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ABSTRACT Grid balancing is an essential requirement for power grid systems. This requirement has
traditionally been fulfilled by existing flexibility mechanisms that provide voltage and frequency regulation.
However, the recent interests in greening the energy supply by using more renewable energy sources
present new grid balancing challenges. Such volatile energy sources introduce generation-side uncertainty
and cause the flexibility mechanisms to fall short more often on providing enough balancing capacity.
In this paper, we target the problem of balancing surplus energy from renewable sources by selling it
in an auction to allow for its quick consumption. Our solution uses cloud datacenters as managed loads
by incentivizing inter-datacenter cloud workload migrations through the auction sale of excess energy.
It leverages the programmability and energy-demands flexibility of cloud datacenters, and uses incentivized
cloud workload migrations to increase the energy consumption of a datacenter in a certain location to
consume its excess energy. We propose an integrated auctioning-scheduling mechanism that auctions the
surplus energy and schedules its consumption on a cloud datacenter. The auction part incentivizes the
inter-datacenter cloud workload migrations, while the scheduling part ensures that migrated workloads do
not exceed the destination datacenter capacity. Existing datacenter-based grid balancing approaches have
focused on providing downward flexibility and only considered the case of owner-operated datacenters.
In contrast, our system focuses on providing upward flexibility to target the increasingly frequent problem
of excess energy from renewables, and it uses public cloud datacenters to increase the participation of
datacenters in providing demand-side flexibility. Conducted simulation experiments show the effectiveness
of our approach in ramping up the energy consumption of a target datacenter to minimize the time needed
to consume the excess energy by as much as 75%. Plus, selling excess energy in an auction was shown to
salvage 55%-65% of its original cost and provide 10% of cost savings to buyers.

INDEX TERMS Datacenters, energy auction, grid balancing, renewable energy sources (RESs), Vickrey-
Clarke-Groves (VCG) mechanism, virtual machine (VM) migration.

I. INTRODUCTION
Grid-balancing is essential for the proper operation of power
grids. Since they lack large-scale energy storage capabili-
ties [1], [2], their supply and demand levels must always
be kept equal in order to avoid system instability, power
interruptions, and frequency deviations that are harmful to
end-users’ equipment. Therefore, power grids must always
have enough flexibility resources that allow them to adjust
the energy levels on the generation and consumption sides
in response to possible imbalance events [3], [4]. For grid
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balancing, the term ‘‘Upward Flexibility’’ refers to a system’s
ability to increase its generation in response to increasing
demand or increase its demand in response to increasing
generation. Similarly, ‘‘Downward Flexibility’’ refers to a
system’s ability to decrease its generation in response to slow-
ing demand or decrease its demand in response to decreasing
generation.When an imbalance event materializes, the ability
of a system to stay balanced depends on the availability of the
needed flexibility resources.

A. MOTIVATION AND BACKGROUND
Traditionally, power grid operators maintained grid bal-
ance by producing just enough energy to meet expected
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demand and used generation-side flexibility resources to
adjust against real-time demand variations. First, demand
prediction approaches are used to forecast the demand of
electricity customers over future time intervals [5], [6].
Then, Generation-units scheduling approaches like Unit-
Commitment (UC) and Economic Dispatch (ED) are used to
optimize the number of active generation-units and their oper-
ational set-points to match their produced energy to expected
demand [7], [8]. After fixing the generation-units’ output,
real-time demand variations are then balanced using marginal
amounts of generation-side flexibility resources. Such flex-
ibility resources are usually in the form of quick-response
backup generation capacity running under the Automatic
Generation Control (AGC) protocol that adjusts their out-
put in response to changes in demand to provide real-
time upward/downward flexibility [9]. More recently, new
smart-grid advancements have allowed utility companies to
introduce Demand Response (DR) programs to achieve grid
balance by exploiting demand-side flexibility [10], [11].
DR programs refer to a wide range of methods that use mon-
etary incentives to influence energy demand modifications of
large-scale consumers.

The above combination of grid-balancing measures
(prediction-based energy generation scheduling, flexibility
resources, and DR) has effectively maintained grid balance
for systems using conventional power generation. However,
the recent trends of greening the power supply by integrat-
ing more Renewable Energy Sources (RESs) into the power
grid introduce generation side uncertainty and necessitate
increasing the flexibility resources’ capacity to ensure con-
tinued reliable operation. Figure 1 illustrates the effect of
increasing the adoption of solar energy in recent years on a
typical 24-hour net-demand curve (the net amount of energy
produced by conventional sources during a 24-hour hori-
zon after taking into account renewable generation input)
as seen by the California Independent System Operator
(CAISO) [12]. It shows that increasing the amount of solar
generation reduces the load on conventional generators dur-
ing the daylight hours (between 7:00 AM and 5:00 PM).
However, as the electricity demand increases in the evening
hours for cooking, watching TV, Etc., the power grid would
need to quickly ramp up its generation from conventional
sources to meet the increasing demand while solar generation
wanes. The increased flexibility requirements shown above
can be met in multiple ways. One option is to use more
generation-side flexibility resources. Another alternative is
to upgrade the transmission network to enhance its ability to
distribute load among multiple areas and reduce the effect of
generation fluctuations [13], [14]. Lastly, the use of DR can
be expanded to gain more demand-side flexibility. The first
option of increasing the amount of generation-side flexibility
resources is not practical because of its associated high cost
and the large amount of additional capacity that would need
to be allocated to achieve the needed flexibility [15]–[17].
The second option is also difficult to implement because such
infrastructure upgrades are very costly. The last option of

FIGURE 1. Net load curve after RESs integration [12].

expanding DR capacity is the most viable for enhancing the
overall system flexibility because it is only used as needed
and is more economical compared to the other alternatives.

Given the need for increased demand-side flexibility, many
DR proposals were introduced to allow using different kinds
of industrial consumers as managed loads [18], [19]. Among
the new DR proposals, many have focused on developing
new approaches that target datacenters. Datacenters consume
large amounts of energy [20], [21] and have elastic energy
demands since their energy consumption is always propor-
tional to the amount of workload they handle [22]–[24]. Such
properties make them suitable candidates for DR to pro-
vide the needed demand-side flexibility. However, existing
datacenter-based DR research did not address two important
aspects: First, they only considered the case of ‘‘Owner-
operated’’ datacenters where datacenter operators control the
execution and scheduling of computational workloads. This
assumption does not apply to a growing number of Infras-
tructure as a Service (IaaS) public cloud datacenters where
the scheduling of computational workloads is controlled by
end-users and cloud-brokers that issue the tasks [25]. Cloud
brokers are large-scale cloud aggregators/resellers that offer
added-value services to cloud end-users and charge a markup
to generate profit. They do not own datacenter infrastruc-
ture resources for hosting end-users’ requests. Hence, they
rent physical resources from IaaS cloud datacenters to host
the Virtual Machines (VMs) needed to process their clients’
workloads. Second, existing research has only focused on the
traditionally common case of downward-flexibility that tries
to minimize consumers’ energy demand at times of genera-
tion shortages. However, practical experience has shown that
increasing the deployment of RESs into power grids hasmade
excess energy generation events more frequent, especially
at higher shares of RESs’ deployment [26], [27], leading
to energy market instabilities and negative energy prices in
real-time balancing markets [28]. Therefore, enhancing the
grid’s upward flexibility is necessary to balance excess RESs’
energy.

As illustrated by the above research gaps, our work is
motivated by two main challenges. The first is to introduce
a new upward flexibility mechanism to address the rising
frequency of excess energy imbalance events. The second

VOLUME 10, 2022 5945



A. Abada et al.: Auction-Based Scheduling of Excess Energy Consumption to Enhance Grid Upward Flexibility

is to devise a new DR approach suitable for public IaaS
cloud datacenters to allow them to participate in providing
demand-side flexibility. We address the first challenge by
introducing a newmarket mechanism that sells excess energy
in an auction to incentivize its quick consumption.We address
the second challenge by enabling the participation of cloud
brokers in the proposed system to control the energy demand
of IaaS cloud datacenters through workload migrations.

Recent research has emphasized the importance of devel-
oping new energy market mechanisms that enable the par-
ticipation of end-users in DR programs [29], [30]. Enabling
end-users’ participation in DR allows for introducing new
DR designs and is especially necessary in scenarios when
energy-consumption decisions are made by end-users, as in
the case of IaaS public cloud datacenters. To that end,
we introduce a new energy market mechanism that sells
excess energy in an auction to cloud brokers. The purpose
of the auction is to incentivize brokers to migrate their cloud
workloads to a destination IaaS cloud datacenter in a location
of excess energy to increase its energy consumption and
consume the excess energy.

B. CONTRIBUTIONS
The main contributions and novelties of our work are the
following:
• We propose a new auction-based market mechanism
for selling excess RESs’ energy to motivate its quick
consumption and provide grid upward flexibility.

• We use public IaaS cloud datacenters to provide grid
upward flexibility through cloud workload migrations.
To the best of our knowledge, this is the first work to use
public IaaS cloud datacenters for providing grid upward
flexibility. Others have only considered owner-operated
datacenters.

• We develop a combined auctioning-scheduling opti-
mization model that jointly auctions the excess energy
and schedules its consumption on a destination datacen-
ter. Most other models do this separately.

Unlike existing methods for balancing excess RESs’
energy that either use expensive generation-side flexibil-
ity resources [3], [4], [31], require transmission network
upgrades [13], [14], or sell the excess energy at negative
prices in the real-time balancing market [28], our solution
is more cost efficient since it does not require allocating
additional flexibility resources that may not always be used,
does not require making huge transmission network upgrades
or lose money by selling excess energy at negative prices.
The proposed system is only used as needed when an excess
energy imbalance event materializes. It generates money
from the auction sale as opposed to losing money by selling
excess energy at negative prices. Compared to using other
types of managed loads for providing demand-side flexibil-
ity [18], [19], using datacenters workload migrations has the
effect of transferring energy load across geographical areas
as the energy consumption is transferred from one datacenter
location to another when workload is migrated. Therefore,

bypassing possible transmission network bottlenecks and
helping delay the need for transmission network upgrades.

C. PAPER ORGANIZATION
This paper is organized as follows: In Section II, we summa-
rize the main previous works in the area of datacenter-based
DR research and we compare it to our work. In Section III,
we introduce the system model, the used cloud workloads
pricing models and the system’s objective. In Section IV,
we present the proposed auctioning-schedulingmechanism in
detail, followed by its performance evaluation in Section V.
We then discuss the limitations of the proposed approach in
Section VI and we conclude in Section VII.

II. LITERATURE REVIEW
There has been much research on the cooperation between
datacenters and the grid using DR programs for the pur-
pose of grid balancing. However, they only considered the
case of downward flexibility (to reduce energy consump-
tion and avoid the need for additional generation capacity
at times of high-demand) and used owner-operated datacen-
ters. We review in this section the current related-work and
illustrate in Table 1 the novelty of our approach compared
to existing works. Ghamkhari et al. [32] rely on using local
energy storage to take advantage of varying energy prices.
They propose forming DR contracts between datacenters and
their supplying utility grids, by which, a datacenter must
decrease its energy consumption level upon receiving demand
signals from the grid. Chen et al. [33] investigate the feasi-
bility of using datacenters to offer DR via server consolida-
tion and dynamic server power capping. Nguyen et al. [34]
design a non-cooperative game framework for minimizing
the maximum Peak-to-Average (PTA) energy drawn from
a grid. They consider a set of grid clients equipped with
on-site batteries, each with a different energy demand over
time. They use price signals (sent by the grid) to control the
energy consumption for minimizing the maximum PTA ratio,
while the grid clients on the other hand try to minimize their
total energy cost. Liu et al. [35] consider a grid system with
renewable energy sources and try to optimize the incentives
given to datacenters for their participation in DR. They use
an online prediction-based method to generate estimates for
future energy availability and user demands. Cao et al. [36]
assumes a non-cooperative game scenario between a power
grid and a datacenter. They develop a game theory bargaining
approach for settling the reward price for load reduction by
the datacenter. Ma et al. [37] consider the problem of select-
ing a minimum number of energy customers (from a given
pool) to provide a required amount of demand reduction with
a certain level of reliability. They propose two reward-based
mechanisms that illicit from the customers either the amounts
of energy reductions they are capable of and their sought
payments or their willingness to accept penalties if they do
not deliver on their promised reductions. Their approach tries
to provide reliable delivery of energy reduction and mini-
mize the resulting cost (payments to the selected customers).
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TABLE 1. Summary of related literature and current work.

Wang et al. [38] study the grid-datacenter interaction and
propose a two stage model that targets both grid balancing
and minimizing the datacenter energy cost. In their model,
the grid uses dynamic electricity pricing to control the energy
demand of datacenters in order to balance the grid, while
the datacenters try to optimize their workload scheduling to
minimize their energy cost according to the variable energy
prices. They formulate the problem as a linear program and
propose a branch-and-bound algorithm to attain a globally
optimal solution.

III. SYSTEM MODEL
This section presents the proposed energy auctioning-
scheduling system that can be used to increase the energy
consumption of a datacenter within a grid balancing zone to
consume its excess RESs’ energy. To the best of the authors’
knowledge, this work is the first to use datacenters to provide
grid upward-flexibility via inter-datacenter cloud workload
migrations. Since the main entities considered in this work
are the cloud brokers and datacenters, wemodeled our system
as a set I of cloud brokers and a set J of datacenters (the IaaS
cloud providers). Each datacenter is located within a different
balancing zone, as shown in Figure 2. Each balancing zone
is managed by a local utility company (the power grid in
Figure 2). Utility companies use conventional and RESs gen-
eration units to produce energy. They are also responsible for
maintaining grid balance within their balancing zones using
the methods introduced in Section I (prediction-based energy
generation scheduling, flexibility resources, and DR).

We focus on the case of when RESs’ output is inaccu-
rately predicted, leading to an imbalance event where excess
energy must be consumed to maintain grid balance. In such a
case, the local utility would auction the excess energy to the
cloud brokers (as shown in the next section) to incentivize its
quick consumption. We assume that cloud brokers pay for the
energy consumption of their workloads on IaaS datacenters
(as shown in Subsection III-B); therefore, they are motivated
to migrate their workloads to a datacenter offering a cheaper
energy price to lower their cost. Since excess energy is not
sold at its regular price in the auction, it is represented as

Energy Credits (ECs). ECs are energy coupons that can be
used to pay for energy usage at the datacenter in the issuing
utility’s balancing zone.

To streamline the ECs’ auctioning process, we introduced
a centralized ECs’ market (shown in Figure 2) to auction the
ECs for the local utilities. The ECs’ market is connected to
the other system components (brokers, datacenters, and local
utilities) to facilitate the auctioning task. When a local utility
wants to consume a certain amount of excess energy within
its balancing zone, it initiates a new ECs’ auction by sending
the ECs it wants to auction to the ECs’ market. The ECs’
market would then announce a new auction to all brokers,
collect their bids, run the auction on behalf of the utility that
issued the ECs and determine the allocation result. ECs are
sold in an auction with no reserve price in order to receive
bids from all brokers with positive valuations and minimize
the time needed to consume the excess energy. In addition,
the auction requires that the sold ECs may only be used
at the intended datacenter within the balancing zone of excess
energy, thereby incentivizing cloud brokers to migrate their
workloads to that datacenter to take advantage of auctioned
energy pricing.

The current centralized design simplifies the joining pro-
cess for new utilities and datacenters wishing to join the sys-
tem as they would only need to connect to the ECs’ market to
join. It also simplifies the discovery process for brokers wish-
ing to learn about new ECs’ auctions since auction announce-
ments are always broadcasted to all participating brokers by
the centralized ECs’ market. Lastly, the system-wide view
of the centralized ECs’ market allows it to compute globally
optimal allocations.

We assume for simplicity that a maximum of one ECs’
auction may take place in the system at any given time.
Therefore, there can be a maximum of one balancing zone
with excess energy at any given time. This assumption was
made to simplify the ECs’ market operation and focus on the
main idea of using auctions to provide upward flexibility via
cloud datacenters workload migrations. The complete list of
variables used in our model is presented in Table 2.

A. BROKERS PRICING MODEL FOR END-USERS
WORKLOADS
Cloud brokers receive workload requests from their clients
(the end-users) on a random arrival basis, where each request
is described by a four-attribute tuple W = (wc,wm,ws,wd )
as the computing, memory, storage and duration requirements
of the submitted workload. Brokers charge the end-users for
their submitted workload requests based on the cost parame-
ters RateBci , RateB

m
i and RateB

s
i (that represent the per-unit

cost of processing, memory and storage resources respec-
tively) for the required execution duration. Therefore, the
total cost charged by a broker i to an end-user u for processing
a workloadWui can be calculated as the following:

CostWBui = (RateBci ∗ w
c
ui + RateB

m
i ∗ w

m
ui

+RateBsi ∗ w
s
ui) ∗ w

d
ui (1)
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FIGURE 2. Energy Credits Market Model.

B. DATACENTERS PRICING MODEL FOR BROKERS
WORKLOADS
Since the cloud brokers act as aggregators for end-users
demand, we assume they are given a special pricing plan (for
high-volume customers) at the datacenters. Besides allow-
ing the brokers to generate profit, such a pricing plan also
recognizes the important role they can play in making the
datacenters’ energy consumption more responsive to DR
signals by exposing them to the electricity cost component
that is usually hidden from smaller consumers for simplicity.
This incentivizes the cloud brokers to participate in DR pro-
grams to minimize their costs and help maintain grid balance.
A similar approach was attempted by Wang et al. in [39],
albeit with different implementation details. Under this cloud
brokers’ pricing model, datacenters apply the following cost
parameters RateDc, RateDm, RateDs and RateDe as their
per-unit costs of computing, memory, storage and energy
resources consumed by the brokers’ workloads respectively.
Since the energy consumption of VMs depends on the type of
physical hardware used, cloud brokers must calculate the
anticipated energy consumption of their workloads on each
datacenter before making workload placement/migration
decisions. To make this calculation possible, datacenters

provide the brokers with their hardware-specific energy
consumption parameters ConvDc, ConvDm, ConvDs that rep-
resent the amount of energy consumed per unit of pro-
cessing, memory, and storage respectively allocated per
time interval, which is a widely accepted energy con-
sumption model for computing hardware [40]. Therefore,
the total cost charged by a datacenter j to a broker i
for processing a workload Wij can be calculated as the
following:

CostWDij

=

[
RateDcj ∗ w

c
ij + RateD

m
j ∗ w

m
ij

+RateDsj ∗ w
s
ij + RateD

e
j ∗ (ConvD

c
j ∗ w

c
ij

+ConvDmj ∗ w
m
ij + ConvD

s
j ∗ w

s
ij)
]
∗ wdij (2)

While current public IaaS datacenters do not disclose the
energy consumption parameters of their equipment as shown
in the above pricing model, there is a good business case for
them to do so under the proposed system to enter into a mutu-
ally beneficial collaboration with the brokers. Taking part in
this system would mean more business for the datacenters at
times of energy surplus since they can potentially increase
their sales by hosting migrated workloads. Brokers also ben-
efit by participating in the proposed system since they always
lower their costs when migrating their workloads. Addition-
ally, the hardware-specific energy consumption parameters
are scalar values related to the energy ratings of computing
equipment and are not part of program data. Therefore, the
potential for compromised security to end-users or datacen-
ters due to sharing the values of such parameters with the
brokers is very low.

C. SYSTEM OBJECTIVE
The system’s main objective is to consume/balance a cer-
tain amount of excess RESs’ energy by creating an equal
demand for it on the consumption side using inter-datacenter
cloud brokers’ workload migrations. To create this demand,
we incentivize brokers to migrate a portion of their workloads
to a datacenter within the grid balancing zone that has the
excess RESs’ energy by selling the excess energy in an
auction. The desired behavior of the system is to maintain a
real-time balance between supply and demand during RESs’
oversupply events.

In order to focus on the main idea of the proposed
approach, we assume ideal workload migration conditions
where the workloads’ migration time and cost are negligible.
This simplifies the system model and is not a huge departure
from practical scenarios since current advancements in VM
migration technologies enable negligible-cost migration and
allow it to happen seamlessly in the background without
affecting end-users’ Quality of Service (QoS) [41]. Nev-
ertheless, the proposed system can still accommodate any
migration-related costs by simply adding such costs into
Eq. 4 for calculating CostDijk .
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TABLE 2. The scheduling auction decision variables.

IV. MULTI-INTERVAL AUCTION MECHANISM
Since the auction sale of ECs must consider the scheduling
of migrated cloud workloads, we use an iterative looka-
head combined auctioning-scheduling formulation with a
lookahead size of T intervals. The auctioning-scheduling
optimization is iteratively executed at the beginning of each
interval to auction the available ECs and update the work-
loads scheduling allocation for the next T intervals. We chose
to implement the famous Vickrey-Clarke-Groves (VCG) auc-
tion mechanism in our model since it is a Dominant Strat-
egy Incentive Compatible (DSIC) mechanism by definition,
proven to provide strong incentive compatibility guarantees
(i.e., guarantees that rational bidders will always bid their
true valuations) [42]. This greatly simplifies the brokers’ bids
generation process, makes it easy to automate, and guarantees
positive utility on accepted bids.

The proposed ECs’ auction mechanism introduced here is
carried out when a certain amount of excess RESs’ energy
needs to be consumed at a certain balancing zone to maintain
its energy balance. The auction mechanism manages the sale
of excess RESs’ energy and the scheduling of migrated work-
loads on the available datacenter resources. Selling the excess
RESs’ energy in an auction allows the grid to consume the
oversupply quickly while generating revenue (as opposed to
simply discarding the excess energy). The process starts when
a certain grid balancing zone offers its excess RESs’ energy
(represented as ECs) for sale in an auction at the ECs’ market
(as shown in Figure 2). The ECs’ market then invites brokers
to submit bids for buying fractions of the available ECs,
receives bids from interested brokers, determines the winning
bids and their payments. Thewinning brokers can then use the
won ECs to pay for energy costs (i.e., to compensate against
the term multiplied by RateDej in Eq. 2) at the target destina-
tion datacenter when their workloads are migrated there.

A. BIDS GENERATION
We assume that cloud brokers normally choose the minimum
cost datacenter for hosting their clients’ workloads, and they
have workloads of different durations already hosted at dif-
ferent datacenters before the auction process begins. A new
auction round starts when new ECs are introduced in the
system by a certain balancing zone. Brokers are then invited
to place bids for buying the amounts of energy that their
migratable workloads would consume at the destination dat-
acenter where the ECs can be used. Those amounts are easily
computed for the migratable workloads using the publicly
available hardware-specific energy consumption parameters
(ConvDck ,ConvD

m
k and ConvDsk ) at the desired destination

datacenter k . We refer to a datacenter from where a broker’s
workload is to be migrated from as the ‘‘source datacenter’’,
and the datacenter to where the workload is to be migrated to
as the ‘‘destination datacenter’’. It is important to note that in
order for a broker to gain positive utility (i.e., not lose money)
on any accepted bid, the maximum total cost of running
its migratable workloads at a destination datacenter can not
exceed their current cost at the source datacenter (as shown
in Figure 3). We let Wij = (wcij,w

m
ij ,w

s
ij,w

d
ij) be a tuple that

describes the amount of resources (CPU, memory and stor-
age) and the duration of the workloads of broker i currently
hosted at a datacenter j. Brokers generate their bids in the fol-
lowing tuple format:Bidijk = (wcijk ,w

m
ijk ,w

s
ijk ,w

d
ijk ,w

e
ijk , vijk ),

which describes a bid submitted by a broker i for migrating
an aggregated amount of clients workloads (of the same
execution time requirements) from a source datacenter j to
a destination datacenter k . In the above tuple, wcijk ,w

m
ijk ,w

s
ijk

are the amounts of CPU, memory and storage resources
respectively that would be migrated from a source datacen-
ter j to a destination datacenter k if Bidijk is accepted. wdijk
represents the workload duration. weijk represents the amount
of energy that would be consumed per time interval at the des-
tination datacenter k as a result of the migration (computed
using the hardware-specific energy consumption parameters
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as described earlier). This ensures that the amount of energy
submitted in a bid is exactly the amount that would be con-
sumed if the bid is accepted and the migration takes place.
Lastly, since the other cost components of each datacenter
(RateDc,RateDm,RateDs) shown in Eq. 2 are also publicly
available, the brokers can compute the value term (vijk ) in
their bids as the maximum price they are willing to pay for
weijk at the destination datacenter k . To calculate how much a
broker iwould be willing to bid for a certain amount of energy
weijk at a destination datacenter k while ensuring to maintain
positive utility, we first compute the cost of running Wij at
the destination datacenter k without including the energy cost
portion (assuming that broker i would not have to pay for
energy at the destination datacenter k in order to get a lower
bound on cost there). Then, we subtract this value from the
cost of what broker i is currently paying forWij at the source
datacenter j. This gives us the maximum positive utility that
broker i could generate by migrating Wij to the destination
datacenter k if its bid Bidijk is accepted. From Eq. 2, the
current cost for broker i for running its workload Wij at a
source datacenter j can be computed as the following:

CostSijk
= RateDcj ∗ w

c
ijk + RateD

m
j ∗ w

m
ijk

+RateDsj ∗ w
s
ijk + RateD

e
j ∗ (ConvD

c
j ∗ w

c
ijk

+ConvDmj ∗ w
m
ijk + ConvD

s
j ∗ w

s
ijk ) (3)

On the other hand, the cost for broker i for running its work-
loadWij at a destination datacenter k without considering the
energy cost there is the following:

CostDijk = RateDck ∗ w
c
ijk + RateD

m
k ∗ w

m
ijk

+RateDsk ∗ w
s
ijk (4)

Therefore, vijk can be calculated as shown in Figure 3 as the
following:

vijk = CostSijk − CostDijk (5)

The bids’ generation process is locally executed by each
broker and is summarized in Algorithm 1. We assume that
bidders are single-minded, meaning that they do not accept
partial allocations on their bids and derive zero utility from
such allocations. Consequently, their valuation vijk on any
partial allocation of weijk is zero.

B. WINNERS DETERMINATION/RESOURCE ALLOCATION
The VCG auction mechanism is a social surplus max-
imizing mechanism. Therefore, its Winners’ Determina-
tion Problem (WDP) is solved by selecting the bids that
maximize the total bidders’ valuation while satisfying
applicable problem-specific constraints. Since the proposed
multi-interval scheduling auction is concerned with both of
auctioning the available ECs and determining the execution
schedule of the migrated brokers’ workloads, we use the two
decision variables Sijkh and Aijkh as our auction optimization
result to represent the execution schedule of the accepted

FIGURE 3. Bid Calculation.

bids during the lookahead time horizon T . Both variables are
a four-dimensional boolean array. They indicate the auction
mechanism decision on accepting/rejecting the bids submit-
ted by the brokers for migrating workloads of a broker i from
a datacenter j to a datacenter k , and the allocated execution
intervals h.

The array Sijkh encodes the starting time interval (during
the lookahead time horizon T ) for executing the migratable
workload Wijk on datacenter k if Bidijk is accepted and the
migration is to take place. On the other hand, the array Aijkh
encodes the allocated intervals for executing the workload
(which must be uninterruptible with length equal to the
required execution duration wdijk ). An example outcome of
S and A for an accepted bid Bidijk of a broker i is shown
in Figure 4, where a workload of duration wdijk = 3 is
accepted to be migrated from datacenter j = 3 to datacenter
k = 4 and is scheduled to start execution in the time interval
h = 2 for three consecutive intervals. It is noted that while
either of the above arrays would suffice to deduce the full
information about the auction output and the scheduling out-
come, they are both needed to properly construct the integer
linear programming constraints in our model that guarantee
uninterruptible execution of migrated workloads. The WDP
is solved by executing the following auctioning-scheduling
combined optimization problem using the received bidsBidijk
as input, where k is the index of the destination datacenter:
Objective function:

Max
∑
i∈I

∑
j∈J

∑
k∈J

∑
h∈T

h<(|T |−wdijk+1)

Sijkh ∗ vijk ∗ wdijk (6)

Subject to:
Capacity Constraints:∑

i∈I

∑
j∈J

wcijk ∗ Aijkh < Capacityckh (h ∈ T ) (7)
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Algorithm 1 Algorithm for Bids Generation by Cloud
Brokers (performed Individually by Each Cloud Broker
i ∈ I at the Begenning of Each Time Interval When ECs Are
Available for Auction at Datacenter k)
Input: i: index of cloud broker

j: index of source datacenter
k: index of destination datacenter
J : set of available datacenters

Wij: workload of cloud broker i on
datacenter j, Wij = (wcij,w

m
ij ,w

s
ij,w

d
ij)

Output: Bidijk : bid to migrate workloadWij of broker i
from datacenter j to datacenter k

Initialisation : broker i receives an announcement (from
the ECs market) about ECs availability at datacenter k

1: for j = 0 to |J | do
2: if (i has Wij on datacenter j) and (j 6= k) then
3: compute CostSijk (Eq. 3)
4: compute CostDijk (Eq. 4)
5: compute vijk (Eq. 5)
6: compute weijk = (ConvDck ∗ w

c
ijk+

7: ConvDmk ∗ w
m
ijk + ConvD

s
k ∗ w

s
ijk )

8: Bidijk = (wcijk ,w
m
ijk ,w

s
ijk ,w

d
ijk ,w

e
ijk , vijk )

9: send Bidijk to ECs’ market
10: end if
11: end for

FIGURE 4. The scheduling auction decision variables.

∑
i∈I

∑
j∈J

wmijk ∗ Aijkh < Capacitymkh (h ∈ T ) (8)

∑
i∈I

∑
j∈J

wsijk ∗ Aijkh < Capacityskh (h ∈ T ) (9)

∑
i∈I

∑
j∈J

∑
h∈T

h<(|T |−wdijk+1)

Sijkh ∗ weijk < ECs (10)

Continuity Constraints:∑
i∈I

∑
j∈J

∑
h∈T

h<(|T |−wdijk+1)

(
−wdijk ∗ Sijkh

)

+

∑
i∈I

∑
j∈J

∑
h∈T

Aijkh = 0 (11)

∑
i∈I

∑
j∈J

∑
h∈T

h<(|T |−wdijk+1)

wdijk∑
d=0

Aijk(h+d)

−

∑
i∈I

∑
j∈J

∑
h∈T

h<(|T |−wdijk+1)

(
Sijkh ∗ wdijk

)
≥ 0 (12)

Single Allocation Constraint:∑
h∈T

h<(|T |−wdijk+1)

Sijkh ≤ 1, ∀i ∈ I , j ∈ J (13)

Total Allocation Constraint:∑
h∈T

Aijkh ≤ wdijk , ∀i ∈ I , j ∈ J (14)

Integrality Constraint:

Sijkh,Aijkh ∈ {0, 1}, ∀i ∈ I , j ∈ J , k ∈ J , h ∈ T (15)

The objective function (Eq. 6) in the above formulation
is derived from the definition of the VCG auction, as it
maximizes the total valuation on the accepted bids (bids are
accepted if their corresponding Sijkh = 1). The following
capacity constraints (Eqs. 7-10) ensure that the total amount
of resources’ requirements in accepted bids do not exceed
the available datacenter capacities and the amount of sold
ECs is less than the available ECs. Continuity constraints
(Eqs. 11,12) ensure that each accepted bid is allocated a num-
ber of consecutive time intervals equal to its duration. The
single allocation constraint (Eq. 13) ensures that each bid can
only be accepted at most once. The total allocation constraint
(Eq. 14) ensures that each bid is not allocated a number of
intervals greater than its duration. Finally, the integrality con-
straint (Eq. 15) ensures that no partial allocations are allowed
on submitted bids by restricting the decision variables to the
integer values of 0 and 1. The continuity and total allocation
constraints work together to ensure that all accepted bids are
allocated contiguous blocks of time intervals with lengths
equal to their required execution durations wdijk . The above
formulation for winner-determination and resource allocation
is summarized in Algorithm 2, which is executed at the
beginning of each time interval by the ECs’ market to process
incoming bids Bidijk when ECs are auctioned.

C. PAYMENT CALCULATIONS
The payment rule of the VCG auction mechanism charges
each winning bid Bidijk a payment pijk equal to its social cost.
The social cost of a bidder i is defined as the maximum total
utility that other bidders would have been able to receive if
Bidijk did not participate minus their maximum utility when it
participates. This payment calculation method requires solv-
ing a new optimization sub-problem (under the same original
constraints of Eqs. 7-15) to calculate the payment for each
winning bidder (to determine the maximum utility of the
other bidders when i does not participate). The calculation
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Algorithm 2 Algorithm for Auctioning the Available ECs
and Scheduling Execution of Migrated Workloads on
a Destination Datacenter k . (Performed by the ECs Market
at the Beginning of Each Time Interval)
Input: EC : auctioned energy credits at datacenter k

Bidijk : bid of cloud broker i to migrate its workload
Wij from datacenter j to datacenter k

Capacityc,s,mkh : CPU, memory and storage capacity of
destination datacenter k at time interval h

Output: Sijkh: boolean decision variable, the starting time
interval for migrated workloadWijk

Aijkh: boolean decision variable, the allocated
time interval for migrated workloadWijk

1: receive bids Bidijk from brokers (as computed in Algo-
rithm 1)

2: find optimal solution for (6) s.t. (7 - 15)
3: return Sijkh, Aijkh

of a payment pijk for a winning bidder on its bid Bidijk can be
computed according to Eq. 16 as the following:

pijk = max
∑
i∈I

∑
j∈J

(
Sijkh ∗ v(ijk)−1 ∗ w

d
ijk
)

−

[(
max

∑
i∈I

∑
j∈J

Sijkh ∗ vijk ∗ wdijk

)
− vijk

]
(16)

In the above equation, the first term represents the maxi-
mum total valuation of winning bids when Bidijk is not taken
into consideration, where v(ijk)−1 refers to the valuations of
bids other than Bidijk . The second term calculates the max-
imum valuations of winning bidders other than Bidijk when
Bidijk is taken into consideration. This is simply calculated
by subtracting vijk from the optimal solution computed for
the objective function during the winners’ determination step.
The above payments calculation process is executed by the
ECs’ market and is summarized in Algorithm 3.

D. COMPUTATIONAL COMPLEXITY
The VCG mechanism is currently the only known technique
for designing truthful incentive-compatible auctions [42],
[43]. It was chosen to implement the auction part in this work
to simplify the brokers’ bids-generation process because it
guarantees that truthful bidding is a dominant strategy for all
bidders wishing to maximize their utility. Therefore, elimi-
nating the need for a bidding strategy. However, the truthful-
ness property of the VCG mechanism is only maintained if
its WDP is solved to optimality [44], which is an NP-hard
problem in the case of the proposed auction model.

Since we do not allow partial allocations on submitted
bids (as bidders have zero valuation for partial allocations),
the possible values for the decision variables are restricted
to the integer values of 0 and 1 (Eq. 15). This makes
the problem non-convex by definition [45]. Therefore, con-
vex optimization approaches are not applicable and con-
vex relaxations would not help since they would only yield

Algorithm 3 Algorithm for Calculating the Payments of
Winning Bids. (Performed by the ECs Market Using Output
of Algorithm 2)
Input: Sijkh: boolean decision variable (from Algorithm 2)

I : set of available brokers
J : set of available datacenters
T : length of lookahead scheduling intervals

Output: pijk : payment of winning bid Bidijk
1: for i = 0 to |I | do
2: for j = 0 to |J | do
3: for k = 0 to |J | do
4: for h = 0 to |T | do
5: if (Sijkh = 1) then
6: compute pijk (Eq. 16)
7: end if
8: end for
9: end for
10: end for
11: end for
12: return pijk

bounds [46], [47]. Similarly, approximate methods would not
provide valid solutions to the VCG auction since they do not
guarantee optimality. In order to get a valid solution to the
WDP, we implemented it as a Mixed Integer Linear Program
(MILP), as shown in Eqs. (6-15), and used the CPLEX solver
to solve it to optimality. This WDP implementation can be
shown to have an NP-hard time complexity by a reduction
from the famous multidimensional knapsack problem [48]
to a simplified version of our WDP that only considers one
datacenter, a lookahead scheduling horizon of one interval
(T = 1), no continuity constraints and a unified workloads
duration of a single time interval. Such reduction exploits the
analogy between a datacenter’s computational resources and
a knapsack, where scheduled computational workloads can-
not exceed the existing datacenter capacity of each resource.
Therefore, we accept that the computational complexity of
our model is NP-hard; otherwise, that would invalidate the
famous P 6= NP conjecture [49].

The WDP must be solved once during the winner-
determination/resource-allocation phase that determines the
auction winners (as shown in Subsection IV-B) and multiple
times during the payment-calculation phase that determines
the payments required of each winning bidder (as shown in
Subsection IV-C). To derive its computational order, we con-
sider a scenario of n cloud brokers, m datacenters, and T
lookahead scheduling intervals, where brokers submit bids to
migrate workloads to a single datacenter to increase its energy
consumption.We assume that all cloud brokers submit bids to
migrate workloads of unit duration from m−1 datacenters to
a destination datacenter (to maximize the number of received
bids and get an upper bound on the number of possible
scheduling scenarios), resulting in a total of n ∗ (m − 1)
received bids. Since the received bids must be scheduled
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within a time horizon of T intervals, the number of all pos-
sible scheduling arrangements is 2T∗n∗(m−1). Therefore, the
resulting time complexity is O(2T∗n∗m), which is exponential
in the number of problem size. Since commercial solvers,
such as CPLEX, usually use variants of the Branch-and-
Bound algorithm to solve MILPs, their space requirement
depends on the branching strategy used to explore the solution
space and the number of active tree nodes they keep in
memory at any given time [50], [51]. While a worst-case
upper bound would require keeping all tree nodes in memory,
most commercial solvers would need to store only a subset
of the search tree as they normally discard sub-optimal and
infeasible branches as soon as they are discovered.

V. PERFORMANCE EVALUATION
This section presents the simulation setup, used parameters,
and performance metrics, and discusses our results. We built
our simulation model using the Java programming language
and used the IBM ILOGCPLEX optimization solver V12.5.1
(via its Concert interface library for Java) to solve the
optimization calculations described in the previous section.
We measure the performance of our system at different levels
of ECs’ availability w.r.t the total ECs demanded by the
received bids.We also vary the brokers’ workload arrival rates
to observe the effect of system load on auction results. We use
the following metrics to measure our system performance:
1) The effect of using ECs on the grid’s balancing time. This
is an important metric since power grids operate under strict
constraints in terms of balancing time requirements, where
a timely response to imbalance contingencies is essential,
2) The sale revenue generated by auctioning ECs compared to
selling at regular price, and 3) The brokers’ savings as a result
of taking part in the ECs’ auction and migrating workloads.

A. SIMULATION SETUP
Our simulation model consists of 4 cloud datacenters and
6 cloud brokers, each with randomly chosen cost parameters
at the beginning of each simulation run. The time dimension
is divided into discrete intervals of equal duration; the system
presented in this paper is executed at the beginning of each
interval if there are ECs to be auctioned. We simulated our
system using 500 independent runs with randomly generated
inputs and plotted the averaged results with 95% confidence
intervals shown. The ranges for the used parameters are as
listed in Table 3. Since theVCGauction charges eachwinning
bidder its social cost as a payment, it is necessary that supply
(the amount of auctioned ECs) must always be kept less than
demand (the total amount of ECs requested in the received
bids) for the VCG auction to collect payments from the
bidders. Otherwise, the auction would charge them nothing if
their presence does not affect the outcome for other bidders.
Hence, we always limit the amount of auctioned ECs to a
fraction of the total ECs requested if supply is greater than
demand (we experimented with the fractional values of 0.7,
0.8, and 0.9 for this purpose) in order to extract payments
from winning bidders. To illustrate, assume that the available

TABLE 3. Simulation Parameters.

amount of ECs is 1000, while the total amount of ECs
requested by the received bids during an iteration is only 100.
To avoid giving the ECs to the bidders for free, we limit
the amount of auctioned ECs during this iteration to 70, 80,
and 90, respectively, according to the different fraction values
shown above. The remaining ECs are then auctioned again in
the following iteration. Each simulation run starts with 500
ECs available at a randomly selected datacenter. Thus, mul-
tiple auctioning iterations (executed at the beginning of each
time interval) are normally needed to consume the available
ECs. In order to observe the system’s performance at differ-
ent system load levels, we used different brokers’ workload
arrival rates (10, 20, 30, and 40 requests/scheduling-interval),
as shown in the figures.

B. EFFECT OF USING EC AUCTION ON THE GRID
BALANCING TIME
Our first performance metric, the effect of using ECs on the
grid balancing time (the number of time intervals needed
to consume a certain amount of excess energy), shows that
selling the excess energy in an auction as ECs can reduce the
number of time intervals needed to consume it by as much
as 75%. Therefore, shortening the time needed to balance
the grid. To illustrate this effect, we plot in Figure 5 the
number of time intervals needed to consume a certain amount
of excess energy under normal workflow conditions (without
using an ECs’ auction) and compare it to the case of using
an ECs’ auction at different levels of ECs’ availability and
workload arrival rates. The results show that the achievable
speed-up in balancing time depends on the system load con-
dition (workload arrival rate) and the amount of ECs made
available in the auction. Larger speed-up factors are noticed
at lighter system load conditions (compared to the case of
not using an ECs’ auction) since the ECs’ auction helps
concentrate brokers’ workloads at the destination datacenter.
As the system load increases (at higher request arrival rates),
the achievable speed-up in balancing time becomes limited by
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FIGURE 5. Effect of varying the amount of auctioned ECs on balancing
time.

the physical capacity of the destination datacenter since not
all received bids can be accepted due to capacity constraints
(Eqs. 7, 8, and 9). On the other hand, increasing the fraction of
auctioned ECs had the effect of shortening the time needed to
consume the excess energy since more workload migrations
could be accepted.

C. REVENUE GENERATED BY THE EC AUCTION
The second performance metric, the revenue generated by
the ECs’ auction, shows how much revenue the seller (the
issuing utility) was able to generate by selling the excess
energy in an auction, compared to selling at its regular price.
Figure 6 shows the regular price of the auctioned excess
energy (the bar labeled ‘‘Original value’’) next to the revenue
generated by the ECs’ auction at different levels of ECs’
availability (0.7, 0.8, and 0.9 as discussed above) and at
different workload arrival rates. This metric captures the per-
centage of revenue generated by the ECs’ auction compared
to the regular energy price. The results show that selling
excess energy in an auction can fetch between 55 to 65% of
its regular price. Additionally, reducing the amount of ECs
offered in each auction iteration increases the auction revenue
due to increased competition for the available ECs.

Cloud brokers always choose the lowest cost datacenter for
hosting their workloads. Therefore, they would only migrate
their workloads to another (higher-cost) datacenter if lower
energy prices at the auction allow them to reduce their cost
by migrating. The proposed auction guarantees this to be the
case for accepted bids (as shown in Figure 3). This is true
since the bid valuations vijk (shown in Figure 3 and computed
using Eq. 5) are always less than the regular energy price
at the destination datacenter. Additionally, the actual auction
payments pijk (Eq. 16) are guaranteed not to exceed vijk .
Therefore, the ECs’ auction revenue will always be less
than the regular energy price at the destination datacenter,
as illustrated by the results in Figure 6. Although power grids
would collect only a fraction of the regular price on their
excess energy sold in an auction, they would still choose to
auction their excess energy to avoid more costly balancing
alternatives.

FIGURE 6. Effect of varying the amount of auctioned ECs on total revenue.

FIGURE 7. Effect of ECs on broker savings.

D. EFFECT OF EC AUCTION ON BROKERS COST
The last performance metric, the effect of ECs on brokers’
cost, captures the reduction in brokers’ cost due to taking
part in the auction and migrating workloads. Figure 7 shows
the brokers’ cost before and after migration for different
workload arrival rates. The results show that auction par-
ticipants always gain positive utility (i.e., they do not lose
money by participating in the auction). The auction mech-
anism guarantees this since the bid valuations vijk (shown
in Figure 3) guarantee that the total cost after migrating
to a destination datacenter never exceeds the original cost
at the source datacenter. Additionally, the payment rule
(Subsection IV-C) guarantees that winning bidders never pay
more than their valuations. Therefore, brokers are always
guaranteed not to lose money by joining the auction. While
the brokers’ savings are moderate in the shown simula-
tion results (a maximum savings of 10% for the bro-
kers in the considered scenarios), it is worth noting that
a bidding broker may always choose to set a minimum
threshold of savings for migrating its workload if it so
wishes by adjusting its bid value (vijk ) to include this
margin.
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VI. LIMITATIONS OF THE PROPOSED APPROACH
The proposed system assumes collaboration between the dif-
ferent system entities. Specifically, it assumes that cloud bro-
kers must have access to the energy consumption information
of their workloads and the hardware-specific energy con-
sumption parameters of the datacenters, which is not always
readily available information from current public cloud data-
centers on the market. Due to the unavailability of such data-
centers’ parameters, we used synthetically generated data (as
shown in Table 3) to conduct the system’s performance evalu-
ation. While using synthetic data might shift the performance
values from those of real production systems, we believe that
the general trend of the shown results would still hold since
such results are achieved by using the auctionmechanism that
guarantees positive utility to the participants.

Since the proposed system migrates cloud workloads from
multiple source datacenters to a single destination datacenter,
we assume that the energy imbalances created at the source
datacenters (as a result of workload migrations) are small
enough individually and can each be balanced using exist-
ing balancing mechanisms of the local balancing areas of
each source datacenter. Therefore, based on this assumption,
we rule out the possibility of cascading workload migrations.

Since the existing datacenter-based grid balancing
approaches discussed in Section-II only consider the case of
minimizing datacenters’ energy consumption, they are not
directly comparable to our approach. Therefore, we show the
performance of our approach here compared to the alterna-
tive case of not using the ECs’ auction. While other non-
datacenter-based approaches do exist for balancing excess
energy, those are outside the scope of our work since they
are not in direct competition with our approach. They can
work in parallel with our approach to enhance the grid’s
balancing capabilities and enable the integration of more
RESs’ generation units.

VII. CONCLUSION
Grid balancing is essential for the reliable operation of mod-
ern utility grids. Datacenters can play an important role in
achieving effective grid balancing by providing demand-side
flexibility via cloud workload migrations. This flexibility
is greatly needed to enable the integration of more RESs
into the generation mix of modern grids. While the exist-
ing datacenter-based grid-balancing work has focused on
minimizing the datacenters’ energy consumption (to provide
downward flexibility) and has assumed owner-operated dat-
acenters, we used public cloud datacenters in this work as
managed loads to provide upward flexibility, which is nec-
essary for balancing excess RESs’ energy. We presented a
new combined auctioning-scheduling optimization model for
increasing the energy consumption at a specific datacenter
by a certain amount enough to effectively balance the excess
RESs’ energy.

We showed via simulation that the proposed solution was
effective in ramping up the energy consumption of a target
datacenter by allocating its idle resources to minimize the

time needed to consume excess energy by as much as 75%.
Plus, we showed that selling excess energy using the proposed
auction mechanism did salvage 55%-65% of the original
energy cost and provided 10% of cost savings to buyers, thus,
provided positive utility to all system participants.

As future work, we are planning several enhancements to
the system model, such as including the cost of migration,
maximizing the sale revenue of the auction, and targeting
the NP-hard complexity of the system. Finally, we are also
planning to investigate the use of a decentralized design, such
as using a distributed ECs’ market and decentralized machine
learning approaches.
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