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ABSTRACT Falls are the second leading cause of death from unintentional injuries in older adults. Although
many systems have been used to detect falls, they are limited by the computational complexity of the
algorithm. The images taken by the camera must be transmitted through a network to the back-end server
for calculation. As the demand for Internet of Things increases, this architecture faces such problems as
high bandwidth costs and server computing overload. Emerging methods reduce the workload of servers
by transferring certain computing tasks from cloud servers to edge computing platforms. To this end, this
study developed a fall detection system based on neuromorphic computing hardware, which streamlines and
transplants the neural network model of the back-end computer to the edge computing platform. Through
the neural network model with integer 8 bit precision deployed on the edge computing platform, the object
photos obtained by the camera are converted into human motion features, and a support vector machine is
then used for classification. After experimental evaluation, an accuracy of 96% was reached, the detection
speed of the overall system was 11.5 frames per second, and the power consumption was 0.3 W. This system
can monitor the fall events of older adults in real time and over a long period. All data were calculated on
the edge computing platform. The system only reports fall events via Wi-Fi, thereby protecting the privacy
of the user.

INDEX TERMS Deep learning, edge computing, fall detection, neuromorphic computing hardware, the IoT.

I. INTRODUCTION
The older adult population is expected to reach 1.4 billion
by 2030 and 2.1 billion by 2050 [1]. With age, older adults
experience more impairment in vision, balance, and cogni-
tion, all of which increase the chances of a fall. Thirty percent
of elderly people over 65 years fall at least once every year,
causing severe or even fatal damage. However, only one-third
of people received medical assistance following a fall. The
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medical cost of fatal older adult falls was an estimated US
754 million dollars in 2015 [2].

In traditional fall detection systems for older adults, sen-
sors and cameras are used to track the motion of individu-
als, and the sensor data and image data are sent to servers
for analysis [3]–[9]. When a fall event is detected by the
system, the server immediately notifies medical staff of the
emergency. In research that employs cloud analysis, data can
be analyzed using relatively sufficient and powerful back-
end equipment to achieve higher accuracy. However, the
main disadvantage of uploading a large amount of data to
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the cloud server is the resultant high cost in network band-
width, high latency, and privacy concerns [10]. With too
many users, the network bandwidth and loading of the cloud
computing may become unfeasible. The rapid advancement
of chip technology resulted in algorithms that could not be
calculated in real time on the front-end being transferred
from the cloud to the front-end, reducing the burden on the
server. An edge computing-based system could also be used
to perform better in real time than a cloud-based system [11],
which is highly valuable for fall detection systems. There-
fore, some fall detection systems based on edge computing
have been proposed, including architectures using general-
purpose processors [12]–[17] and neuromorphic computing
hardware [18]. The general-purpose processor architecture
used in many studies is relatively easy to implement but
consumes considerable time and computing resources to
complete the neural network algorithm. These studies have
been limited to the use of relatively low-rank robust methods
such as statistics and thresholds. Although [17] used deep
learning methods in which continuous frames were input to
the neural network to train it to dynamically recognize falls,
the system was forced to reduce the image resolution to 32×
32 to achieve real-time computation on the central processing
unit (CPU). Low-resolution images can only provide close-
range information, which limits their potential applicability.
Other studies have demonstrated that a fall detection system
based on deep learning can effectively improve detection
accuracy [18]. However, if a fall detection system based on
deep learning is to be implemented on an edge computing
platform with general-purpose processor architecture, it may
be more time-consuming and may not achieve real-time fall
detection.

To address the aforementioned problems, this study pro-
posed a fall detection system based on edge computing, which
combined a camera and neuromorphic computing hardware
based on an application-specific integrated circuit. The You
Only Look Once lightweight (YOLO-LW) deep neural net-
work was implemented on the neuromorphic computing
hardware. Experiments have validated that the YOLO-LW
algorithm combined with a support vector machine (SVM)
can run smoothly on the edge computing platform and can
accurately detect fall events in real time. In this study, the
captured images are not uploaded to the cloud server, so when
a large number of cameras are installed in practical applica-
tions, fall detection system does not occupy additional large
amount of bandwidth, and server is not blocked by processing
images from all cameras at the same time. And the edge
computing platform sends a warning to server only if a fall
event is detected, so the transmission delay can be negligible.
Thus, user privacy is protected to a certain extent.

II. RELATED WORKS
Several studies on fall detection have been proposed to reduce
older adult fall injuries or provide emergency assistance after
falls [7]–[9], [13], [14], [19], [20]. This section presents three
categories of fall detection technologies: backend computing

fall detection, edge computing fall detection, and cloud-edge
computing fall detection.

Harrou et al. [7] proposed an integrated vision-based fall
detection approach implemented on a backend computer.
The integrated vision-based fall detection approach involves
image processing (background subtraction), morphological
processing (erosion and dilation operators), centroid calcu-
lation, generalized likelihood ratio (GLR) calculation, and
SVM. Image processing is used to segment the human body
from the picture of the University of Rzeszow (UR) fall
detection dataset. The human body contour obtained through
image processing is divided into five areas. The five areas
are passed to GLR-SVM classifiers to distinguish between
real falls and certain like-falls activities. The approach was
designed to detect fall event with fewer false-positive.

Wang et al. [8] proposed a novel visual-based fall detection
approach by dual-channel feature integration. The research
combines traditional signal processing with deep learning
model. YOLO and OpenPose were used to obtain position
and key points of a human body. A dual-channel sliding
window was designed to extract the features (centroid speed,
upper limb velocity, and human external ellipse) from result
of deep learning model. Multilayer perceptron (MLP) and
random forest were used to classify feature data. Then, the
results of the classifiers were combined to detect fall events.
The proposed approach achieved an accuracy of 97.33% and
96.91% on UR dataset and Le2i dataset separately.

Lotfi et al. [9] also proposed a novel visual-based fall
detection approach. Background subtraction is used for pre-
processing. Ten features are extracted from the human sil-
houette, including the motion information, orientation, ratio,
the major semi-axis and the minor semi-axis of the fitting
ellipse, the projection histogram, the y-coordinate of the head
point, the standard deviation of y-coordinate, the absolute
difference of y-coordinate and the standard deviation of abso-
lute difference of y-coordinate. These features are fed into
MLP neural network for fall classification. The proposed
algorithm produces a high recognition rate of 99.60% on UR
dataset.

Some computationally intensive technologies including
image processing, and deep learning are used in in the afore-
mentioned studies. These technologies will burden backend
computer when the number of cameras is large. Because the
image data need to be transmitted to the backend computer,
may cause security and privacy issues. In addition, some
algorithms require continuous high-resolution images. This
means that a lot of bandwidth will be occupied, may result in
packet blockages and losses due to insufficient bandwidth.

ShahZad and Kim [13] proposed a two-step algorithm to
monitor and detect fall events using the embedded accelerom-
eter signals. The fall detection system was developed on
a smartphone. The smartphone is placed on the waist or
leg. The accelerometer signals on smartphone are passed to
two-step algorithm for fall classification. Two-step algorithm
is combination of threshold-based method and multiple ker-
nel learning SVM. Experimental results reveal that the system
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detects falls with high accuracy 97.8% and 91.7%on thewaist
and the leg.

Saleh and Jeannès [14] proposed a machine learning-based
fall detection algorithm designed to deploy on wearable
sensor. 12-component statistical features vector is extracted
from a triaxial acceleration signal. The SVM-based algo-
rithm is used to classify fall events. The experimental results
show that the proposed algorithm can reach 99.9% on Sisfall
dataset. In addition, the system implements algorithm with a
computational cost of less than 500 floating point operations
per second.

Yu et al. proposed a fall detection system based on neuro-
morphic computing hardware [19] in which the user wore a
device with an embedded inertial measurement unit (IMU) to
measure human movement and capture five types of activi-
ties, including falls.

The studies [13], [14], [19] implement fall detection algo-
rithm on an embedded system and experimental results show
high accuracy. These studies are limited to the use of lower
computational cost methods such as SVM or threshold.
In addition, wearable system is inconvenience.

Rajavel et al. [20] proposed an IoT-based healthcare smart
system. The system detects fall events with cloud server,
edge computing devices and cameras. The images captured
from cameras are transmitted to edge computing devices via
Wi-Fi. The edge computing devices filter the non-sensitive
data to reduce the communication bandwidth between the
edge layer and cloud layer by transmitting only the needful
data to the cloud layer. A deep convolution neural network
classifier is used to detect fall events on the cloud server.
The system exploits only 150 kbps network bandwidth and
80 s response time compared to past research. In addition,
the system spends 72.76 s on prediction and accuracy reaches
94.5%. The research [20] uses cloud-edge based computing
framework to implement fall prediction and performance
exceeds previous research. But the long prediction time and
response time may cause a fall event that cannot be handled
immediately in the actual situation.

In order to address the aforementioned problems, a fall
detection method based on artificial intelligence (AI) edge
computing with vision sensor was proposed in this study.
The proposed algorithms are deployed on edge computing
platforms with AI chips. All operations are done on the edge
computing platform.

III. METHOD
A. SYSTEM OVERVIEW
The main components of the edge computing platform used
in this study were a camera (ov2640, OmniVision Technolo-
gies, Shanghai, China) and an AI development board (Sipeed
MAixGO, Sipeed Technology, Shenzhen, China), as depicted
in Fig. 1. The core chip Sipeed M1W of the AI development
board was composed of Kendryte K210 (Canaan, Beijing,
China) and the Wi-Fi chip ESP8285. The K210 has two
RISC-V CPUs and a neural network processor (KPU) that

FIGURE 1. Prototype of the edge computing platform with an area of
60 × 88 mm.

FIGURE 2. Flowchart of the proposed approach.

can perform AI operations, offering 0.25 tera operations per
second (TOPS) at 0.3 W, 400 MHz and 0.5 TOPS when it
overclocks to 800 MHz. The K210 can therefore perform
object recognition at 60 frames per second (FPS) with a video
graphics array. When the system is under operation, the edge
computing platform continuously takes pictures through the
camera, which are stored in the dedicated memory of the AI
chip. The trained neural network structure deployed on the AI
chip reads the data in thememory and calculates the bounding
box of the human body in the image. If the human body is not
captured in the image, no bounding box is computed. Accord-
ing to the bounding box, the shape aspect ratio (SAR) and the
difference between width and height are obtained and used
in the SVM classifier to classify actions, including standing,
bending, and falling, in the CPU. When the state of human
body changes from being at higher altitudes to fallen state and
continues to be in that state for a period, it is determined a fall
event. The system then transmits the fall event to the cloud
server via Wi-Fi. The cloud server is only for monitoring
and calling for emergency treatment. The entire process is
illustrated in Fig. 2. The system reports the detection results
and does not transmit images to protect the privacy of users.

This study differs from those that have relied on cloud
server computing [3], [4] or nondeep learning methods
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FIGURE 3. Process of training and deploying neural networks.

[12], [13] to detect falls. In the AI model training phase,
it is first trained using collected posture photos on the PC,
and then the trained neural network on the edge comput-
ing platform is deployed. The PC specifications comprised
a CPU (I7-10700F, Intel, Santa Clara, CA, USA), graph-
ics processing unit (GPU) display card (RTX 3080 10G,
AsusTeK, Taipei, Taiwan) and 64-gigabyte dynamic random-
access memory. The neural network training framework
Darknet [21] was used for training the AI model. The trained
neural network is input to the conversion program and con-
verted into a TensorFlow-based model that the KPU can infer.
The KPU only partially supports TensorFlow operators, and
the rebuilding of neural networks using supported operators
to develop new edge computing neural networks is a gradual
process.

Fig. 3 depicts the process of training and deploying neural
networks. In preparation of the AI model training, the col-
lected images were first labeled using free image labeling
software (Labellmg) to manually generate the coordinate
tuple data of the bounding box, including the width and
height of the bounding box and the x- and y-axis distance
from the upper left corner of the bounding box to the origin
(upper left corner of the image). The coordinate tuple of
the bounding box is used as the ground truth to train the
neural network. Details of the labeled bounding box and
coordinate tuple are presented in Fig. 4. During the following
training process, the neural network makes inferences on the
input images and generate estimated coordinate tuples. The
estimated coordinate tuple and coordinate tuple of ground
truth are then calculated for the loss function, and the neurons
of the neural network are updated through back propagation.
When the training is complete, low-precision quantization of
the neural network is performed to increase the speed of the
model and reduce the power consumption of the inferring
model [22]–[24]. This low precision includes 16-bit float
format, 8-bit integer format, and 4-bit integer format. The
neural network on the computer side is converted from 32-bit
float format to 8-bit integer format through low-precision
quantization, during which the offset value in the neuron is
ignored, and a threshold T is selected between the maximum

FIGURE 4. (a) Labeled bounding box; (b) Coordinate tuple of the ground
truth: left, top, width, and height.

and minimum weight value in all neurons. The weight value
between−T–T is remapped to−127 to 127, and other weight
values are discarded. To minimize the influence of the miss-
ing model information, the model is calibrated using the
calibration dataset. The model uses different Ts to infer the
calibration dataset to determine the threshold T that least
affects the accuracy of the model. This study employed the
training dataset as the calibration data set, and the converted
model was approximately one-fourth of the original model.

B. DEVELOPMENT OF THE AI ALGORITHM AND
CLASSIFIER ON EDGE AI BOARD
The most representative neural networks in object detec-
tion include single shot multibox detector [25], faster
R-convolutional neural network (CNN) [26], You Only Look
Once (YOLO) v2 [27], and YOLO v3 [28]. Compared
with the traditional two-stage detection algorithm, YOLO v2
directly converts the bounding box positioning problem into
an end-to-end regression solution and uses anchor boxes to
detect objects of different sizes. The anchor box is determined
by preset anchor points that represent the various propor-
tions of the bounding box that may appear in the image.
Because YOLO v2 avoids the process of generating hundreds
of candidate boxes, the execution speed of the algorithm
has markedly improved, ensuring the practical applicabil-
ity of network. The YOLO v3 model was constructed in
2018 with the addition of multiscale prediction and a better
basic classification network (i.e., Darknet-53). With faster
speed and better accuracy in small target detection, detection
distance can be extended in actual scenes. This study tested
the lightweight models YOLO v2-tiny and YOLO v3-tiny on
the PC by applying k-means clustering to group the training
dataset. The center of each group represents the proportion of
different bounding boxes in the training dataset. These values
contain the proportional information of the human body set as
anchor points, and the width and height of the neural network
input layer is set as the maximum size limit size that the
AI chip can process (width, 320 pixels; height, 224 pixels).
The architectures of YOLO v2-tiny and YOLO v3-tiny are
presented in Fig. 5 and Fig. 6, respectively. Although these
methods achieve high accuracy on the PC, the model size
is too large to be executed on the edge computing platform,
which has limited memory. Therefore, a deep separable con-
volutional layer [29] is used to modify the neural network
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and simplify the neurons. According to [29], the ratio of
the amount of deep separable convolutional layers to that of
the calculated ordinary convolutional layers can be expressed
as (1).

Costdepth_conv + Costpoint_conv
Coststandard_conv

=
1
N
+

1
K 2 (1)

where Costdepth_conv represents the computational cost of the
deep convolutional layer; Costpoint_conv represents that of the
point convolutional layer; Coststandard_conv represents that of
the ordinary convolutional layer; N represents the number of
channels; and K denotes the size of the kernel.

Figs. 7 and 8 depict themodifiedYOLOv2-tiny andYOLO
v3-tiny. According to Eq. (1), when the common convolu-
tional layer is replaced by the deep separable convolutional
layer with more filters (i.e., channels) and a larger kernel size,
the computational cost is reduced. Considering the limitation
of memory, we chose to replace the convolutional layer, with
a filter amount greater than or equal to 512, with the deep
separated convolutional layer. The filters in the output layer
of YOLO v3-tiny are fewer than those in YOLO v2-tiny, and
the calculation cost of the output layer is therefore reduced to
approximately two-thirds that of YOLO v2-tiny. To further
shrink YOLO v3-tiny, some convolutional layers with a filter
amount of 256 were replaced with deep separated convolu-
tional layers.

However, after low-precision quantization, the test indi-
cated that the accuracy of the neural network executed on the
edge computing platform decreased. To improve the accu-
racy, some convolutional layers were added to increase the
depth of the neural network. Because the categories were
changed from 85 of the original YOLO v3-tiny to 1 (only
one category for humans), the filters of the output layer must
be changed from the original 255 of the YOLO v3-tiny to
18. The addition of convolutional layers between the out-
put layer and the previous layer and a decrease in filters
better condenses the features, and the increased amount of
calculation is sustainable. Eq. (2) expresses the relation-
ship between the categories and the filters of output layer.
Fig. 9 presents the architecture of themodifiedYOLO v3-tiny
following the addition of the convolutional layers. In this
study, this lightweight modified YOLO v3-tiny was named
YOLO-LW.

F = (C + 5)× A (2)

where F is the number of filters in the output layer; C is
the number of classes; A is the number of anchor points;
and the number of YOLO v3-tiny anchor points is equal to
3. Therefore, the number of filters in the modified YOLO
v3-tiny output layer is (1 + 5) × 3 = 18.

C. EXPERIMENTAL PROCEDURES
In this study, we collected data from 19 participants, includ-
ing 11 men and 8 women. The ratio of young to old was
9:10, and their average age, height, and weight was 46.3 ±
16.1 years, 166.1± 9.9 cm, and 67.3± 12.8 kg, respectively.

The collected data were captured in five different indoor
environments. The camera was installed at a height of 1.7 m
from the ground and a distance of 2–3.5 m from the object.
The optical axis of the camera was tilted downwards at an
angle of 22.5◦ to the horizontal. The camera recorded the fall
process from eight different angles relative to the direction in
which the participant fell. The data set contained a total of
2030 photos, consisting of 1077 falling and 953 nonfalling
photos. This data set contained information on 152 falls and
other actions such as walking, bending, squatting, sitting, and
kneeling, and used horizontal flips to double the data.

As Fig. 2, the system obtains the images of the person
through the camera. Next, the YOLO model is used to cap-
ture the silhouette of person, and then passing the extracted
features from the silhouette of person to the SVM classifier.
Results of SVM are classified into three classes: standing,
blending, and falling. Finally, a sliding window is used to
detect fall event.

This study employed intersection over union (IoU) to eval-
uate the neural network bounding performance, as calculated
in (3).

IoU

=
Overlap of Ground Truth and Predicted Bounding Box
Union of Ground Truth and Predicted Bounding Box

(3)

Shape aspect ratio (SAR), and difference (D) between
width and height, are extracted from the bounding box, the
formulas of these two features are listed in (4) and (5).

SAR =
Width of Bounding Box
Height of Bounding Box

(4)

D = Width of Bounding Box − Height of Bounding Box

(5)

A sliding window is designed to detect fall event. When
the falling state appears more than three times in a sliding
window, the result is considered a fall event.

To evaluate the performance of the classifier and the over-
all system, including indicators such as accuracy, precision,
recall, specificity, and F1-score, 10-fold cross-validation was
used. The indicator definitions are expressed in (6)–(10).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

Precision =
TP

TP+ FP
(7)

Recall =
TP

TP+ FN
(8)

Specificity =
TN

TN + FP
(9)

F1− score =
2× Precision× Recall
Precision+ Recall

(10)

where true positive (TP) refers to the number of falls correctly
detected; true negative (TN) refers to the number of normal
activities that are correctly detected; false positive (FP) refers
to the number of normal activities that are mistaken for
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FIGURE 5. Architecture of YOLO v2-tiny.

FIGURE 6. Architecture of YOLO v3-tiny.

FIGURE 7. Architecture of the modified YOLO v2-tiny.

falls; and false negative (FN) is the number of falls that are
mistaken for normal activities.

In the performance evaluation of YOLO and the overall
system (YOLO and SVM), the PC and edge computing plat-
form were used to evaluate and compare the performance of
different YOLOmodels, respectively. The overall experimen-
tal process is detailed in Fig. 10.

IV. RESULTS
A. EXPERIMENTAL RESULTS FOR THE ORIGINAL AND
MODIFIED YOLO MODELS
The key part of this system is the design of the AI model
of the bounding human body. If an AI model with effective
performance can be selected for use, the overall fall detec-
tion function is greatly improved. The AI model used for
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FIGURE 8. Architecture of the modified YOLO v3-tiny.

FIGURE 9. Architecture of the modified YOLO v3-tiny following the addition of the convolutional layers.

TABLE 1. Comparison Yolo v2-tiny and Yolo v3-tiny IoU.

the bounding human body in this system was scheduled to
be implemented with YOLO v2-tiny, YOLO v3-tiny, or an
improved version, because the algorithm of theYOLO system
is effective for human body detection and its small size facili-
tates transplantation to the edge computing platform. To eval-
uate the AI model, 5-fold cross-validation was employed.
During training, the k-means was used to re-find the anchor
points of the training dataset. The learning rate was set to
0.001, and the loss of neural network after training was lower
than 0.05.

The effectiveness of YOLO v2-tiny and YOLO v3-tiny for
bounding the human body area was tested on the PC, and the
comparison is described in Table 1. Significant differences

were noted between the two models, YOLO v3-tiny outper-
formedYOLO v2-tiny. YOLO v3-tiny could detect all objects
within 2 to 3.5m, and the IoUwas 98.16%, but YOLO v2-tiny
could not detect some body curls and tiny objects and had a
lower IoU.

The performance of the modified YOLO v2-tiny and
modified YOLO v3-tiny was tested and compared on the
PC, and the comparison results are presented in Table 2.
The experimental results revealed that the modified YOLO
v3-tiny still detected all objects, but the IoU decreased to
95.51%. However, YOLO v2-tiny exhibited poorer perfor-
mance in human body detection, and the IoU decreased
to 74.86%.

B. EXPERIMENTAL RESULTS FOR DIFFERENT PRECISION
FORMAT MODELS
By comparing the performance of YOLO v2-tiny and YOLO
v3-tiny and that of the modified YOLO v2-tiny and modi-
fied YOLO v3-tiny, we determined that the modified YOLO
v3-tiny or its simplified version was more suitable for use.

We then tested the performance of the modified YOLO
v3-tiny with float 16 precision format, modified YOLO
v3-tiny with integer 8 precision format, and modified
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FIGURE 10. Overall experimental process for the performance evaluation
of different AI models, stages, and platforms.

TABLE 2. Comparison between the modified Yolo v2-tiny and modified
Yolo v3-tiny IoU.

YOLO v3-tiny with integer 8 precision format and a con-
volutional layer (Fig. 9) on the edge computing platform.
The comparison of the experimental results is detailed in
Table 3. The float 16 precision format model used the CPU
on the edge computing platform to infer the neural network.
The IoU was 94.6%, which is 0.9% lower than that of the
computer version of the float 32 precision format model at
95.51%. The integer 8 precision format model used the KPU
on the edge computing platform to infer the neural network;
the resultant IoU of 91.2% was 4.3% lower than that of the
float 32 precision format model. Although the IoU of the float
16 precision format model was higher than that of the integer
8 model, the FPS of the integer 8 model was 14.7 times
that of the float 16 model. Following the addition of the
convolutional layer to the integer 8 precision format model,
the IoU increased to 94.5% and FPS decreased by 0.3%.
Among the threemodels, the integer 8 precision formatmodel

TABLE 3. Comparison of different precision format models on edge
computing platform.

is the smallest at approximately half the size of the other two
models.

C. SYSTEM EVALUATION
The first step of the proposed system is human bounding.
Table 3 presents the performances of bounding models. The
final result shows that model on edge computing platform can
reach 94.5% average IoU with 11.5 FPS.

The second step of the proposed system is SVM classifica-
tion. Table 4 presents the performance of boundingmodel and
SVM classifier. System spends less than 0.001 s on feature
extraction and SVM classification. The system using YOLO
v3-tiny achieved an accuracy of 92.5% on the PC, which is
almost the same as the classification result using the ground
truth. After part of the convolutional layer was replaced with
a deep separated convolutional layer, the modified YOLO
v3-tiny achieved an accuracy of 91.6%, a decrease of 0.9%.
The modified ability of YOLO v3-tiny to detect objects with
curved bodies was slightly reduced, but the classification
was largely correct. When the modified YOLO v3-tiny was
converted to the integer 8 precision format, the information
of the neural network was lost, resulting in a decreased IoU.
The addition of a convolutional layer can effectively improve
the performance of the neural network, which forms a new
model, YOLO-LW. In comparison with the system that used
the modified YOLO v3-tiny, the system that used YOLO-LW
exhibited a slight decrease in accuracy (0.5%).

The final step of the proposed system is fall event detection.
A sliding window is used to detect fall event.When the falling
state appears more than three times in a sliding window, the
result is considered as a fall. Fig. 11 shows performance
under different sizes of sliding windows. According to the
result, system reaches the highest performance when size of
sliding window is four. A sliding window takes four images to
consider a fall event. Therefore, entire system spends 0.344 s
to process a fall event.

V. DISCUSSION
In this study, a fall detection system that combined a cam-
era and neuromorphic computing hardware was investigated.
Although research demonstrated that the implementation of
deep learning in automatic fall detection systems can enhance
fall detection performance [18], the use of deep learning
in embedded systems greatly increases the computing time.
This study is the attempt to use neuromorphic computing
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TABLE 4. Comparison of SVM and different models.

TABLE 5. Performance of whole system.

FIGURE 11. Results under different sizes of sliding windows.

hardware to replace the software for deep learning in embed-
ded systems. We executed our self-developed YOLO-LW on
neuromorphic computing hardware to maintain the running
time of the neural networkwith the integer 8 precision format,
without losing the region of interest (ROI) changes related to
possible fall events.

To evaluate the fall detection system involving the ROI,
various action photos collected from five indoor scenes were
transmitted to five YOLO models with different neural layer
structures, and their performances were compared through
5-fold cross-validation. From the experimental results of
Table 1, at a resolution of 320 × 224, the YOLO v3-tiny
outperformed the YOLO v2-tiny. This is attributable to
the YOLO v3-tiny use of upsampling to obtain high-scale
feature maps and retain the information of small targets.
As described in Table 2, the modified YOLO v3-tiny exhib-
ited greater accuracy than the modified YOLO v2-tiny but
exhibited 2.65% less accuracy compared with that of the
YOLO v3-tiny. The modified YOLO v3-tiny used a deep
separation of convolutional layers to reduce the complexity
of the model; thus, the accuracy was slightly reduced, but the
model size was also reduced by one-fifth.

In the fall detection system, the bounding of the human
body is a critical technology. Generally, an improved IoU
increases the hit rate of human body area, and a reduction in
IoU often occurs when the detection object is self-occluded
during bending of the body, such as having the individual
having their back to camera or curling their limbs. Addi-
tionally, in the process of porting the PC-side programs to
the edge computing platform, some components may be
abandoned, causing IoU decline. Some studies have indi-
cated that a remapping of the neural network with high
precision format to the neural network with low precision
format can effectively reduce the model size and maintain
the accuracy [23], [24]. The experimental results outlined in
Table 3 demonstrated that the modified YOLO v3-tiny with
float 16 format exhibited only a 0.91% decrease in IoU than
the model before conversion, but the model size is half that of
the original. However, the modified YOLO v3-tiny with float
16 precision format could not make inferences in the neuro-
morphic computing hardware and only reached 0.8 FPS with
CPU inference. The modified YOLO v3-tiny with integer
8 precision format used neuromorphic computing hardware to
infer and reached 11.8 FPS, but the IoU decreased by 4.3%.
Despite the robustness of the modified YOLO v3-tiny with
integer 8 precision format and its ability to detect all objects in
different scenes and with different actions, the IoU decreased
markedly. If the complexity of the model is increased through
the addition of a convolutional layer, the IoU can reach
94.5%; the model size would be smaller than the modified
YOLO v3-tiny with the float 16 precision format, and the
speed only 0.3 FPS slower than the modified YOLO v3-tiny
with integer 8 precision format.

The experimental results of Table 4 revealed that the fall
detection system composed of YOLO v3-tiny and SVM and
implemented on the PC side, with a GPU used for inference,
achieved an accuracy rate of 92.5%. However, the high costs
of the GPUs and desktop computers make it impossible for
the fall detection system to be deployed flexibly in actual
scenarios. Despite the PC acting as a server, the system still
faces problems with network delays and processing large
amounts of data. The system implemented on the PC and
composed of the modified YOLO v3-tiny and SVM exhibited
a decreased IoU, but the overall accuracy only decreased by
0.9%. However, after the modified YOLO v3-tiny was con-
verted to the integer 8 precision format model, the accuracy
of the overall system was considerably reduced. The system
composed of YOLO-LW and SVM on the edge computing
platform achieved an accuracy rate of 91.1% and a speed
of 11.5 FPS. Among the various indicators, recall was the
only one lower than 90%. False alarms mostly occurred when
most of the skin area of the subject was occluded, causing
the system to confuse the clothing of the subject with the
background and partially deforming the bounding box.

Table 6 presents a comparison between our proposed
method and those in other studies based on edge computing.
Yu et al. [19] proposed a wearable fall detection system
based on neuromorphic computing hardware. The Hopfield
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TABLE 6. Comparison of the proposed method and other fall detection systems.

neural network was simulated using PSpice as a circuit of
the neuromorphic computing hardware. The system analyzed
the IMU data to determine falls with an accuracy of 88.9%,
though the author performed a circuit simulation rather than
constructing the wearable device. Yang et al. [30] used field
programmable gate array (FPGA)-based ZYNQ-7020 hard-
ware to implement a CNN model with an accuracy rate of
92%, but the power consumption of 2.5 W is too costly for
a fall monitoring system that must operate for a long time.
The detection time was also 0.43 s, with an FPS of only
2.42. Mauldin et al. [31] employed three-layer open system
architecture to transmit the sensor data from a smart watch
to a smartphone for edge computing. They implemented a
recurrent neural network on a smartphone based on an ARM
processor, but an accuracy of only 70% was achieved. The
method of Alaoui et al. [32] is to first calculate the key
points of human skeleton, and then use principal component
analysis (PCA) and SVM to detect whether someone has
fallen in the image data. The accuracy of the experimental
results of their algorithm is 98.5%. The overall performance
is good, but the entire study is based on an analysis of a ready-
made dataset, and it is impossible to confirm the performance
in the real environment. The system will transmit the video
to the server, there will be the problem of personal privacy
leakage. Chang et al. [33] constructed OpenPose-light and
SVM algorithms on an edge computing platform (Jetson
TX2, NVIDIA Corp., Santa Clara, CA, USA) to detect falls
for elderly people with an accuracy of 98.1%. Its overall
performance is good, and the use of edge computing can
avoid personal privacy issues. But its processing time is a bit
of long and power consumption is a bit of high.

Overall, the method proposed in this study was more
accurate than the aforementioned methods. In terms of use,
we used a camera as the input device, which is more con-
venient than a wearable fall detection system using IMU.
Regarding the same vision-based solution, compared with
the 2.5 W and 15 W power consumption reported in [30]
and [33] respectively, the architecture proposed in this study
required 0.3 W, providing a low-cost, low-computing, feasi-
ble resource allocation solution. In terms of detection speed,

this system reached 11.5 FPS, which provided effective real-
time performance. Additionally, the FPGA debugging pro-
cess is difficult and extends the development time.

VI. CONCLUSION
In this study, a fall detection system with neuromorphic com-
puting hardware for AI-based edge computing was proposed.
The images of individuals were captured through the camera
and transmitted to the neural networkmodel on the edge com-
puting platform. After detection of the object characteristics,
the SVM was used for classification, and the detection result
was communicated to the manager via Wi-Fi. This study
successfully deployed an improved neural network model
YOLO-LWon the edge computing platform. YOLO-LWuses
a deep separated convolutional layer to improve computa-
tional efficiency, differing from the model with float 32 preci-
sion format on the computer side. YOLO-LW is converted to
integer 8 precision format to increase FPS and reduce model
size, with an additional convolutional layer added to maintain
the accuracy of the model. In the experiment, we collected
normal and falling photos of people of all ages under five
different indoor backgrounds through the camera of the plat-
form and fed these images to the model for training and ver-
ification to validate the robustness of the proposed method.
After experimental evaluation, an average IoU of 94.5% was
obtained on the edge computing platform; the accuracy of
the overall system reached 96%, and the FPS reached 11.5.
It exhibited excellent real-time performance and a power
consumption of only 0.3 W. Power consumption is a crucial
factor for fall monitoring systems that must be operated for a
long time. All data were calculated on the edge computing
platform, thereby protecting the privacy of users. Despite
occlusion problems, the proposed neural network has good
generalizability. At a distance of 2–3.5 m, the object can still
be captured even if one-third is occluded, which presents a
potential edge computing solution. The proposed framework
is client server-based and single-tier architecture [34], which
assist with cost savings and safety. The proposed framework
also satisfies network bandwidth saving and real-time data
processing [35]. However, complex occlusion situations and
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variety of light may affect performance of fall detection
system.

In future work, the fall detection system can incorporate the
use of different sensors, such as a thermal camera installation
to monitor the activities of older adults in lightly lit environ-
ments and at night or a fisheye lens installation to expand
the detection range. In addition, different shooting angles and
complex occlusion situations can be further evaluated.
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