◦, 180◦,
and 270◦ is individually converted by the digital oscilloscope
(Tektronix 7404B) into 50,000 data points. For example, the
received signals by the Rx1 antenna at Tx = 0◦, 90◦, 180◦,
and 270◦ are individually converted into 50,000 data points,
i.e., 50,000 data points each for Tx= 0◦, 90◦, 180◦, and 270◦.
The data points of each receiving antenna (50,000 data points)
at different Tx angular positions (0◦, 90◦, 180◦, and 270◦) are
the data input (i.e., feature) of the deep learning algorithm
of the respective receiving antenna, and there are 50,000
input nodes for each receiving antenna. The number of deep
learning output nodes for each receiving antenna (Rx1, Rx2,
Rx3, . . . , Rx9) at each Tx angular position (0◦, 90◦, 180◦,
and 270◦) is 17 (i.e., 17 classifications), corresponding to
locations 1 – 16 of the tumor in the breast replicas and classifi-
cation 17 for cancer-free. The deep learning outputs are in the
probabilistic form, indicating the probability of the presence
or absence of tumor in different locations of the breast.

III. BREAST REPLICAS AND DIELECTRIC PROPERTIES
In this research, the fabrication of heterogenous breast
replicas followed [28], [29], consisting of four layers: skin,

TABLE 1. Composition of the heterogeneous breast replica [24].

fat, gland, and tumor. Table 1 tabulates the composition of
the four layers of the heterogenous breast replicas. In the
development of breast replicas, the materials (Table 1) were
mixed thoroughly in a vat thermally treated at approximately
60◦C for 5 min. The mixtures were sequentially transferred to
amold (startingwith the skin layer, fat layer, gland and tumor)
and left to cool down to room temperature (25◦C). A vector
network analyzer (VNA, HP 8720B) was used to measure the
reflection coefficients (S11) of different tissue layers of the
breast replica, and the dielectric properties of different tissue
layers were determined following [29].

In the measurement of S11 of different tissue layers of
the breast replica, the VNA with an open-ended coaxial
probe, given the UWB frequency of 2.0 – 7.0 GHz, was
used to determine the reflection coefficients (S11). Prior to
the measurement, the open-ended coaxial probe was first
calibrated by using the calibration kit. The S11 of distilled
water was subsequently measured using the calibrated VNA,
given the known dielectric (εc) of 80 [30]; and the complex
admittance (Yadmittance) of distilled water was determined by
using (1) [31]. Substituting Yadmittance and εc in (2) yields the
constant values C0 and G0, which were subsequently used
to calculate the dielectrics of different tissue layers of the
cancer-free breast replica.

The dielectrics of different tissue layers of the breast
replica (i.e., skin, fat, gland, tumor) were independently
determined. Specifically, the dielectric of the skin of the
breast replica was first determined, separately followed by
those of fat, gland, and finally tumor (Table 1).

In determining the dielectrics of different tissue layers, the
S11 of different tissue layers (skin, fat, gland, tumor) were
first measured using the VNA, given 2.0 – 7.0 GHz; and their
respective complex admittance (Y ) were determined by using
(1), where Yprobe is the admittance of the probe which is equal
to 0.02 (i.e., 1/50 �)

Y = Y0
1− S11
1+ S11

(1)
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TABLE 2. Dielectric and hounsfield unit of different tissue layers of the
real breast and breast replica.

To calculate the dielectrics (εc) of different tissue layers
of the breast replica, substitute Yadmittance, C0 and G0 in (2),
where εc = ε′r − jε′′r where ε′r is the real part of dielectric
(i.e., permittivity) and jε′′r is the imaginary part of dielectric
(i.e., conductivity or the loss factor) [32].

Y = jωεcC0 +
√
ε
5
cG0 (2)

where [33].

C0 =
(
1.04709527791738× 10−15

)
−j(9.14281380831597×10−15),

G0 =
(
1.94797446126132×10−7

)
−j(5.70866416183116×10−8),

and ω = 2π f where f is the frequency range between
2.0 – 7.0 GHz.

For ease of calculation of εc in (2), go to www.wolf
ramalpha.com to access the Mathematica software for online
solving of the complex equation free-of-charge. The software
always returns three values of εc, consisting of one positive
and two negatives. Since the dielectric must be a positive
value, the positive εc is selected for different tissue layers of
the breast replica.

Table 2 tabulates the dielectric properties and Hounsfield
unit (HU) of different tissue layers of the real breast
and breast replica. The HU is a relative quantitative
measurement of radio density used by radiologists in the
interpretation of CT images. As shown in the table, the
dielectric properties (permittivity and conductivity) and HU
of the breast replica closely resemble those of the real
breast, indicating that the breast replica could be used as
substitute for the real breast in the breast tumor localization
experiments.

FIGURE 5. The deep learning algorithm for breast tumor localization:
(a) the algorithmic scheme, (b) the vertically discretized breast into
16 segments.

IV. DEEP LEARNING ALGORITHM FOR BREAST TUMOR
LOCALIZATION
A. DEEP LEARNING ALGORITHM AND DISCRETIZED
BREAST
In this research, the deep learning algorithm consists of three
principal layers: the input layer (feature), hidden layer (four
hidden layers in total), and output layer (target), as shown in
Fig. 5 (a). In the input layer, there are 50,000 nodes for each
received signal from each Rx antenna (Rx1, Rx2, . . . , Rx9) at
each Tx angular position (0◦, 90◦, 180◦, 270◦).
The input (50,000 data points) are fed into the first hidden

layer, given the weight and bias of W1 and B1; and there are
100 nodes in the first hidden layer. The output of the first
hidden layer are then fed into 80 nodes of the second hidden
layer, given W2 and B2. The output of the second hidden
layer are fed into 60 nodes of the third hidden layer, given
W3 and B3; and subsequently to the fourth hidden layer with
30 nodes, given W4 and B4. The weight and bias (W and B)
for each Rx antenna (Rx1, Rx2, . . . , Rx9) at each Tx angular
position (0◦, 90◦, 180 ◦, 270◦) are independently opti-
mized by gradient descent iterative optimization algorithm.
The hyperbolic tangent (Tanh) is the activation function in
the four hidden layers, with the values between [−1,1].
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FIGURE 6. The data structure of the proposed deep learning algorithm at
any given Rx antenna (Rx1, Rx2, . . . , or Rx9) and angular Tx position (i.e.,
0◦, 90◦, 180◦, or 270◦).

In the output layer (target), there are 17 output nodes
(Y1 – Y17) for each Rx antenna (Rx1, Rx2, . . . , Rx9) at each
Tx angular position (0◦, 90◦, 180◦, 270◦), with SoftMax as the
activation function. The output nodes Y1 – Y17 correspond
to classifications 1 – 17, where classifications 1 – 16 refer to
locations 1 – 16 of the tumor in the breast and classification
17 to cancer-free. The deep learning outputs of the output
nodes Y1 – Y17 are in probabilistic values. Specifically, the
breast is vertically discretized (along the breast length) into
16 segments (Y1 – Y16) and labeled classifications 1 – 16,
as shown in Fig. 5 (b).

Fig. 6 illustrates the data structure of the deep learning
algorithm of any given Rx antenna (Rx1, Rx2,. . . , or Rx9)
and any given Tx angular position (0◦, 90◦, 180◦, or 270◦).
In the Fig., the orange-hued cells, as an example, represent
the total input data (feature) of Rx1 antenna at Tx = 0◦,
and the rows in ascending order correspond to classifications
1 – 17. In other words, the first 16 rows correspond to the
16 discretized segments of the breast (Y1 – Y16) and the last
row corresponds to classification 17, which is free of cancer.
Each row of orange-hued cells, representing one received
signal, consists of 50,000 data points. The data points are
independently processed by the deep learning algorithms of
the respective receiving antennas. In other words, the input
data of Rx1, Rx2, . . . , and Rx9 are independently processed
by the deep learning algorithms of Rx1, Rx2, . . . , and Rx9,
respectively.

In the diagnosis, the multiantenna scheme is rotated
clockwise by the stepping motor, with the Tx antenna
angularly positioned at 0◦, 90◦, 180◦, and 270◦. As a
result, the total number of datasets for one Rx antenna

(Rx1, Rx2, . . . , or Rx9) at four Tx angular positions is 68,
consisting of 17 datasets each for Tx at 0◦, 90 ◦, 180◦, and
270◦, where one dataset corresponds to one classification
(i.e., classifications 1, 2, 3. . . , 17).
Prior to training and testing the algorithms, the number

of datasets for each Rx antenna at four Tx positions
are deliberately mimicked 100 times using additive white
gaussian noise (AWGN) to 6800 datasets. The additive
datasets (6800 datasets) of each Rx antenna at four Tx
positions are subsequently divided into two groupings:
training (80 %) and testing (20 %). As a result, the training
and testing groupings consist of 5440 and 1360 datasets,
respectively. Given 17 classifications of the deep learning
outputs (classifications 1 – 17), there are 3200 datasets per
classification (5440 ÷ 17) for training and 80 datasets per
classification (1360 ÷ 17) for testing the deep learning
algorithm.
In the training, the weight (W) and bias (B) of the hidden

layers of the deep learning algorithm (W1, B1, W2, B2,
W3, B3, W4, B4) are optimized by gradient descent iterative
optimization algorithm, given the learning rate (α) and epoch
of 0.1 and 1000, respectively. Besides, in the training process,
L1-norm regularization is used to avoid overfitting due to
excessive data points (50,000 data points per Rx signal), and
the iteration is terminated once the cross-entropy loss of the
training- and testing-datasets diverge.
In addition, prior to the training and testing the deep learn-

ing algorithm, the training and testing datasets (both input and
output datasets) are normalized using standardization in (3)

Standardization =
Dataset −Mean of Dataset

SD
(3)

where Dataset is input and output datasets (i.e., Xtrain, Ytrain,
Xtest , Ytest ), Mean of Dataset is the mean value of input and
output datasets, and SD is standard deviation.

In the feedforward, the hyperbolic tangent function
(tanh(z)) is the activation function between hidden layers,
as shown in (4) where tanh(z) = [−1,1]. The activation
function Softmax(z) is used in the output layer, as shown in
(5), where z is the linear combination (6). The deep learning
output is in probabilistic values.

tanh (z) =

(
ez − e−z

)(
ez + e−z

) (4)

Ŷn = Softmax (z) =
ezi∑k
j=1 e

zj
(5)

Z =


z1
z2
...

zN

 =

x11w1 x21w2 . . . xD1 wD
x12w1 x22w2 . . . xD2 wD
...

...
...

...

x1Nw1 x2Nw2 . . . xDNwD


+
[
B1 B2 . . . BD

]
(6)

In the backpropagation, the cross-entropy between the
normalized training output dataset (Ytrain;Yn) and pre-
dicted normalized output (Ŷn) is first calculated using (7).
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FIGURE 7. The schematic of the multiantenna scheme at four Tx angular
positions: (a) Tx = 0◦, (b) Tx = 90◦, (c) Tx = 180◦, (d) Tx = 270◦.

The gradient descent iterative optimization algorithm is
applied to optimize W and B by using (8) and the chain rule
derivative.

J (w) = −
1
N

∑N

n=1
(Yn log (Ŷn)) (7)

where Yn is true output value and Ŷn is predicted output value.

∂J (w)
∂Wi

and
∂J (w)
∂Bi

(8)

where i = 1, 2, 3, 4 corresponding to W1,B1,W2,

B2,W3,B3,W4,B4; and the derivative of the tanh(z) activa-
tion function for hidden layers is expressed in (9).

∂[tanh (z)]
∂z

= 1− (tanh(z))2 (9)

Fig. 7 (a) – (d) illustrate the schematics of the proposed
deep learning-driven IR-UWB multiantenna scheme for
breast tumor localization at four Tx angular positions
(0◦, 90◦, 180◦, 270◦), respectively. In the diagnosis, the
multiantenna scheme is rotated clockwise in 90◦ increments
and the scanning is carried out, given the Tx angular positions
of 0◦, 90◦, 180◦, and 270◦.
Fig. 8 illustrates the diagram of the deep learning

algorithm of the proposed IR-UWB multiantenna scheme by
classification (classifications 1, 2, . . . , or 17) for any given
Rx antenna (Rx1, Rx2,. or Rx9) at Tx of 0◦, 90◦, 180◦, and
270◦. Take the Rx1 antenna as an example. Following Fig. 8,
the received signals byRx1 antenna at Tx of 0◦, 90◦, 180◦, and
270◦ are first normalized and then input into the deep learning
algorithmic scheme to derive the summation of probabilistic
values by classification at Tx of 0◦, 90◦, 180◦, and 270◦ of
Rx1 antenna.

FIGURE 8. The diagram of the deep learning algorithm by classification
(classifications 1, 2, . . . , or 17) for any given Rx antenna (Rx1, Rx2,. or
Rx9) at Tx of 0 ◦, 90◦, 180◦, 270◦.

Specifically, The probabilistic values of classification 1 of
Rx1 antenna at four Tx angular positions (0◦, 90◦, 180◦, and
270◦) are summed up to obtain the combined probabilistic
values of classification 1 of Rx1 antenna. The probabilistic
values of classification 1 of Rx1 antenna at Tx of 0◦, 90◦,
180◦, and 270◦ are then retained in the computer memory.
The same procedure is applied to derive the probabilis-
tic values of the remaining classifications (classifications
2 – 17) at the four Tx angular positions of Rx1 antenna.
The probabilistic values of classifications 2 – 17 of Rx1
antenna at four Tx angular positions are summed up to obtain
the combined probabilistic values of classifications 2 – 17
of Rx1 antenna. The aforementioned procedure yields the
total probabilistic values for 17 classifications (classifications
1 - 17) of Rx1 antenna, given Tx of 0◦, 90◦, 180◦, and 270◦

(i.e., SubtotalRx1).
In the operation, apart from those of classifications

1 – 17 of Rx1 antenna (as discussed above), the probabilistic
values of classifications 1 – 17 of each of the remaining Rx
antennas (Rx2 – Rx9) at four Tx angular positions (0◦, 90◦,
180◦, 270◦) are also independently summed up to obtain the
combined probabilistic values of classifications 1 – 17 of
Rx2 – Rx9 antennas. Likewise, the aforementioned procedure
yields the total probabilistic values for 17 classifications of
Rx2 – Rx9 antennas, given Tx of 0◦, 90◦, 180◦, and 270◦

(i.e., SubtotalRx2 – SubtotalRx9).
Furthermore, the combined probabilistic values by classi-

fication (classifications 1 – 17) of all nine receiving antennas
(Rx1 – Rx9) are tallied to obtain the grand total probabilistic
values by classification of the proposed multiantenna scheme
(i.e., GrandTotal). There are 17 GrandTotal values by
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FIGURE 9. The overall schematic of the proposed deep learning
algorithmic scheme for breast tumor localization.

classification, corresponding to the 16 discretized segments
of the breast (classifications 1 – 16) and classification 17 for
cancer-free. In the breast tumor localization, the deep learning
algorithm selects the classification with the maximum
probabilistic value (i.e., maximum GrandTotal). Fig. 9 shows
the overall schematic of the proposed deep learning algorithm
for breast tumor localization.

B. DEEP LEARNING ALGORITHM EVALUATION
The tumor localization performance of the proposed deep
learning-driven IR-UWB multiantenna scheme is evaluated
using the testing datasets. There are 8 datasets per classifica-
tion for testing the algorithm, given 17 classifications (classi-
fications 1 – 17) where classifications 1 – 16 correspond to the
16 discretized segments of the breast and classification 17 for
cancer-free. (Note: See sub-section A above for details of the
testing datasets.) In this research, the performance metrics
include F1 score and total accuracy (average of F1 scores).

F1 score is a value that indicates the classification
performance of an algorithmic model based on Precision (10)
and Recall (11). The F1-score and total accuracy (average of
F1 scores) can be calculated by (12) and (13), respectively.

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.

In this research, true positive (TP) means that the
deep learning algorithm is able to detect and correctly
localizes the tumor for classifications 1 – 16 (corre-
sponding to the 16 discretized segments of the breast).
Meanwhile, for classification 17, TP means that the deep
learning algorithm correctly identifies the breast as cancer-
free. As previously stated, the breast tumor locations
correspond to the 16 discretized segments of the breast
(classifications 1 – 16).

False positive (FP), in case of classifications 1 – 16, means
that either (a) the deep learning algorithm is able to detect
the tumor but erroneously localizes it (for example, the actual
location of the tumor is in segment 1 of the discretized breast,
but the algorithm localizes the tumor to be in any other
segment (i.e., segments 2 – 16) except segment 1); or (b) the
algorithm fails to detect the tumor and consequently wrongly
assigns the diagnostic breast to classification 17 (cancer-
free). Meanwhile, in case of classification 17, FP means that
the deep learning algorithm erroneously identifies the cancer-
free breast as cancerous breast.

False negative (FN) means that, in case of classifications
1 – 16, the deep learning algorithm is able to detect the
tumor but erroneously localizes it (for example, in FN (which
is contrary to FP), the algorithm returns segment 1 as the
tumor location although the actual location of the tumor is
in other segments (segments 2 – 16). Meanwhile, in case of
classification 17, FN means that the deep learning algorithm
fails to detect the tumor and thus erroneously identifies the
breast as cancer-free.

F1 Score

= 2x
Precision ∗ Recall
Precision+ Recall

(12)

Total Accuracy (average F1 Score)

=
(F1 Score (class 1)+ (F1 Score (class 2)

17

×
+(F1 Score (class 3)+ . . . (F1 Score (class 17)

17
(13)

V. IN VITRO EXPERIMENTAL SETUP
Table 3 tabulates the models and specifications of the
components and equipment used in the prototype of the
deep learning-driven multiantenna scheme for breast tumor
localization, as shown in Fig. 10 (a). Fig. 10 (b) illustrates
the in vitro experimental setup with breast replica, where the
beige color, white color, green color, and blue dot represent
the skin layer, fat layer, gland layer, and tumor, respectively.

In the in vitro experiment, IR-UWB signals, with an
amplitude and pulse width of 1.5 Vp-p and 0.35 ps, are first
generated by the pulse generator. The IR-UWB signal is then
isolated by the directional coupler into two signals. The first
isolated signal is attenuated by −10 dB and fed into the
four-channel digital oscilloscope via channel 1 of the digital
oscilloscope, while the other unattenuated isolated signal is
the input of the Tx antenna.

The signal from the Tx antenna is transmitted through the
breast replica to the nine receiving antennas (Rx1 – Rx9). The
received signals by Rx1 – Rx9 antennas are then sequenced
by the RF-Switch and fed into the digital oscilloscope via
channel 3. The signal data are subsequently retained in the
computer via USB-GPIB for subsequent classification by the
deep learning algorithmic scheme to localize breast tumor.

Fig. 11 depicts, as an example, the experimental breast
replicas without and with cancerous cells in different tissue
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FIGURE 10. The proposed non-ionic deep learning-driven IR-UWB
multiantenna scheme: (a) prototype of the antenna scheme, (b) in vitro
experimental setup with breast replica.

layers of the breast, where the beige color, white color, green
color, and blue dot represent the skin layer, fat layer, gland
layer, and tumor, respectively.

Fig. 12 shows the experimental CT scan machine (Siemens
model SOMATOM confidence (512 × 512 slide), KVP
(kilovoltage peak) = 120 kVp, generated power = 36 W,
exposure = 70 mR, slice thickness = 3 mm) with breast
replicas. The 2D CT images are compared with the tumor
localization by the proposed deep learning-driven IR-UWB
multiantenna scheme, and the results are discussed in the
subsequent section.

VI. COMPARISON BETWEEN CT SCANS AND THE
DEEP LEARNING RESULTS
To validate the classification performance of the non-ionic
deep learning-driven IR-UWB multiantenna scheme, this

TABLE 3. The specifications of experimental components and
equipment.

FIGURE 11. Examples of the experimental breast replicas: (a) cancer-free,
(b) with tumor in the gland layer, (c) with tumor in the fat and gland
layers, (d) with tumor in the fat layer.

research utilized 8 datasets per classification for evaluation,
given 17 classifications (classifications 1 – 17) where
classifications 1 – 16 correspond to the 16 discretized
segments of the breast and classification 17 represents cancer-
free. (Note: TP (true positive) + FP (false positive) =
8 datasets per classification.) Fig. 13 – 29 show the
CT scan images and the deep learning-driven classifica-
tion results of breast replicas for classifications 1 – 17,
respectively.
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FIGURE 12. The experimental CT scan machine together with breast
replicas.

In Fig. 13 – 29, the results show that the proposed
deep learning-driven IR-UWB multiantenna scheme could
efficiently detect and accurately localize the breast tumor (for

VOLUME 10, 2022 4545



P. Phasukkit: Non-Ionic Deep Learning-Driven IR-UWB Multiantenna Scheme for Breast Tumor Localization

4546 VOLUME 10, 2022



P. Phasukkit: Non-Ionic Deep Learning-Driven IR-UWB Multiantenna Scheme for Breast Tumor Localization

FIGURES 13–29. Comparison between the CT scan images and deep
learning classification results of the breast replicas (Note: The detailed
definitions of TP, FP, and FN are provided in the Deep Learning Algorithm
Evaluation sub-section).

TABLE 4. Comparison between existing studies and current research.
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classifications 1 – 16), as evidenced by the F1 score of 100
%, for almost all classifications except classifications 6, 7,
10, and 11. Besides, in Fig. 29, the proposed multiantenna
scheme, given the F1 score of 100 %, also correctly
identifies the cancer-free breast replica as non-cancerous (i.e.,
classification 17). Most importantly, there are no instances in
which the deep learning algorithm fails to detect the tumor
and erroneously identifies the breast as cancer-free, as evident
in FN = 0 (Fig. 29).
However, the performance of the proposed multiantenna

scheme is slightly impeded when the tumor resides deep
inside the breast (classifications 6, 7, 10, and 11), as evi-
denced by the F1 scores of 96.25 %, 96.25 %, 96.25 %,
and 96.25 %, respectively. Nonetheless, the total accuracy
(average of F1 scores) is 99.11%, indicating that the proposed
deep learning-driven IR-UWBmultiantenna scheme could be
deployed to non-ionically diagnose and localize the breast
tumor. Meanwhile, the localization of breast tumors by
the CT scan machine, as indicated by the contour areas
in Fig. 13 - 29, requires the expertise and subjective
interpretation of radiologists.

For ease of reference, Table 4 comparatively summarizes
the existing studies on non-ionic UWB technologies for
breast tumor diagnosis and this current research.

VII. CONCLUSION
This research presents a non-ionic deep learning-driven
IR-UWB multiantenna scheme for breast tumor localization.
The proposed multiantenna scheme consists of one Tx and
nine Rx1 – Rx9 antennas. In the diagnosis, the multiantenna
scheme is rotated clockwise in 90◦ increments around the
breast, with the Tx angular positions of 0◦, 90◦, 180◦, and
270◦, respectively. The deep learning algorithmic scheme
yields 17 classification outputs (i.e., 17 classifications),
consisting of classifications 1 – 16 which correspond to
locations 1 – 16 of the tumor in the breast replicas and
classification 17 for cancer-free. The results show that the
proposed deep learning-driven multiantenna scheme could
efficiently detect and accurately localize the breast tumor
(for classifications 1 – 16), as evidenced by the F1 score of
100 %, for almost all classifications except classifications 6,
7, 10, and 11 where the tumors reside deep inside the
breast (F1 score of 96.25 % each). Essentially, the total
accuracy (average of F1 scores) of the proposed multiantenna
scheme is 99.11 %. To address the low F1 scores (for
classifications 6, 7, 10, and 11) and improve the total
accuracy, subsequent research would experiment with other
multi-antenna configurations and re-optimized deep learning
algorithms.

ACKNOWLEDGMENT
The author would like to express deep gratitude to Thailand’s
Siriraj Hospital for expert advice and technical support on CT
images.

REFERENCES
[1] M. Kahar, A. Ray, D. Sarkar, and P. P. Sarkar, ‘‘An UWB microstrip

monopole antenna for breast tumor detection,’’Microw. Opt. Technol. Lett.,
vol. 57, no. 1, pp. 49–54, Jan. 2015.

[2] H. Zhang, ‘‘Microwave imaging for ultra-wideband antenna based
cancer detection,’’ Edinburgh Res. Arch., Univ. Edinburgh, U.K.,
Tech. Rep., 2015.

[3] C. K. Kuhl, S. Schrading, C. C. Leutner, N. Morakkabati-Spitz,
E. Wardelmann, R. Fimmers,W. Kuhn, and H. H. Schild, ‘‘Mammography,
breast ultrasound, and magnetic resonance imaging for surveillance of
women at high familial risk for breast cancer,’’ J. Clin. Oncol., vol. 23,
no. 33, pp. 8469–8476, Nov. 2005.

[4] J. G. Elmore and M. B. Barton, ‘‘Ten-year risk of false positive screening
mammograms and clinical breast examinations,’’ New England J. Med.,
vol. 338, no. 16, pp. 1089–1096, 1998.

[5] D. Arnone, C. Ciesla, and M. Pepper, ‘‘Terahertz imaging comes into
view,’’ Phys. World, vol. 13, p. 35, Apr. 2000.

[6] G. Geetharamani and T. Aathmanesan, ‘‘Metamaterial inspired THz
antenna for breast cancer detection,’’ Social Netw. Appl. Sci., vol. 1, no. 6,
pp. 1–9, Jun. 2019.

[7] J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni,
I. Manek-Hönninger, P. Desbarats, and P. Mounaix, ‘‘Review of terahertz
tomography techniques,’’ J. Infr., Millim., THz Waves, vol. 35, no. 4,
pp. 382–411, 2014.

[8] A. E. Fouda and F. L. Teixeira, ‘‘Ultra-wideband microwave imaging of
breast cancer tumors via Bayesian inverse scattering,’’ J. Appl. Phys.,
vol. 115, no. 6, Feb. 2014, Art. no. 064701.

[9] S. A. AlShehri and S. Khatun, ‘‘UWB imaging for breast cancer detection
using neural network,’’ Prog. Electromagn. Res. C, vol. 7, pp. 79–93, 2009.

[10] R. C. Conceicao, M. O’Halloran, M. Glavin, and E. Jones, ‘‘Support vector
ma-chines for the classification of early-stage breast cancer based on radar
target signatures,’’ Prog. Electromagn. Res. B, vol. 23, pp. 311–327, 2010.

[11] D. Byrne, M. O’Halloran, E. Jones, and M. Glavin, ‘‘Support vector
machine-based ultrawideband breast cancer detection system,’’ J. Electro-
magn. Waves Appl., vol. 25, no. 13, pp. 1807–1816, Jan. 2011.

[12] D. Byrne, M. O’Halloran, M. Glavin, and E. Jones, ‘‘Breast cancer
detection based on differential ultrawideband microwave radar,’’ Prog.
Electromagn. Res. M, vol. 20, pp. 231–242, 2011.

[13] J. C. Y. Lai, C. B. Soh, E. Gunawan, and K. S. Low, ‘‘UWB microwave
imaging for breast cancer detection—Experiments with heterogeneous
breast phantoms,’’ Prog. Electromagn. Res., vol. 16, pp. 19–29, 2011.

[14] E. Govinda and V. S. I. Dutt, ‘‘Breast cancer detection using UWB imaging
and convolutional neural network,’’ Ilkogretim Online, vol. 20, no. 5,
pp. 1657–1670, 2021.

[15] E. A. Aydın and M. K. Keleş, ‘‘Breast cancer detection using K-nearest
neighbors data mining method obtained from the bow-tie antenna dataset,’’
Int. J. RF Microw. Comput.-Aided Eng., vol. 27, no. 6, Aug. 2017,
Art. no. e21098.

[16] M. R. Al-Hadidi, A. Alarabeyyat, and M. Alhanahnah, ‘‘Breast cancer
detection using K-nearest neighbor machine learning algorithm,’’ in Proc.
9th Int. Conf. Develop. eSystems Eng. (DeSE), Aug. 2016, pp. 35–39.

[17] M. Klemm, I. Craddock, J. Leendertz, A. Preece, and R. Benjamin,
‘‘Experimental and clinical results of breast cancer detection using UWB
microwave radar,’’ in Proc. IEEE Antennas Propag. Soc. Int. Symp.,
Jul. 2008, pp. 1–4.

[18] H. Bahramiabarghouei, E. Porter, A. Santorelli, B. Gosselin, M. Popović,
and L. A. Rusch, ‘‘Flexible 16 antenna array for microwave breast cancer
detection,’’ IEEE Trans. Biomed. Eng., vol. 62, no. 10, pp. 2516–2525,
Oct. 2015.

[19] R. C. Conceição, M. O’Halloran, M. Glavin, and E. Jones, ‘‘Evaluation
of features and classifiers for classification of early-stage breast cancer,’’
J. Electromagn. Waves Appl., vol. 25, no. 1, pp. 1–14, Jan. 2011.

[20] N. N. Kumar, B. S. Srikanth, S. B. Gurung, S. Manu, G. N. S. Gowthami,
T. Ali, and S. Pathan, ‘‘A slotted UWB monopole antenna with truncated
ground plane for breast cancer detection,’’ Alexandria Eng. J., vol. 59,
no. 5, pp. 3767–3780, Oct. 2020.

[21] S. Brovoll, T. Berger, Y. Paichard, O. Aardal, T. S. Lande, and
S.-E. Hamran, ‘‘Time-lapse imaging of human heart motion with switched
array UWB radar,’’ IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 5,
pp. 704–715, Oct. 2014.

[22] P. Saha, N. Sasaki, and T. Kikkawa, ‘‘A single-chip Gaussian monocycle
pulse transmitter using 0.18 µm CMOS technology for intra/interchip
UWB communication,’’ in Symp. VLSI Circuits, Dig. Tech. Papers.,
Jun. 2006, pp. 204–205.

4548 VOLUME 10, 2022



P. Phasukkit: Non-Ionic Deep Learning-Driven IR-UWB Multiantenna Scheme for Breast Tumor Localization

[23] E. C. Fear, X. Li, S. C. Hagness, and M. A. Stuchly, ‘‘Confocal microwave
imaging for breast cancer detection: Localization of tumors in three
dimensions,’’ IEEE Trans. Biomed. Eng., vol. 49, no. 8, pp. 812–822,
Aug. 2002.

[24] Y. Xie, B. Guo, L. Xu, J. Li, and P. Stoica, ‘‘Multistatic adaptive microwave
imaging for early breast cancer detection,’’ IEEE Trans. Biomed. Eng.,
vol. 53, no. 8, pp. 1647–1657, Aug. 2006.

[25] N. Hayashi, Y. Ogawa, K. Kubota, K. Okino, R. Akima,
S. Morita-Tokuhiro, A. Tsuzuki, S. Yaogawa, A. Nishioka, and
M. Miyamura, ‘‘Computed tomography demonstration of the production
and distribution of oxygen gas following intratumoral injection of a
new radiosensitizer (KORTUC) for patients with breast cancer—Is
intratumoral injection not an ideal approach to solve the major problem of
tumor hypoxia in radiotherapy?’’ Cancers, vol. 8, no. 4, p. 43, Apr. 2016.

[26] T. Guswantoro, A. S. Supratman, and I. S. Asih, ‘‘Measurement the
Hounsfield unit of alginate impression material using CT-scan equipment
to find equility with the human body tissue,’’ in Proc. Adv. Social Sci.,
Educ. Humanities Res., Jun. 2021, pp. 361–364.

[27] M. J. Yaffe, ‘‘Contrast-enhanced dedicated breast CT: Initial clinical expe-
rience,’’ Breast Diseases, Year Book Quart., vol. 22, no. 4, pp. 374–375,
Jan. 2011.

[28] M. T. Islam, M. Samsuzzaman, S. Kibria, and M. T. Islam, ‘‘Experimental
breast phantoms for estimation of breast tumor using microwave imaging
systems,’’ IEEE Access, vol. 6, pp. 78587–78597, 2018.

[29] M. T. Islam, M. Z. Mahmud, M. T. Islam, S. Kibria, and M. Samsuzzaman,
‘‘A low cost and portable microwave imaging system for breast tumor
detection using UWB directional antenna array,’’ Sci. Rep., vol. 9, no. 1,
pp. 1–13, Dec. 2019.

[30] R. Vijay, R. Jain, and K. Sharma, ‘‘Dielectric properties of water
at microwave frequencies,’’ Int. J. Eng. Res. Technol., vol. 3, no. 3,
pp. 312–317, 2014.

[31] A. Rittiplang and P. Phasukkit, ‘‘Solving for complex permittivity of
biomedical tissue from open-ended probe measurement,’’ in Proc. Int.
Symp. Multimedia Commun. Technol., Aug. 2017, pp. 1–4.

[32] R. Zajicek, L. Oppl, and J. Vrba, ‘‘Broad-band measurement of complex
permittivity using reflection method and coaxial probes,’’ Radioengineer-
ing, vol. 17, no. 1, pp. 14–19, Apr. 2008.

[33] M. Kamphong and P. Phasukkit, ‘‘Development of phantom model for
the dielectric property measurement,’’ in Proc. Int. Symp. Multimedia
Commun. Technol., Aug. 2017, pp. 75–78.

PATTARAPONG PHASUKKIT (Member, IEEE)
was born in Saraburi, Thailand, in May 1978.
He received the B.Eng. and M.Eng. degrees
in telecommunications and the D.Eng. degree
in electrical engineering from the Department
of Electronics, School of Engineering, King
Mongkut’s Institute of Technology Ladkrabang
(KMITL), Bangkok, Thailand, in 2000, 2003, and
2009, respectively. He is currently working as
an Associate Professor with the Department of

Electronics, School of Engineering, KMITL. His current research interests
include microwave ablation, antenna design, and UWB radar application.

VOLUME 10, 2022 4549


