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ABSTRACT Second-order cone programming problems are a tractable subclass of convex optimization
problems that can be solved using polynomial algorithms. In the last decade, stochastic second-order cone
programming problems have been studied, and efficient algorithms for solving them have been developed.
The mixed-integer version of these problems is a new class of interest to the optimization community and
practitioners, in which certain variables are required to be integers. In this paper, we describe five applications
that lead to stochastic mixed-integer second-order cone programming problems. Additionally, we present
solution algorithms for solving stochastic mixed-integer second-order cone programming using cuts and
relaxations by combining existing algorithms for stochastic second-order cone programming with extensions
of mixed-integer second-order cone programming. The applications, which are the focus of this paper,
include facility location, portfolio optimization, uncapacitated inventory, battery swapping stations, and berth
allocation planning. Considering the fact that mixed-integer programs are usually known to be NP-hard,
bringing applications to the surface can detect tractable special cases and inspire for further algorithmic
improvements in the future.

INDEX TERMS Second-order cone programming, mixed-integer programming, stochastic programming,
applications, algorithms.

ACRONYMS
CVaR Conditional value-at-risk.
DMISOCP Deterministic mixed-integer second-order

cone programming.
FEU 40-foot equivalent unit.
FLP Facility location problem.
SMBSOCP Stochastic mixed-binary second-order

cone programming.
SMILP Stochastic mixed-integer linear

programming.
SMISOCP Stochastic mixed-integer second-order

cone programming.
SSOCP Stochastic second-order cone

programming.
TEU 20-foot equivalent unit.

I. INTRODUCTION
Challenges, restrictions, and affects such as uncertainty
[1]–[3], integrality [4]–[7], and conicity [8]–[11] arise

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.

naturally in real-world applications. For example, the (deter-
ministic) mixed-integer second-order cone programming
(DMISOCP) models presented in [12] (see also [13]–[15])
have proved to be useful in dealing with a variety of applica-
tions that involve integrality and conicity. For another exam-
ple, stochastic mixed-integer linear programming (SMILP)
[16] has been demonstrated to be effective in many applica-
tions involving integrality and uncertainty (see also [17]–[19]
and the references contained therein). For a third example,
the stochastic second-order cone programming (SSOCP)
models described in [20] and the stochastic semidefinite
programming models described in [21] have proved to be
useful in dealing with uncertainty and conicity in many
applications (see also [22] and [23]). In this paper, we show
that uncertainty, integrality, and conicity can all naturally
coexist together in the context of what can be termed as
the stochastic mixed-integer second-order cone programming
(SMISOCP).

The second-order cone is defined to contain all vectors
whose first component must be at least as large as the
Euclidean norm of the subvector of the remaining com-
ponents. Second-order cone programming problems are a
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tractable subclass of convex optimization problems in which
the objective function is optimized over the intersection of
a linear affine space and the Cartesian product of second-
order cones. Interior-point algorithms are considered one
of the most efficient methods developed for solving this
subclass of convex optimization problems in polynomial-time
(see [24]–[26], for example). The mixed-integer version of
these problems, acronymized above as DMISOCP, requires
some variables to be restricted to integers. Although it is
NP-hard in general, DMISOCP can be quickly solved by
applying algorithmic techniques that use scenario-based cuts
and relaxations (see [12], for example). DMISOCP was
introduced to make optimal decisions in applications with
certainty in information. In some applications, we cannot
completely determine themodal since it is dependent on some
information that is not available at the moment of making
optimal decisions. An extra dimension of difficulty is added
if we allow uncertainty in data defining DMISOCP prob-
lems. This yields the stochastic version of these problems,
acronymized above as SMISOCP, which is algorithmically
much less mature compared with SSOCP, SMILP, and even
DMISOCP. We emphasize that there are three dimensions of
difficulty in dealing with SMISOCP: Uncertainty, integrality,
and conicity.We believe that these three difficulty dimensions
have not been previously combined together in one class. That
is why it is our belief that the SMISOCP class has not been
studied yet.

In the present paper, we will demonstrate how SMISOCP
applies to a variety of application areas by describing
five applications leading to two-stage SMISOCP models.
Specifically, we present a stochastic discrete facility location
problem, a portfolio optimization with CVaR and diversifi-
cation constraints, a stochastic joint uncapacitated location-
inventory problem, an optimal infrastructure problem for
electric vehicles with battery swap technology, and an
optimal random berth allocation problem with uncertain
handling time.

Since this paper mainly introduces SMISOCP from a
practical point of view, we do not provide each application
model with a specific algorithm to solve it. Nevertheless,
a solution method for the generic SMISOCP is presented
in this paper to combine existing efficient barrier [27]–[29],
homogeneous [30], and infeasible [31] algorithms for SSOCP
with extensions of DMISOCP algorithms [32]–[34] (see
also [35]–[37]). Related aspects are tackled in an algorithmic
companion paper [38]. It is our belief that bringing the
applications proposed in this research to the surface can detect
tractable special cases for extra algorithmic improvements in
the future.

This paper is structured as follows. In Section II, we intro-
duce some notations followed by the definition of the two-
stage SMISOCP problem with recourse. Section III contains
the main results of the paper. Here, we describe different
applications and their formulations as SMISOCP models.
In Section IV, we first give a brief review of the solution
algorithms available for solving SSOCP, then we present a

FIGURE 1. The 3rd-dimensional second-order cone Q3.

solution method for solving SMISOCP. Section V provides
some concluding remarks.

II. FORMULATION
In this part, we start by introducing certain notations, then we
define the two-stage SMISOCP problem.

A. NOTATIONS AND BASICS
We utilize ‘‘;’’ and ‘‘,’’ for adjoining matrices and vectors
in a column and a row, respectively. As an illustration, if x
and y are vectors, the following expressions are equivalent:
(xT, yT)T = (x; y).

For each vector x ∈ Rn indexed from 0, we denote x̄ for the
sub-vector containing components 1 through n− 1; therefore
x = (x0; x̄).
The nth-dimensional second-order cone (also known as the

Lorentz or quadratic cone) is defined as

Qn := {x = (x0; x̄) ∈ En : x0 ≥ ‖x̄‖},

where En = R×Rn−1 and ‖ · ‖ denotes the Euclidean norm.
The cone Qn is closed, pointed (i.e., it does not contain a

pair of opposite nonzero vectors) and convex with nonempty
interior in Rn (see Figure 1). It is known that Qn is self-
dual (i.e., it equals its dual cone). It is also known that the
automorphism group of Qn acts transitively on its interior,
i.e., for each u and v in the interior of Qn, there exists an
invertible linear map ϕ : En → En such that ϕ(Qn) = Qn
(so ϕ is an automorphism of Qn) and ϕ(u) = v. Given
these properties, it is clear that Qn is a symmetric cone
(see [39]).

If x ∈ Rn and n is known from the context, we denote
x � 0 to mean that x ∈ Qn. If x ∈ Rk1 ×Rk2 ×· · ·×Rkr and
k1, k2, . . . , kr are positive integers known from the context,
we denote x �r 0 to mean that x ∈ Qk1 ×Qk2 × · · · ×Qkr .
Therefore, x �r 0 if and only if x is partitioned conformally
as x = (x1; x2; . . . ; xr ) and xi � 0 for each i = 1, 2, . . . , r .
We also write x �r y or y �r x to mean that x− y �r 0.

As a tool for algorithmic development, in Section IV we
will use the Jordan multiplication ◦ : En −→ En, which is
defined as

x ◦ y = (x0; x̄) ◦ (y0; ȳ) :=
(
xTy; x0ȳ+ y0x̄

)
. (1)

In building the model of Subsection III-E, we will make
use of the nth-dimensional rotated quadratic cone, which is
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given as [24]

Rn :=
{
x = (x0; x1; x̂) ∈ R× R× Rn−2

: x0x1 ≥ ‖x̂‖2,

x0 ≥ 0, x1 ≥ 0
}
.

A hyperbolic constraint on x ∈ Rn is one that satisfies the
inequality x0x1 ≥ ‖x̂‖2. The cone Rn is derived by rotating
the second-order cone Qn in the x0x1-plane by forty-five
degrees. Note that

x0 + x1 ≥ ‖(x0 − x1; 2x̂)‖ ⇐⇒ 2 x0x1 ≥ −2 x0x1 + 4‖x̂‖2

⇐⇒ x0x1 ≥ ‖x̂‖2. (2)

This means that the hyperbolic constraint x0x1 ≥ ‖x̂‖2 is
equivalent to the second-order cone constraint (x0 + x1; x0 −
x1; 2x̂) � 0.

B. SMISOCP PROBLEM DEFINITION
Let n,m, k, l, p and q be positive integers. Let also
k1, k2, . . . , kr and l1, l2, . . . , ls be positive integers such that
k =

∑r
i=1 ki and l =

∑s
j=1 lj. An SMISOCP with recourse is

described using deterministic data A ∈ Rk×n, b ∈ Rk and c ∈
Rn, as well as random data T ∈ Rl×n,W ∈ Rl×m,h ∈ Rl and
d ∈ Rm. The realization of this data depend on an underlying
outcome ω in an event space � with a known probability
function P. Given this data, the two-stage SMISOCP with
recourse is the problem

min cTx+ E [Q(x, ω)]

s.t. Ax �r b,

x ∈ Zp × Rn−p, (3)

where Q(x, ω) is the minimum value of the problem

min d(ω)Ty

s.t. W (ω)y �s h(ω)− T (w)x,

y ∈ Zq × Rm−q, (4)

and

E[Q(x, ω)] :=
∫
�

Q(x, ω)P(dω).

Here, x and y are the decision variables for the first- and
second-stage, respectively.

Due to the integrality constraints on x and y, the SMISOCP
problem (3, 4) is nonconvex and NP-hard in general.
Below we list three special cases of this optimization
problem. See also Figure 2 which visualizes the conceptual
relationships between the SMISOCP problem and its special
cases.
• If p = q = 0, then no integrality constraints are imposed
on x and y. In this case, the SMISOCP problem (3, 4)
is reduced to the two-stage SSOCP problem with
recourse [20]. SSOCP is a convex optimization problem
that can be solved in several methods in polynomial time
(see [28]–[31]).

• If k = r and l = s, then the conic constraints Ax �r
b and W (ω)y �s h(ω) − T (w)x are reduced to linear

FIGURE 2. Conceptual relationships between SMISOCP and other
relevant optimization problems.

constraints Ax ≥ b andW (ω)y ≥ h(ω)−T (w)x. In fact,
Ax �k b if and only if the vector Ax− b is nonnegative,
i.e., all its components belong to the first-dimensional
second-order cone Q1 := {t ∈ R : t ≥ 0}. Similarly,
W (ω)y �l h(ω)−T (w)x if and only ifW (ω)y+T (w)x−
h(ω) ≥ 0. Therefore, the SMISOCP problem (3, 4)
is reduced to the two-stage SMILP problems with
recourse in this case [16], [40]–[43]. In the literature,
this class of optimization problems has been studied
widely [44]–[48]. Solution methods for solving SMILP
can also be found in [49]–[52].

• If all data are known with certainty, the second-
stage problem disappears. In this case, the SMISOCP
problem (3, 4) reduces to the DMISOCP problem [12].
Solution methods for solving DMISOCP can be found
in [12], [32]–[34] and the references contained therein.
In particular, cutting planes are one of the most
successful ways to deal with the integrality constraints in
this optimization problem. Solution methods available
in [12], [32], [33], [35] use scenario-based cuts for
DMISOCP. The results in [34] show that branch and
bound is also suited for solving DMISOCP.

Additionally, if the integrality constraints on x and y
are restricted to be binary, we have x ∈ {0, 1}p × Rn−p

and y ∈ {0, 1}q × Rm−q. In this case, the SMISOCP
problem (3, 4) may be termed as a two-stage stochastic
mixed-binary second-order cone programming (SMBSOCP)
problem with recourse. SMBSOCP is known to be as ‘‘hard’’
as the SMISOCP problem.

We refer the reader to two papers that deal with important
special cases of or related to the SMISOCP problem (3, 4):
The first paper is by Luo and Mehrotra [53] which extends
the work of Sen and Sherali [50] for SMILP and proposes
a decomposition method for (3, 4) in which x ∈ {0, 1}p ×
Rn−p in the first-stage problem in (3, 4) and y ∈ Zq ×
Rm−q in the second-stage problem in (3, 4). The second
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paper is by Bansal and Zhang [54] which proposes scenario-
based cuts for (3, 4) in which n = p and k =

r in the first-stage problem in (3, 4) and the l2-norms
are generalized to lp-norms in the second-stage problem
in (3, 4).

III. APPLICATIONS
Each of the following subsections will describe an application
accompanied with SMISOCP model formulation.

A. STOCHASTIC DISCRETE FACILITY LOCATION PROBLEM
In a facility location problem (FLP), we are interested
in choosing a location or locations to construct a new
facility or new facilities so that desired distances from the
new facility(ies) to existing facilities are minimized. In a
Euclidean FLP, the desired distances are Euclidean distances.
FLP arises in many applications including, but not limited
to, locating regional campuses, educational sites, public
health clinics, pharmacies and hospitals, placing servers in
probabilistic networks and data centers, establishing and
co-locating wireless telecommunication facilities, clustering
data of high dimensionality, performing any type of location
analysis for placement of new facilities of varying sizes and
densities, and so on.

FLP arises also in many applications where the uncertainty
is an important challenge. To realize this more, we describe a
concrete example of the stochastic version of this application.
We consider how to distribute new appropriate facilities
amongCOVID-19 healthcare existing facilities across a small
country, like Jordan, keeping in mind that COVID-19 is
very unpredictable and easily spread. Given the pandemic
circumstances, the healthcare existing facilities are either
fixed or random. The fixed facilities are the constructed
clinics or hospitals in the Jordanian cities. The random
facilities are movable healthcare facilities equipped with
the necessary medical supplies which enable patients to be
treated immediately. As shown in Figure 3, the movable
healthcare facilities are random existing facilities that can
be moved from their sites to other sites depending on the
prediction of the COVID-19 spreading rate in a model
country. In the stochastic COVID-19 healthcare facility
location problem, we know the specific locations of the fixed
healthcare facilities, but we do not know the specific locations
of the random healthcare facilities at the time of formulation.
Instead, we know the realizations of the random facilities with
a predefined probability p ∈ (0, 1).

The location of a new facility can be a specific location
for dropping off supplies, staff housing units, a healthcare
unit with experts in treating mood and anxiety disorders, a
fully functional advanced comprehensive unit, etc. In order
to guarantee accuracy, the practitioners will use only the most
recent information on the community’s COVID-19 epidemic
outbreak. This may require increasing the initial number of
random facilities. This increase, based on the number of fixed
facilities and the initial number of random facilities, results in
an additional cost.

FIGURE 3. A random healthcare facility in the stochastic COVID-19
healthcare facility location problem. This figure is from
https://colab.research.google.com.

Stochastic FLP arises in many applications where the
integrality is an important restriction. Below we describe
another, but discrete, concrete example of this generic
application. In a discrete facility location problem with a risk
of disruption, we specify a set of demand points (customers)
to service and a set of potential facility points (or sites) to
serve them. At the time of formulation, not all the potential
facility points have constructed facilities, nor have opened
facilities. Indeed, some constructed facilities are unavailable
or closed due to disruptions caused by some factors such as
weather, labor strikes, pandemic outbreak, natural disasters,
terrorist attacks, etc. The discretion lies in the determination
of whether a potential facility point has a constructed facility.
The uncertainty lies in the determination of whether some of
the constructed facilities are open. We are required to pick a
subset of potential sites for facility construction and to choose
a subset of facilities to open so that the sum of the distances
between any demand point and its nearest opened facility,
and the sum of the opening costs of the selected facilities
are both minimized. Figure 4 shows a 49-demand-points
solution to this problem in an interactive USA map. In this
figure, the constructed facilities that are openwith uncertainty
have randomness in terms of openness. At the present time,
the realizations of such facilities are unknown, but they
will become known at some point in the future. The model
contains these realizations with a prescribed probability
p ∈ (0, 1).
In addition to the above two concrete examples, many other

examples can also be referenced. Generally speaking, the
locations of some existing facilities are not totally specified
in a stochastic FLP. Such unspecified locations are dependent
upon information that was not available at the time of making
the decision and will not become available until a later time.
In a discrete FLP, some or all new facilities must not be placed
in any location, but must be located in specific locations,
called nodes, in the solution space. The (deterministic)
Euclidean FLP is often presented as an application of
(deterministic) second-order cone programming (see [55],
for example). The stochastic Euclidean FLP was presented
in [20] as an application of SSOCP. In this subsection,
we present the stochastic discrete version of the generic
Euclidean FLP as an application of SMISOCP.
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FIGURE 4. A facility location solution for a 49-demand-points problem
shown in an interactive USA map.

In summary, let a1, a2, . . . , ar be fixed points in Rn

symbolizing the coordinates of r existing fixed facilities,
and ã1(ω), ã2(ω), . . . , ãs(ω) be random points in Rn that
represent the coordinates of s random facilities on which their
realizations are dependent on an underlying outcome ω in an
event space � with a known probability function P. Let us
assume that right now the realizations of s random facilities
are not known, and over the course of time their realizations
will be known.

The goal is to add m new facilities, x1, x2, . . . , xm ∈ Rn,
that minimize each of the following sums:
• The weighted sums of the Euclidean distance between
each one of the new facilities, xj for j = 1, 2, . . . ,m,
and each one of the existing fixed facilities, ai for i =
1, 2, . . . , r . This requirement can be met by adding the
inequalities tij ≥ ‖xj − ai‖ for i = 1, 2, . . . , r and
j = 1, 2, . . . ,m. Equivalently, using our notations, this
is satisfied by adding the constraints(

t1j; xj − a1; . . . ; trj; xj − ar
)
�r 0,

for j = 1, 2, . . . ,m, where the double summation∑m
j=1

∑r
i=1 wijtij is minimized. The parameterwij speci-

fies the weight of the ith existing facility and the jth new
facility, for i = 1, 2, . . . , r and j = 1, 2, . . . ,m.

• The anticipated weighted sums of the Euclidean distance
between each one of the new facilities and the realization
of each one of the random facilities. This requirement
can be met by adding the constraints(

t̃1j; xj − ã1(ω); . . . ; t̃sj; xj − ãs(ω)
)
�s 0,

for j = 1, 2, . . . ,m, where the double summation∑m
j=1

∑s
i=1 w̃ij(ω) t̃ij is minimized. Here, w̃ij denotes

the weight associated with the ith random facility and jth
new facilities, for i = 1, 2, . . . , s and j = 1, 2, . . . ,m.

• The weighted sums of the Euclidean distance between
any two new facilities. This requirement can be met by
adding the constraints(

t̂j(j+1); xj − xj+1; . . . ; t̂jm; xj − xm
)
�(m−j) 0,

for j = 1, 2, . . . ,m − 1, where the double summation∑m
j=2

∑j−1
k=1 ŵjk t̂jk is minimized. Here, ŵjk denotes the

weight associated with the jth and kth new facilities,
for k = 1, 2, . . . , j − 1 and j = 2, 3, . . . ,m. We point
out that if no interaction exists among the new facilities,
we omit these constraints from our model because this
requirement is no longer present.

Notably, our decision should be made prior to the
availability of realizations of the s random facilities. Only
the most recent information concerning random facilities is
utilized to ensure accuracy. This may need an increasing
or decreasing number of new facilities depending on the
availability of the most recent data on random facilities. For
simplicity, let us assume that the number of new facilities was
previously determined and fixed (which is m).

One variant of this application is to require, in addition
to the above three requirements, each new facility xj to
be placed at specific locations within the solution space.
Such specific locations are represented by fixed points

v(j)1 , v
(j)
2 , . . . , v

(j)
p ∈ Rn. That is, xj ∈

{
v(j)1 , v

(j)
2 , . . . , v

(j)
p

}
for

each j = 1, 2, . . . ,m. This leads to the following SMBSOCP
model.

min
m∑
j=1

r∑
i=1

wijtij +
m∑
j=2

j−1∑
k=1

ŵjk t̂jk + E[Q(x1; . . . ; xm, ω)]

s.t.
(
t1j; xj − a1; . . . ; trj; xj − ar

)
�r 0, j ∈ J ,(

t̂j(j+1); xj − xj+1; . . . ; t̂jm; xj − xm
)
�(m−j) 0, j ∈ Ĵ ,

z(j)1 v
(j)
1 + z

(j)
2 v

(j)
2 + · · · + z

(j)
p v

(j)
p = xj, j ∈ J ,

z(j)1 + z
(j)
2 + · · · + z

(j)
p = 1, j ∈ J ,(

z(1); z(2); . . . ; z(m); x1; x2; . . . ; xm
)
∈ {0, 1}mp×Rmn,

(5)

where J = {1, 2, . . . ,m} Ĵ = {1, 2, . . . ,m− 1}, and

E[Q(x1; . . . ; xm; y, ω)] :=
∫
�

Q(x1; . . . ; xm; y, ω)P(dω),

and Q(x1; . . . ; xm, ω) is the minimum value of the problem

min
m∑
j=1

s∑
i=1

w̃ij(ω) t̃ij +
m∑
j=2

j−1∑
k=1

ŵjk t̂jk

s.t.
(
t̃1j; xj − ã1(ω); . . . ; t̃sj; xj − ãs(ω)

)
�s 0, j ∈ J ,(

t̂j(j+1); xj − xj+1; . . . ; t̂jm; xj − xm
)
�(m−j) 0, j ∈ Ĵ ,

y(j)1 v
(j)
1 + y

(j)
2 v

(j)
2 + · · · + y

(j)
p v

(j)
p = xj, j ∈ J ,

y(j)1 + y
(j)
2 + · · · + y

(j)
p = 1, j ∈ J ,(

y(1); y(2); . . . ; y(m); x1; x2; . . . ; xm
)
∈ {0, 1}mp×Rmn.

(6)
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Another variant of this application is to require some of the
new facilities to attain integer values, i.e., xj has to be integer-
valued for each j ∈ 1 ⊂ J . Without loss of generality, let
us assume that x1, x2, . . . , x|1| ∈ Zn. In this case, we are
interested in the following model.

min
m∑
j=1

r∑
i=1

wijtij +
m∑
j=2

j−1∑
k=1

ŵjk t̂jk + E [Q(x1; . . . ; xm, ω)]

s.t.
(
t1j; xj − a1; . . . ; trj; xj − ar

)
�r 0, j ∈ J ,(

t̂j(j+1); xj − xj+1; . . . ; t̂jm; xj − xm
)
�(m−j) 0, j ∈ Ĵ ,

(x1; x2; . . . ; xm) ∈ Z|1|n × R(m−|1|)n, (7)

whereQ(x1; . . . ; xm, ω) is the minimum value of the problem

min
m∑
j=1

s∑
i=1

w̃ij(ω) t̃ij +
m∑
j=2

j−1∑
k=1

ŵjk t̂jk

s.t.
(
t̃1j; xj − ã1(ω); . . . ; t̃sj; xj − ãs(ω)

)
�s 0, j ∈ J ,(

t̂j(j+1); xj − xj+1; . . . ; t̂jm; xj − xm
)
�(m−j) 0, j ∈ Ĵ ,

(x1; x2; . . . ; xm) ∈ Z|1|n × R(m−|1|)n. (8)

As mentioned in Section II, a solution for a model such as
that in (5) and (6) is now possible. Specifically, Model (5, 6)
can be solved by the algorithm proposed in [53]. The
SMISOCP model (7, 8) is also intractable for an extensive
form formulation (see the form (36)).

B. PORTFOLIO OPTIMIZATION WITH CVaR AND
DIVERSIFICATION CONSTRAINTS
Portfolio optimization is one of the most important appli-
cations of second-order cone programming. One of its
paradigms is maximization of the expected return over a
single period subject to conditional value-at-risk (CVaR)
constraints. These constraints are introduced to limit the
downside risk of the tracking portfolio. In our application
model, we also consider diversification-by-sector constraints,
which are used to limit the minimum amount invested in
each asset from each economic sector, and buy-in threshold
constraints, which are used to prevent the investor from
investing very small amounts in a single asset. The last two
types of constraints mentioned abovewere considered in [56].

Portfolio optimization is frequently framed as an appli-
cation of (deterministic) second-order cone programming
(see [35], for example). The stochastic perspective of this
application was presented in [20] as an application of
SSOCP by maximizing expected returns over two periods
or stages. The discrete version of this application was
presented in [12] as an application of DMISOCP by adding
diversification-by-sector constraints. The application model
presented in this subsection combines both perspectives
by adding diversification-by-sector constraints and buy-in
threshold constraints over two stages, which results as an
SMISOCP model.

We consider cash (index 0) and n risky assets from L
distinct sectors in our portfolio during a two-stage period. Let

x+, x− ∈ Rn+1 be the buy and sell transactions, respectively,
throughout the first stage.We utilize the following parameters
over the first stage: we use ξ ∈ {0, 1}L to indicate if each
sector has sufficient investments, use δ ∈ {0, 1}n for buy-
in threshold constraints, use u ∈ Rn+1 to denote the current
portfolio holdings, and let p ∈ Rn+1 denote the expected rates
of return. For simplicity, we also assume that p is Gaussian
with known mean p̄ and covariance 6, so the return over this
stage is the Gaussian random variable r = pT(u + 1x) with
mean r̄ = p̄T(u+1x) and variance σ = (u+1x)T6(u+1x),
where the difference 1x := x+ − x− is the trading shares
generate cash in the first stage.

Let also y+, y− ∈ Rn+1 be the buy and sell transactions,
respectively, throughout the second stage. We use the
following parameters over the second stage: We use ζ ∈

{0, 1}L to denote whether if each sector has sufficient
investments, use η ∈ {0, 1}n for buy-in threshold constraints,
use v ∈ Rn+1 to denote the current portfolio holdings, and
let q(ω) ∈ Rn+1 denote the random expected rates of return
whose realization depends on an underlying outcome ω in
an event space � with known probability function P. For
simplicity, we also let q(ω) be Gaussian with known mean
q̄(ω) and covariance 6̃(ω), so the return over this stage is
the Gaussian random variable r̃(ω) = qT(ω)(v + 1y) with
mean ¯̃r(ω) = q̄T(ω)(v + 1y) and variance σ̃ (ω) = (v +
1y)T6̃(ω)(v + 1y), where the difference 1y := y+ − y−

is the trading shares generate cash in the second stage.
We penalize the buy and sell transactions throughout the

two stages by quadratic convex transaction costs of Garleanu
and Pedersen [57]. The transaction costs associated with
the first and second stages are given by 1xT31x and
1yT3̃(ω)1y, respectively, where 3, 3̃(ω) ∈ R(n+1)×(n+1)

are symmetric positive definite matrices measuring the level
of trading costs. The matrix 3 is obtained as a positive
multiple of 6, and 3̃(ω) is obtained as a positive multiple
of 6̃(ω).

Assume that we do not know the Gaussian vector’s
realization q(ω) at the present time, but that it will be known
at a certain point in time in the future.

Our objective is to select the optimal trading strategy to
maximize the expected total return at the end-of-second-
stage. Our choices of portfolios involve the Markowitz trade-
off between their expected return and investment market risk
(or volatility) [58].

From the above discussion, it can be seen that the objective
function of the first-stage problem is

f1(x, ω) = 1xT31x+ p̄T(u+1x)+ E[Q(1x, ω)],

where Q(1x, ω) is the maximum value of the second-stage
problem, which has the objective function

f2(y, ω) = 1yT3̃(ω)1y+ q̄T(ω)(v+1y).

It is beneficial to provide continuous relaxations of the above
objective functions that replace their quadratic forms by
linear forms. This can be achieved via including only linear
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FIGURE 5. Two-stage portfolio optimization with CVaR constraints.

and second order cone constraints as is shown below:

f1(x, ω) = 1xT31x+ p̄T1x+ p̄Tu+ E[Q(x, ω)]

= 1xT31x+
1
4
p̄T3 p̄−

1
4
p̄T3 p̄

+
1
2
p̄T1x+

1
2
1xTp̄+ p̄Tu+ E[Q(x, ω)]

=

(
31/21x+

1
2
3−1/2p̄

)T (
31/21x+

1
2
3−1/2p̄

)
−
1
4
p̄T3 p̄+ p̄Tu+ E[Q(x, ω)]

=

∥∥∥∥31/21x+
1
2
3−1/2p̄

∥∥∥∥2 − 1
4
p̄T3 p̄+ p̄Tu

+E[Q(x, ω)].

Similarly, the objective function of the second-stage problem
can be stated as

f2(y, ω) =
∥∥∥∥3̃1/2(ω)1y+

1
2
3̃−1/2(ω)q̄(ω)

∥∥∥∥2
−
1
4
q̄T(ω)3̃(ω) q̄(ω)+ q̄T(ω)v.

To avoid falling below the expected wealth levels, we need
to add M CVaR constraints at the end of the first stage,
and N CVaR constraints at the end of the second stage.
For i = 1, 2, . . . ,M and j = 1, 2, . . . ,N , let αi and α̃j
represent unwanted expected wealth levels at the end of the
first and second stages, respectively, and let βi and β̃j denote
the first and second stage’s minimal probability, respectively.
Assuming the above data is given, our goal is to maximize
the end-of-second-stage expected total return less transaction
costs. In order to limit our risk, each CVaR constraint i,
i = 1, 2, . . . ,M , asks that our expected wealth at the end
of the first stage is above αi with a probability of at least βi,
and each CVaR constraint j, j = 1, 2, . . . ,N , asks that our
expected wealth at the end of the second stage is above α̃j
with a probability of at least β̃j.
Given the above data, we need to determine the decision

variables x+ and x− so that the CVaR constraints

P (r ≥ αi) ≥ βi, i = 1, 2, . . . ,M , (9)

are satisfied at the end of the first stage, and determine the
decision variables y+ and y− so that the CVaR constraints

P(r̃(ω) ≥ α̃j) ≥ β̃j, j = 1, 2, . . . ,N , (10)

are satisfied at the end of the second stage. These deter-
minations need to be made before the realizations of the
random expected rates of return become available. To bemore
precise, assume that 0 < t1 < t2 < t3 are given times. Let
t1 and t2 be the starting times of the first and second stages,
respectively, and t2 and t3 be the ending times of these two
stages, respectively, as shown in Figure 5. At time t1, the
investor is given the vector of returns p and is required to
determine the portfolio vectors x±. At time t2, the investor
can revise some, if not all, entries of the portfolio vectors x±

to get the portfolio vectors y±. The revised portfolios y± are
kept until time t3. The objective is the determination of the
portfolios at time t1 in anticipation of the revision of some or
all of them at time t2.

TheCVaR constraints (9) are equivalent to the second-order
cone constraint(

p̄T(u+1x)− α1;8−1(β1)61/2(u+1x);

. . . ; p̄T(u+1x)− αM ;8−1(βM )61/2(u+1x)
)
�M 0,

(11)

where

8(z) :=
1
√
2π

∫ z

−∞

e−t
2/2dt

is the cumulative distribution function for a standard normal
random variable.

A common proof of the above reformulation of the CVaR
constraints (9) is as follows (see also [12], [59]):We can write
the CVaR constraint P(r ≥ αi) ≥ βi as

P
(
r − r̄
√
σ
≥
αi − r̄
√
σ

)
≥ βi, i = 1, 2, . . . ,M .

Since (r − r̄)/
√
σ is a zero mean unit variance Gaussian

random variable, the above probability is simply 1−8((αi−
r̄)/
√
σ ) ≥ βi, i = 1, 2, . . . ,M . Using the symmetry of

the standard distribution function and in light of the equality
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√
σ = ‖61/2(u+1x)‖, the conicality constraint (11) follows

from the following equivalences, for i = 1, 2, . . . ,M .

1−8((αi − r̄)/
√
σ ) ≥ βi

⇐⇒ αi − r̄ ≤ 8−1(1− βi)
√
σ

⇐⇒ r̄ − αi ≥ 8−1(βi)
√
σ

⇐⇒

(
r̄ − αi; 8−1(βi)

(
61/2(u+1x)

))
� 0.

Similarly, one can show that the CVaR constraints (10) are
equivalent to the conicality constraint(

q̄T(ω)(v+1y)− α̃1;8−1(β̃1)6̃1/2(ω)(v+1y);

. . . ; q̄T(ω)(v+1y)−α̃N ;8−1(β̃N )6̃1/2(ω)(v+1y)
)
�N 0.

It is now time to introduce the previously mentioned
diversification constraints, which force the investor to
diversify its portfolios at each stage by buying assets in at
least Lmin different sectors. In the first stage, we link every
asset i with a sector k such that the sets Sk , 1 ≤ k ≤ L,
of assets affiliated with a sector k produce an exact partition
of {1, 2, . . . , n}. We also associate a variable ξk ∈ {0, 1}
with each sector k , so it is equal to 1 if and only if smin is
a minimum predefined level of the amount of sector k over
the first stage. That is,

ξk = 1 ⇐⇒ 1T
Sk (u+1x) =

∑
i∈Sk

(ui +1xi) ≥ smin,

where 1Sk ∈ {0, 1}
n+1 is the indicator vector of Sk whose jth

entry has value 1 if j ∈ Sk and 0 otherwise. Additionally, our
portfolio’s total allocation of assets to an economic sector k
cannot be greater than one.

As a constraint involving a binary variable ξk , this can be
formulated as

sminξk ≤ 1T
Sk (u+1x) ≤ smin + (1− smin)ξk .

In the second stage, any asset j is associated with a sector
k as for those of the first stage, and a variable ζk ∈ {0, 1} is
associated with each sector k as follows:

ζk = 1 ⇐⇒ 1T
Sk (v+1y) =

∑
j∈Sk

(vj +1yj) ≥ s̃min,

where s̃min(ω) is a minimum predefined level of the amount
of sector k over the second stage, whose realization depends
on an underlying outcome ω in an event space� with known
probability function P. Similarly, as a constraint involving a
binary variable ζk , this can be formulated as

s̃min(ω)ζk ≤ 1T
Sk (v+1y) ≤ s̃min(ω)+ (1− s̃min(ω))ζk .

In order to satisfy the diversification requirements to detain
‘‘representative’’ positions in at least Lmin sectors, we should
additionally add the cardinality constraints

1Tξ =

L∑
k=1

ξk ≥ Lmin, and 1Tζ =

L∑
k=1

ζk ≥ Lmin,

where 1 is the vector of ones of an appropriate dimension.

We now consider the buy-in threshold constraints. As men-
tioned at the beginning of this subsection, these constraints
are introduced to avoid the investor from investing very
small amounts in a single asset at each stage. As constraints
involving binary variables δ and η, these requirements can be
formulated as

uminδ ≤ u+1x ≤ δ, and vminη ≤ v+1y ≤ η,

where umin and vmin are predetermined proportion of the
available capital budgets to be invested.

Our portfolio model is based on the simplest assumption
that we require full portfolio allocations in the stocks at the
end of each stage, i.e., 1T(u + 1x) =

∑n
j=0(uj + 1xj) = 1

and 1T(v + 1y) =
∑n

j=0(vj + 1yj) = 1. Additionally,
for our portfolio vectors, we also assume that we can take
limited short positions for each nonliquid asset to allow for
short sales of them and enhance returns during volatility. This
adds the constraints u + 1x ≥ −s and v + 1y ≥ −s̃,
where s and s̃ represent the short position limits at the first
and second stages, respectively, for each nonliquid asset.
Finally, we need the variables associated with the buy and sell
transactions to be nonnegative at each stage, i.e., x± ≥ 0 and
y± ≥ 0.
Given the above data and requirements, the stochastic port-

folio optimization problem with CVaR and diversification
constraints over two stages can be cast as the following
SMBSOCP model.

max h0 −
1
4
p̄T3 p̄+ p̄Tu+ E

[
Q
(
x+; x−, ω

)]
s.t.

(
h0;31/2 (x+ − x−)+ 1

2
3−1/2p̄

)
� 0,(

p̄T(u+x+ − x−)−αi;8−1(βi)61/2(u+x+ − x−))�0,
i = 1, 2, . . . ,M ,

sminξk ≤ 1T
Sk

(
u+ x+ − x−

)
≤ smin + (1− smin)ξk ,

k = 1, 2, . . . ,L,

1Tξ ≥ Lmin,

uminδ ≤ u+ x+ − x− ≤ δ,

1T (u+ x+ − x−) = 1,

u+ x+ − x− ≥ −s,

x+, x− ≥ 0,

ξ ∈ {0, 1}L ,

δ ∈ {0, 1}n, (12)

where Q
(
x+; x−, ω

)
is the maximum value of the problem

max h̃0 −
1
4
q̄T(ω)3̃(ω) q̄(ω)+ q̄T(ω)v

s.t.
(
h̃0; 3̃1/2(ω)

(
y+ − y−

)
+

1
2
3̃−1/2(ω)q̄(ω)

)
� 0,(

q̄T(ω)
(
v+ y+ − y−

)
− α̃j;

8−1(β̃j)6̃1/2(ω)
(
v+ y+ − y−

))
�0, j=1, 2, . . . ,N ,
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FIGURE 6. A two-stage stochastic inventory distribution process.

s̃min(ω)ζk≤1T
Sk

(
v+y+−y−

)
≤ s̃min(ω)+(1−s̃min(ω))ζk ,

k = 1, 2, . . . ,L,

1Tζ ≥ Lmin,

vminη ≤ v+ y+ − y− ≤ η,

1T (v+ y+ − y−) = 1,

v+ y+ − y− ≥ −s̃,

y+, y− ≥ 0,

ζ ∈ {0, 1}L ,

η ∈ {0, 1}n, (13)

and E
[
Q
(
x+; x−, ω

)]
=
∫
�
Q
(
x+; x−, ω

)
P(dω).

As indicated earlier, since Model (12, 13) has binary
variables, a solution for such a model is now possible by
applying the decomposition algorithm developed in [53].

C. STOCHASTIC JOINT UNCAPACITATED
LOCATION-INVENTORY PROBLEM
Inventory management is important in numerous industries
such as E-commerce, consumer goods, car renting, food dis-
tribution, or any industry or trade that deals with inventories.
We consider the basic joint uncapacitated location-inventory
problem over two periods (or stages) with some uncertainty
in data relating to retailers. More specifically, we consider a
supply chain in which assets are shipped by suppliers from
distribution centers to fixed retail stores over Stage I, and are
also shipped to fixed and random retail stores over Stage II
(see Figure 6). A given period or stage can be a few months
or a year for example. Shen et al. [60] and Daskin et al. [61]
studied the same problem over one period with nonlin-
earity arising from safety stock costs. Atamturk et al. [62]
were the first to formulate the one-stage joint location-
inventory model proposed in [61] and [60] as a DMISOCP
model.

Our problem is the following. We are given a number of
candidate locations for opening distribution centers. We are
also given a number of existing retailers over Stage I and
a number of existing and/or random retailers over Stage II,
each with uncertain product demand. At each stage, it is

necessary to decide the number of distribution centers that
need to be opened, the kind of retailers to be allocated to
each center, in addition to the required level of safety stock
to be maintained in order to minimize total inventory costs,
opening location, and shipment while providing a certain
level of service. In each stage in the model, we assume that
the shipments are made directly from distribution centers to
retailers, and that the demand is independent and Gaussian at
each retailer.

In building the model, the distributional constraint that we
consider in each stage is that each retail store is supplied
from exactly one open distribution center. To model this
constraint, let I be the set of fixed existing retailers in the
first stage, and Ĩ ⊆ I be the set of fixed existing retailers
in the second stage. We also let J be the set of candidate
locations for opening distribution centers, and K be the set
of random retailers in the second stage whose realization
depends on an underlying outcome ω in an event space �
with known probability function P. We introduce the decision
variables x, y(1), . . . , y(|I |), z(1), . . . , z(|K |) ∈ {0, 1}|J |, which
are defined in (14), as shown at the bottom of the next
page.

Given the above decision variables, the requirement that
each retailer is supplied from exactly one distribution center
and the requirement that retailers are only assigned to open
distribution centers are modeled in Stage I as

∑
j∈J y

(i)
j = 1,

and y(i)j ≤ xj, i ∈ I , j ∈ J , respectively, and are modeled in

Stage II as
∑

j∈J y
(i)
j =

∑
j∈J z

(k)
j = 1, and y(i)j , z

(k)
j ≤ xj, i ∈

Ĩ , k ∈ K , j ∈ J , respectively.
In Stage I, we minimize the following costs:

• The fixed cost of locating the jth distribution center for
j ∈ J . This objective term can be written as fjxj, where fj
is the monthly fixed cost of locating a new distribution
center at location j.

• The cost of shipping from the central plant to the jth
distribution center for j ∈ J . aj represents the unit cost
of shipment from the central plant to the jth distribution
center, µi is the mean of daily demand at the ith retailer,

3530 VOLUME 10, 2022



B. Alzalg, H. Alioui: Applications of Stochastic Mixed-Integer Second-Order Cone Optimization

and β is the weight associated with the inventory costs.
After that, this objective term is written as

β
∑
i∈I

ajµiy
(i)
j .

• The cost of shipping from the jth distribution center to
retailers, for j ∈ J . Let d (i)j be the unit cost of shipment
from the jth distribution center to the ith retailer, then
this objective term is written as

β
∑
i∈I

d (i)j µiy
(i)
j .

• The expected working inventory cost at the jth distri-
bution center for j ∈ J . Following Shen et al. [60],
we describe the process by which this objective
term is derived. The expected working inventory cost
includes the total shipment cost per year, the fixed
cost of placing n orders per month, and the average
working inventory cost. This objective term is written
as

Fjn+ β v
(
Dj
n

)
n+

θhDj
2n

,

where Dj =
∑

i∈I µiy
(i)
j is the monthly expected

demand at the jth distribution center, Fj is the fixed
cost of placing an order at the jth distribution center
per month, vj(x) is the shipment cost function for
x units from the central plant to the jth distribution
center, h is the unit inventory holding cost per month,
and θ is the weight associated with the transportation
costs.
Assume that vj(·) is linear in its parameters and is
specified as vj(x) = ajx + gj, where gj is the fixed cost
per shipment from the central plant to the jth distribution
center. Then we have the expression:

Fjn+ β ajDj + βgjn+
θhDj
2n

. (15)

Taking the derivative of the above expression with
respect to n, we obtain Fj + βgj − θhDj/2n2. Equat-
ing this to zero and solving for n, we get n =√
θhDj/2(Fj + βgj). By substituting n into (15), we

get
√
2θhDj(Fj + βgj) + βajDj. Note that βajDj =

β
∑

i∈I ajµiy
(i)
j already exists in the objective. There-

fore, this objective term is reduced to√
2θh(Fj + βgj)

√∑
i∈I

µiy
(i)
j .

• The expected safety stock cost at the jth distribution
center for j ∈ J . Let σi be the standard deviation of
daily demand at the ith retailer, zα be the standard normal
deviation associated with service level α, and Lj be the
lead time in days at the jth distribution center. Then this
objective term is written as

zαθh
√
Lj

√∑
i∈I

σ 2
i y

(i)
j .

Similarly, in Stage II, the following parameters are used for
i ∈ Ĩ , k ∈ K and j ∈ J :
f̃j(ω): the monthly fixed cost of locating a new distribution

center at location j,
ãj(ω): the unit cost of shipment from the central plant to

the jth distribution center,
µi: the mean of daily demand at the ith fixed retailer,
µ̃k (ω): the expected mean of daily demand at the kth

random retailer,
β̃(ω): the weight associated with the inventory costs,
d (i)j : the expected unit cost of shipment from the jth

distribution center to the ith fixed retailer,
d̃ (k)j (ω): the unit cost of shipment from the jth distribution

center to the kth random retailer,
F̃j(ω): the fixed cost of placing an order at the jth

distribution center per month,
h̃(ω): the unit inventory holding cost per month,
θ̃ (ω): the weight associated with the transportation costs,
g̃j(ω): the fixed cost per shipment from the central plant to

the jth distribution center,
σi: the standard deviation of daily demand at the ith fixed

retailer,
σ̃k (ω): the expected standard deviation of daily demand at

the kth random retailer,
z̃α(ω): the standard normal deviation associated with

service level α,
L̃j(ω): the lead time in days at the jth distribution center,
dj(ω) :=

∑
i∈Ĩ µiy

(i)
j +

∑
k∈K µ̃k (ω)z

(k)
j (ω); the expected

monthly demand at the jth distribution center,
ṽj(x, ω) := ãj(ω)x + g̃j(ω); a shipment cost function for x

units from the central plant to distribution center j.

xj =

{
1, if location j is opened for a new distribution center,
0, otherwise;

y(i)j =

{
1, if a fixed retailer i is assigned to a new distribution center located at location j,
0, otherwise;

z(k)j =

{
1, if a random retailer k is assigned to a new distribution center located at location j,
0, otherwise.

(14)
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The realizations of the above unspecified parameters
depend on an underlying outcome ω in an event space �
with a known probability function P. Such undetermined
parameters are dependent on information that was not
available at the time of making the decision, and will become
available at a later point in time. At the beginning of Stage II,
the investor can revise some, if not all of these parameters.
The revised parameters are kept until the end of Stage II.
Likewise, in Stage II the following costs, which can be
derived as those costs in Stage I, are minimized for i ∈ Ĩ , k ∈
K and j ∈ J :
• The expected fixed cost of locating the jth distribution
center: f̃j(ω)xj.

• The expected cost of shipping from the central plant to
the jth distribution center:

β̃(ω)ãj(ω)

∑
i∈Ĩ

µiy
(i)
j +

∑
k∈K

µ̃k (ω)z
(k)
j

 .
• The expected cost of shipping from the jth distribution
center to (fixed and random) retailers:

β̃(ω)

∑
i∈Ĩ

d (i)j µiy
(i)
j +

∑
k∈K

d̃ (k)j (ω)µ̃k (ω)z
(k)
j

 .
• The expected working inventory cost at the jth distribu-
tion center:√

2θ̃ (ω)h̃(ω)
(
F̃j(ω)+ β̃(ω)g̃j(ω)

)
×

√∑
i∈Ĩ
µiy

(i)
j +

∑
k∈K

µ̃k (ω)z
(k)
j .

• The expected safety stock cost at the jth distribution
center:

z̃α̃(ω) θ̃ (ω) h̃(ω)
√
L̃j(ω)×

√∑
i∈Ĩ

σ 2
i y

(i)
j +

∑
k∈K

σ̃ 2
k (ω)z

(k)
j .

The objective is to minimize these costs at the beginning of
Stage I in anticipation of the revision of some or all of the
unspecified parameters at the beginning of Stage II.

Let also

d̂ (i)j = β
(
d (i)j + aj

)
µi, i ∈ I , j ∈ J ,

ˆ̃d (k)j (ω) = β̃(ω)
(
d̃ (k)j (ω)+ ãj(ω)

)
µ̃k (ω), k ∈ K , j ∈ J ,

pj =
√
2θh(Fj + βgj), j ∈ J ,

p̃j(ω) =

√
2θ̃ (ω)h̃(ω)

(
F̃j(ω)+ β̃(ω)g̃j(ω)

)
, j ∈ J ,

qj = zαθh
√
Lj, j ∈ J ,

q̃j(ω) = z̃α(ω)θ̃(ω)h̃(ω)
√
L̃j(ω), j ∈ J .

The description of the two-stage stochastic joint location-
inventory problem and the mathematical modeling of its

constraints and objective shown above lead to the following
two-stage stochastic nonlinear program.

min
∑
j∈J

(
fjxj +

∑
i∈I

d̂ (i)j y
(i)
j + pj

√∑
i∈I

µiy
(i)
j

+ qj

√∑
i∈I

σ 2
i y

(i)
j

)
+ E

[
Q
(
x; y(1); . . . ; y(|Ĩ |), ω

)]
s.t.

∑
j∈J

y(i)j = 1, i ∈ I ,

y(i)j ≤ xj, i ∈ I , j ∈ J ,

xj, y
(i)
j ∈ {0, 1}, i ∈ I , j ∈ J , (16)

where

E[Q(x; y(1); . . . ; y(|Ĩ |), ω)]=
∫
�

Q(x; y(1);. . .; y(|Ĩ |), ω)P(dω),

and Q(x; y(1); . . . ; y(|Ĩ |), ω) is the minimum value of the
problem

min
∑
j∈J

(
f̃j(ω)xj +

∑
i∈Ĩ

d̂ (i)j y
(i)
j +

∑
k∈K

ˆ̃d (k)j (ω)z(k)j

+ p̃j(ω)
√∑

i∈Ĩ

µiy
(i)
j +

∑
k∈K

µ̃k (ω)z
(k)
j

+ q̃j(ω)
√∑

i∈Ĩ

σ 2
i y

(i)
j +

∑
k∈K

σ̃ 2
k (ω)z

(k)
j

)
s.t.

∑
j∈J

y(i)j +
∑
j∈J

z(k)j = 1, i ∈ Ĩ , k ∈ K ,

y(i)j ≤ xj, i ∈ Ĩ , j ∈ J ,

z(k)j ≤ xj, k ∈ K , j ∈ J ,

xj, y
(i)
j , z

(k)
j ∈ {0, 1}, i ∈ Ĩ , k ∈ K , j ∈ J . (17)

The nonlinear terms in (16) and (17) can be handled by
introducing the auxiliary variables sj, s̃j, tj, t̃j ≥ 0 and using
the fact that (y(i)j )2 = y(i)j and that (z(k)j )2 = z(k)j for i ∈ I
and k ∈ K . Given this, Problem (16, 17) can be cast as the
following two-stage SMBSOCP model.

min f Tx+
∑
i∈I

d̂
(i)T
y(i) + pTs+ qTt

+E
[
Q
(
x; y(1); . . . ; y(|Ĩ |), ω

)]
s.t.

(
sj;
√
µ1y

(1)
j ;
√
µ2y

(2)
j ; . . . ;

√
µ|I |y

(|I |)
j

)
� 0, j ∈ J ,(

tj; σ1y
(1)
j ; σ2y

(2)
j ; . . . ; σ|I |y

(|I |)
j

)
� 0, j ∈ J ,

1Ty(i) = 1, i ∈ I ,

y(i) − x ≤ 0, i ∈ I ,

x, y(i) ∈ {0, 1}|J |, i ∈ I ,

s, t ≥ 0, (18)
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where Q(x; y(1); . . . ; y(|Ĩ |), ω) is the minimum value of the
problem

min f̃
T
(ω)x+

∑
i∈Ĩ

d̂
(i)T
y(i) +

∑
k∈K

ˆ̃d (k)
T
(ω)z(k) + p̃T(ω)s̃

+ q̃T(ω)t̃

s.t.
(
s̃j;
√
µ1y

(1)
j ; . . . ;

√
µ
|Ĩ |y

(|Ĩ |)
j ;√

µ1(ω)z
(1)
j ; . . . ;

√
µ|K |(ω)z

(|K |)
j

)
� 0, j ∈ J ,(

t̃j; σ1y
(1)
j ; . . . ; σ|Ĩ |y

(|Ĩ |)
j ;

σ̃1(ω)z
(1)
j ; . . . ; σ̃|K |(ω)z

(|K |)
j

)
� 0, j ∈ J ,

1Ty(i) + 1Tz(k) = 1, i ∈ Ĩ , k ∈ K ,

y(i) − x ≤ 0, i ∈ Ĩ ,

z(k) − x ≤ 0, k ∈ K ,

x, y(i), z(k) ∈ {0, 1}|J |, i ∈ Ĩ , k ∈ K ,

s̃, t̃ ≥ 0. (19)

We emphasize that Model (18, 19) accepts only binary
variables and is intractable for an extensive form formulation.
Therefore, a solution for such a model is now possible by
applying the decomposition algorithm developed in [53].

D. OPTIMAL INFRASTRUCTURE PROBLEM FOR ELECTRIC
VEHICLES WITH BATTERY SWAP TECHNOLOGY
Electric vehicles are today an attractive option for many car
shoppers and very affordable to them, but the operation of
charging the electric vehicles is still the most significant
challenge faced by drivers because it requires a significant
amount of time. To overcome this obstacle, a new infras-
tructure strategy has been developed recently, seeking to
exchange depleted batteries in electric vehicles with full ones
in the middle of long trips. In this part, we describe the prob-
lem of creating infrastructure, offering service for electric
vehicles with battery swap mode, and providing coverage
for stations with certain and uncertain arrival rates over two
stages.

We point out that the corresponding single-stage problem
was described in [63] as an application of DMISOCP. The
objective is to build a number of battery swapping stations at
strategic locations along an existing freeway network.

We consider an existing freeway network connecting a
number of cities. Let P be the set of intercity travel paths on
the network, and Q be the set of subpaths of paths p ∈ P
and length longer than d , where d is the maximum travel
distance allowed with one full vehicle charge. Any electric
vehicle traveling a long distance needs to get access to a swap
station before its battery runs out. Therefore, it must visit at
least one station along each subpath of a travel path that is
longer than a distance of d/2 in a round trip, or longer than a
distance of d in a one-way trip.

FIGURE 7. The map at the top shows the desert highway path from the
Jordanian city of Aqaba to the capital Amman consisting of 10 linked
segments which are defined between 9 adjacent exits. The graph at the
bottom shows 6 corresponding subpaths according to the given
definition. The source LaTeX code of the Jordan map is publicly available
at http://sites.ju.edu.jo/sites/Alzalg/Pages/JordanMap.aspx .

Figure 7 shows a highway between two Jordanian cities
that consists of 10 linked segments, which are defined
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between 9 adjacent exits, and 6 corresponding subpaths of
the path. The first subpath consisting of segments 1-5, and
the next subpaths consisting of segments 2-6, 3-7, 4-8, 5-9,
and 6-10. Each one of these subpaths must pass through at
least one swapping station.

The number of electric vehicles traveling along the
network is known along some portion of paths and is
uncertain along other portions of paths. Let J be the set of
candidate locations for swapping stations with known and
fixed demand, and J̃ be the set of candidate locations for
swapping stations with uncertain demand. We consider a
problem over two stages as follows. In Stage I, the values
of the arrival rates at swapping stations at all sites j ∈ J are
precisely known, but such values at swapping stations at all
sites j ∈ J̃ are not precisely known. Therefore, all swapping
stations at sites j ∈ J are built in Stage I. At the beginning
of Stage II, the realizations of the uncertain arrival rates are
precisely observed, hence we can revise some information
about swapping stations under uncertainty to build all stations
and meet demand.

Figure 8 shows a concrete example of this application. We
introduce the decision variables x, y(p), z(q) ∈ {0, 1}|J |+|J̃ |, for
p ∈ P and q ∈ Q, which are defined in (20), as shown at the
bottom of the next page, for j ∈ J ∪ J̃ .
We assume that the swap mode of electric vehicles

traveling along the path p ∈ P enter the freeway network via a
Poisson process with a rate λ(p). Accordingly, at a swapping
station at site j ∈ J̃ , electric vehicles arrive and request for
swapping service according to a Poisson process with rate
λj =

∑
p∈P λ

(p)y(p)j which is a precisely known quantity now
in Stage II. The arrival rates λ(p), p ∈ P , depend on a number
of mutually independent random factors, ξl(ω), l = 1, . . . ,L,
known as the primitive uncertainties. In Stage I, only the
means (denoted by µl, l = 1, . . . ,L), covariance matrix
(denoted by6 with the individual standard deviations σl, l =
1, . . . ,L), and supports of the element of the random vector
ξ (ω) = (ξ1(ω), . . . , ξL(ω)) are known, but not the precise
distribution. At the beginning of Stage II, the realization of
ξ (ω) is precisely observed.
We also use the following parameters for j ∈ J ∪ J̃ , p ∈ P

and q ∈ Q:
fj: the annualized fixed cost incurred if location j is opened

for a swapping station,
h: the annualized holding cost per battery,
a(q)j : a binary parameter indicating whether a station at site

j is along the qth subpath (= 1) or not (= 0),
bp,q: a binary parameter indicating whether the qth subpath

is part of the pth path (= 1) or not (= 0),
Ij(y): the number of batteries to be stocked at a station at

site j given the assignments of stations to paths,
gj: the maximum number of batteries that can be safely

accommodated by the electric grid at site j.
In stage I, we assume that the quantities Ij(y) are known

and fixed for j ∈ J , but they are random for j ∈ J̃ and
their realizations depend on an underlying outcome ω in an
event space � with a known probability function P. In other

words, the quantities Ij depend on both the choice locations
and demand realizations when j ∈ J , and do not depend
on the chosen of locations nor on demand realizations when
j ∈ J̃ . This is represented as follows: Ij(y) = Ij for j ∈ J , and
Ij(y) = Ij(y, ω) for j ∈ J̃ . Specifically, in Stage I, the charging
service provider knows the precise values of the arrival rates
at swapping stations at all sites j ∈ J , but does not know such
values precisely at swapping stations at all sites j ∈ J̃ . After
constructing all the swapping stations at sites j ∈ J in Stage I
and precisely observing the realizations of the uncertainties
at the beginning of Stage II, the service provider can revise
some, if not all of the quantities Ij(y, ω), j ∈ J̃ , in order
to stock batteries at swapping stations at all sites and meet
demand.

In building the model, we make sure that the following
constraints are satisfied:
• Electric vehicles traveling any subpath q ∈ Q need to
visit at least one swapping station. This can be modeled
as
∑

j∈J∪J̃ a
(q)
j z(q)j ≥ 1 for each q ∈ Q.

• If a subpath q ∈ Q, with a swapping station at site j, is a
part of multiple paths p ∈ P , then each of those paths
inherit the station at j along q. This can be modeled as
y(p)j ≥ bp,q z

(q)
j for j ∈ J ∪ J̃ , q ∈ Q, p ∈ P.

• Electric vehicles are assigned to open stations only. This
can be modeled as y(p)j ≤ xj for j ∈ J ∪ J̃ , p ∈ P .

• The number of batteries at a station j ∈ J is bounded
by the maximum allowable number of simultaneous
parallel recharges permitted by the electric grid. This can
be modeled as Ij ≤ gj for j ∈ J .

• With a high probability of at least 1− εg, the number of
batteries at a station j ∈ J̃ is bounded by the maximum
allowable number of simultaneous parallel recharges
permitted by the electric grid. This constraint acts on
the worst-case (infimum) probability for all possible
distributions in F, where F is the family of all possible
distributions with the specified means and variances.
This can be modeled as

inf
P∈F

PP
(
Ij(y, ω) ≤ gj

)
≥ 1− εg, j ∈ J̃ .

We consider the family F to be nonempty, i.e., the given
means and variances are calculated using a univariate
distribution.

The objective of the model is to minimize the following
costs:
• The cost of opening a swapping station at site j ∈
J ∪ J̃ and equipping it with swapping machinery. This
objective term is written as fjxj for j ∈ J ∪ J̃ .

• The annualized holding cost at a swapping station at site
j ∈ J . This objective term is in the first-stage problem
and is written as h Ij for j ∈ J .

• The expected annualized holding cost at a swapping
station at site j ∈ J̃ under the worst possible (i.e.,
supremum) distribution over F. This objective term is
in the second-stage problem and is written as

h sup
P∈F

EP[Ij(y, ω)], j ∈ J̃ .
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FIGURE 8. A concrete example of battery swapping station locations.

The description of the two-stage stochastic optimal infras-
tructure planning problem for electric vehicles with battery
swap mode and the mathematical modeling of its constraints
and objective shown above lead to the following two-stage
stochastic nonlinear program.

min
∑
j∈J

(fjxj + hIj)+ E [Q(x; y; z, ω)]

s.t. y(p)j ≥ bp,q z
(q)
j , j ∈ J , p ∈ P, q ∈ Q,

y(p)j ≤ xj, j ∈ J , p ∈ P,
Ij ≤ gj, j ∈ J ,

xj, y
(p)
j , z

(q)
j ∈ {0, 1}, j ∈ J , p ∈ P, q ∈ Q, (21)

where E[Q(x; y; z, ω)] =
∫
�
Q(x; y; z, ω)P(dω), and

Q(x; y; z, ω) is the minimum value of the problem

min
∑
j∈J̃

(
fjxj + h sup

P∈F
EP[Ij(y, ω)]

)
s.t.

∑
j∈J∪J̃

a(q)j z(q)j ≥ 1, q ∈ Q,

y(p)j ≥ bp,q z
(q)
j , j ∈ J̃ , p ∈ P, q ∈ Q,

y(p)j ≤ xj, j ∈ J̃ , p ∈ P,
inf
P∈F

PP
(
Ij(y, ω) ≤ gj

)
≥ 1− εg, j ∈ J̃ ,

xj, y
(p)
j , z

(q)
j ∈ {0, 1}, j ∈ J̃ , p ∈ P, q ∈ Q. (24)

Our aim now is to formulate both the nonlinear term in
problem (24) in regards to its objective function and the
chance constraint (the fourth constraint) in (24) as second-
order cone constraints. We make the following assumptions,
which are quite standard [63].
Assumption 1: The path-based demand arrival rate, λ(p),

is a linear function of a number of mutually indepen-
dent random factors, ξl(ω), l = 1, 2, . . . ,L. That is,
λ(p) =

∑L
l=1 λ̂

(p)
l ξl(ω), where λ̂

(p)
l , l = 0, 1, . . . ,L, are

known constants.
Assumption 2: In at least α (> 0.5) proportion of the swap

requests, the electric vehicle picks up a battery that has been
recharged for at least t time units.

Assumption 1 is for convenience of obtaining tractable
constraints. The requirement in Assumption 2 is equivalent
to requiring that the number of Poisson demand arrivals in a
period of t time units is smaller than the quantity Ij(y, ω) with
probability α.

xj =

{
1, if a swapping station is located at site j,
0, otherwise;

y(p)j =

{
1, if an electric vehicle traveling along a path p will visit swapping station at site j,
0, otherwise;

z(q)j =

{
1, if an electric vehicle traveling along a subpath q will visit swapping station at site j,
0, otherwise.

(20)
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We approximate the Poisson demand with a Normal
distribution that matches the mean and variance. This
approximation is quite standard (see for example [63]), and
is accurate especially when the demand rate is large, which
is the case in practice on freeway networks. To satisfy
these service requirements, the number of batteries needed
is approximately

Ij(y, ω) = tλj(y, ω)+8−1(α)
√
tλj(y, ω), (25)

where8(·) is the cumulative distribution function of standard
Normal. Therefore, for j ∈ J̃ , we have

sup
P∈F

EP[Ij(y, ω)]

= sup
P∈F

EP
[
tλj +8−1(α)

√
tλj
]

= sup
P∈F

EP

t∑
p∈P

λ(p)y(p)j +8
−1(α)

√
t
∑
p∈P

λ(p)y(p)j


= sup

P∈F
EP

t∑
p∈P

L∑
l=1

λ̂
(p)
l ξl(ω)y

(p)
j

+8−1(α)

√√√√√t
∑
p∈P

L∑
l=1

λ̂
(p)
l ξl(ω)y

(p)
j


= t

∑
p∈P

L∑
l=1

λ̂
(p)
l µly

(p)
j

+8−1(α)
√
t sup
P∈F

EP


√√√√√∑

p∈P

L∑
l=1

λ̂
(p)
l ξl(ω)y

(p)2

j



≤ t
∑
p∈P

L∑
l=1

λ̂
(p)
l µly

(p)
j +8

−1(α)9
√
t

√√√√√∑
p∈P

L∑
l=1

λ̂
(p)
l µly

(p)2

j ,

where the second and third equalities follow from the
definitions of λj and λ(p), respectively, the fourth equal-

ity follows from the fact that y(p)
2

j = y(p)j , and the
value of 9 was obtained from Proposition 2 in [63]
and is given in (22), as shown at the bottom of the
page.

It immediately follows that minimizing the quantity
supP∈F EP[Ij(y, ω)] is equivalent to minimizing a variable,
say ṽj, subject to the constraint

ṽj≥ t
∑
p∈P

L∑
l=1

λ̂
(p)
l µly

(p)
j +8

−1(α)9
√
t

√√√√√∑
p∈P

L∑
l=1

λ̂
(p)
l µly

(p)2

j ,

(26)

where j ∈ J̃ . Now, for j ∈ J̃ , let yj be the vector
in R|P | whose pth component is y(p)j for p ∈ P , and
D be the diagonal matrix in R|P |×|P | whose (pth, pth)
entry is (

∑L
l=1 λ̂

(p)
l µl)

1/2 for p ∈ P . Then the con-
straint in (26) can be written as the second-order cone
constraintṽj − t∑

p∈P

L∑
l=1

λ̂
(p)
l µly

(p)
j ,8

−1(α)9
√
t D yj

 � 0, j ∈ J̃ .

Now, we formulate the chance constraint in (24) as
a second-order cone constraint. Note that, for j ∈ J̃ ,
we have infP∈F PP(Ij(y, ω) ≤ gj) = infP∈F PP(

∑
p∈P

∑L
l=1

9 =

√
max
1≤l≤L

{
ξl(ω)
µl

}
−

max
1≤l≤L

{
ξl(ω)
µl

}
− 1√

max
1≤l≤L

{
ξl(ω)
µl

}
+

√
1−

(
min
1≤l≤L

{
σl

µl

})2/(
L
(
max
1≤l≤L

{
ξl(ω)
µl

}
− 1

)) . (22)

inf
P∈F

PP
(
Ij(y, ω) ≤ gj

)
= inf

P∈F
PP

t∑
p∈P

L∑
l=1

λ̂
(p)
l ξl(ω)y

(p)
j +8

−1(α)

√√√√√t
∑
p∈P

L∑
l=1

λ̂
(p)
l ξl(ω)y

(p)
j ≤ gj



= inf
P∈F

PP



√√√√√t

∑
p∈P

L∑
l=1

λ̂
(p)
l ξl(ω)y

(p)
j +

8−1(α)
2


2

≤ gj +
8−1(α)2

4


= inf

P∈F
PP


√√√√√t

∑
p∈P

L∑
l=1

λ̂
(p)
l ξl(ω)y

(p)
j ≤

√
gj +

8−1(α)2

4
−
8−1(α)

2


= inf

P∈F
PP

∑
p∈P

L∑
l=1

λ̂
(p)
l ξl(ω)y

(p)
j ≤ ĝj

 . (23)
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λ̂
(p)
l ξl(ω)y

(p)
j ≤ ĝj) as shown in (23), as shown at the bottom

of the previous page, where ĝj is a constant that is given by

ĝj =
1
t

√gj + 8−1(α)24
−
8−1(α)

2

2

,

and the second and the fourth equalities in (23) follow from
observing that the number of batteries needed, as specified
in (25), is a strictly increasing function in the demand
rate λj.

It immediately follows that the chance constraint
P(
∑

p∈P
∑L

l=1 λ̂
(p)
l ξl(ω)y

(p)
j ≤ ĝj) ≥ 1 − εg, j ∈ J̃ , can be

written as

P

 1
√
σ

∑
p∈P

L∑
l=1

λ̂
(p)
l ξl(ω)y

(p)
j −

∑
p∈P

L∑
l=1

λ̂
(p)
l µly

(p)
j


≤

1
√
σ

ĝj −∑
p∈P

L∑
l=1

λ̂
(p)
l µly

(p)
j

 ≥ 1− εg, j ∈ J̃ .

As 1
√
σ
(
∑

p∈P
∑L

l=1 λ̂
(p)
l ξl(ω)y

(p)
j −

∑
p∈P

∑L
l=1 λ̂

(p)
l µly

(p)
j )

is a zero mean unit variance Gaussian random variable, the
above probability is simply8((ĝj−

∑
p∈P

∑L
l=1 λ̂

(p)
l µly

(p)
j )/

√
σ ) ≥ 1 − εg, j ∈ J̃ . Because

√
σ = ‖61/2yj‖, the given

chance constraint can be written as

ĝj −
∑
p∈P

L∑
l=1

λ̂
(p)
l µly

(p)
j ≥ 8

−1 (1− εg)√σ ,
or equivalentlyĝj −∑

p∈P

L∑
l=1

λ̂
(p)
l µly

(p)
j ,8

−1(1− εg)61/2yj

 � 0.

In the second stage problem, as we used the parameters
ṽj, j ∈ J̃ , we also use vj to denote the previously known
quantities Ij, j ∈ J , in the first-stage problem.

Given the above modeling framework, Problem (21, 24)
can be cast as the following two-stage SMBSOCP model.

min
∑
j∈J

(fjxj + hvj)+ E [Q(x; y; z, ω)]

s.t. y(p)j ≥ bp,q z
(q)
j , j ∈ J , p ∈ P, q ∈ Q,

y(p)j ≤ xj, j ∈ J , p ∈ P,
vj ≤ gj, j ∈ J ,

xj, y
(p)
j , z

(q)
j ∈ {0, 1}, j ∈ J , p ∈ P, q ∈ Q, (27)

where Q(x; y; z, ω) is the minimum value of the problem

min
∑
j∈J̃

(fjxj + hṽj)

s.t.

ṽj−t∑
p∈P

L∑
l=1

λ̂
(p)
l µly

(p)
j ,8

−1(α)9
√
t D yj

 � 0,

j ∈ J̃ ,

∑
j∈J∪J̃

a(q)j z(q)j ≥ 1, q ∈ Q,

y(p)j ≥ bp,q z
(q)
j , j ∈ J̃ , p ∈ P, q ∈ Q,

y(p)j ≤ xj, j ∈ J̃ , p ∈ P,ĝj −∑
p∈P

L∑
l=1

λ̂
(p)
l µly

(p)
j ,8

−1(1− εg)61/2yj

 � 0,

j ∈ J̃ ,

xj, y
(p)
j , z

(q)
j ∈ {0, 1}, j ∈ J̃ , p ∈ P, q ∈ Q. (28)

Because the constraints in the first-stage problem (27)
are linear with integer variables and without the use of
second-order cone relaxations, a solution for Model (27, 28)
is now possible. One way to approach this model is by
applying scenario-based cuts proposed in [54].

E. OPTIMAL RANDOM BERTH ALLOCATION PROBLEM
WITH UNCERTAIN HANDLING TIME
In recent years, container shipping has seen rapid growth
especially during the pandemic of COVID-19. For instance,
Figure 9 shows that, contrary to expectations, container
shipping in Shanghai has quickly bounced back from its
slowdown at the beginning of the pandemic. Vessel emissions
and fuel cost are today real challenges experienced in
the berth allocation, and their reduction is a common
target and a key priority in the port-shipping coordina-
tion. In this part, we consider this berthing allocation
problem.

Du et al. [64] studied the determination of the optimal
berthing positions and order for vessels waiting at a
container terminal to minimize the vessels’ waiting and
fuel consumption. They regard the vessels handling times
as previously-known (deterministic) times when formulating
this problem. Due to some uncertainties, such as mechanical
problems, system failures, bad weather, and route changes,
the scheduled vessels handling times may diverge from the
deterministic ones, which leads to significant changes of
other terminal operations and makes the baseline berthing
plan no longer feasible. In this part, we consider the optimal
random berth allocation problem, in which the vessels
handling times and the required departure times of the vessels
have known deterministic and random frames.

In the berth plan, we assume that we are given f vessels,
say V1, . . . ,Vf , whose handling times, say h1, . . . , hf , are
precisely known at the time of formulation. We also assume
that we are given r vessels, say Vf+1, . . . ,Vf+r , whose
handling times, say hf+1(ω), . . . , hf+r (ω), are not precisely
known at the time of formulation, and their realizations
depends on an underlying outcome ω in an event space �
with a known probability function P.

We presume that at present we do not know the realizations
of the handling times and the realizations of the requested
departure times of the vessels Vf+1, . . . ,Vf+r at the present,
and that at some point in time in the future the realizations
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FIGURE 9. Shanghai containerized freight index, December 2009 - April 2021. The source of this figure is UNCTAD calculations,
based on data from Clarksons Research, Shipping Intelligence Network Time Series.

of these times become known. We also assume that we need
to determine the leftmost berthing position of the vessels
V1, . . . ,Vf ,Vf+1, . . . ,Vf+r , and their start time of berthing
given the handling times h1, . . . , hf and the realizations
of the handling times hf+1(ω), . . . , hf+r (ω). However, this
decision must be made before the realizations of the handling
times hj(ω), j = f + 1, . . . , f + r , and the realizations of
the requested departure times become available. Therefore,
when these realizations become available, the start times
of berthing that have already been determined may or
may not be optimal. At that stage, we assume that it is
permitted to modify the start time of berthing of the vessels
Vf+1, . . . ,Vf+r (but not their leftmost berthing positions),
as necessary, to ensure that all berthing start times are
optimal.

Define the following decision variables for i, k =

1, . . . , f , f + 1, . . . , f + r (i 6= k):
xi: the leftmost berthing position of the vessel Vi,
yi: the start time of berthing of the vessel Vi,
ai: the arrival time of the vessel Vi,
αik : a binary variable indicating whether Vi is positioned

left of Vk along the wharf (= 1) or not (= 0),
βik : a binary variable indicating whether Vi is positioned

below Vk along the timeline (= 1) or not (= 0).
We also use the following parameters:
li: the length of vessel Vi, for i = 1, 2, . . . , f + r ,
L: the wharf length of the container terminal,
hi: the actual handling time of vesselVi, for i = 1, 2, . . . , f ,
hj(ω): the expected handling time of vessel Vj, for j = f +

1, f + 2, . . . , f + r ,
di: the requested departure time of vessel Vi, for i =

1, 2, . . . , f ,
dj(ω): the expected requested departure time of vessel Vj,

for j = f + 1, f + 2, . . . , f + r .

In building the model, we make sure that the following
constraints are satisfied. See also Figure 10 which visually
shows an example clarifying some of these constraints
graphically.
• All vessels should be berthed within the wharf’s
boundary. This can be written as xi + li ≤ L for i =
1, 2, . . . , f + r .

• For i, k = 1, 2, . . . , f + r, i 6= k , if vessel Vi is
positioned along the wharf to the left of vessel Vk ,
the rightmost berthing position of vessel Vi must be to
the left of the leftmost berthing position of vessel Vk .
Otherwise, the rightmost berthing position of vessel Vi
must be limited by the leftmost berthing position of
vessel Vk plus the wharf length of the container terminal.
This can be modeled as

xi + li ≤ xk + L(1− αik ), (29)

for i, k = 1, 2, . . . , f + r, i 6= k . For example,
in Figure 10, it can be seen that the inequality in (29)
is satisfied for the vessels Vi,Vk and Vm as well as for
the vessels Vi,Vj and Vm, but it is not satisfied for the
vessels Vk and Vj.

• A vessel should not be berthed before its arrival time.
This can be written as ai ≤ yi, for i = 1, 2, . . . , f + r .
See Figure 10. As a matter of fact, the deterministic
and stochastic times in Figure 10 are existing on two
different axes for more focused picture, but indeed they
both occur on the same timeline.

• For i = 1, 2, . . . , f and k = 1, 2, . . . , f + r, i 6= k ,
if vessel Vi is positioned below vessel Vk along the
timeline, the departure time of vessel Vi must precede
the berthing time of vessel Vk . Otherwise, the berthing
time of vessel Vk should not be limited by the departure
time of vessel Vi. Let M be an arbitrary large constant,
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FIGURE 10. A graphical illustration of random berth allocation with uncertain handling time.

then this can be modeled as

yi + hi ≤ yk +M (1− βik ), (30)

for 1 ≤ i ≤ f , 1 ≤ k ≤ f + r, i 6= k . For example,
in Figure 10, it can be seen that vessels Vi and Vk satisfy
the inequality in (30).

• For j = f + 1, f + 2, . . . , f + r and k = 1, 2, . . . , f +
r, i 6= k , if vessel Vj is positioned below vessel Vk along
the timeline, the expected departure time of vessel Vj
must precede the berthing time of vessel Vk . Otherwise,
the expected departure time of vessel Vj should not be
limited by the berthing time of vessel Vk . Let M be an
arbitrary large constant, then this can be modeled as

yj + hj(ω) ≤ yk +M (1− βjk ), (31)

for f + 1 ≤ j ≤ f + r, 1 ≤ k ≤ f + r, j 6= k . For
example, in Figure 10, it can be seen that vessels Vj and
Vm satisfy the inequality in (31).
where E[Q(x; y;α;β, ω)] =

∫
�
Q(x; y;α;β, ω)P(dω),

and Q(x; y;α;β, ω) is the minimum value of the
problem

• To save fuel, the sailing speed of each vessel should be
adjusted so that its arrival time at the terminal is in a
given interval. This can be written as ai ≤ ai ≤ ai for
i = 1, 2, . . . , f + r .

• Finally, to avoid duplication and the constraints
(29)–(31) among vessels, we add the constraint 1 ≤
αik + αki + βik + βki ≤ 2, for 1 ≤ i, k ≤ f + r, i < k .

We have two objectives: Minimizing the total departure
delay and minimizing the fuel consumption. The total
departure delay is given by

f∑
i=1

(yi + hi − di)+ +
f+r∑
j=f+1

(
yj + hj(ω)− dj(ω)

)+
, (34)

where κ+ := max {κ, 0} for κ ∈ R. In the
model, this objective is scaled with a weight parameter,
say λ, for convenience. The fuel consumption is given
by [64]

f∑
i=1

(
ciai+ĉin

µi
i a

1−µi
i

)
+

f+r∑
j=f+1

(
cj(ω)aj(ω)+ĉj(ω)n

µj
j a

1−µj
j (ω)

)
.

(35)

VOLUME 10, 2022 3539



B. Alzalg, H. Alioui: Applications of Stochastic Mixed-Integer Second-Order Cone Optimization

This function is obtained for each vessel using regression
analysis. Here, ci, ĉi, cj(ω) and ĉj(ω) are the regression
coefficients, ni (respectively, nj) is the distance of vessel
Vi (respectively, vessel Vj) from the terminal, and µi, µj ∈
{3.5, 4, 4.5} for each i = 1, 2, . . . , f and j = f + 1,
f + 2, . . . , f + r .

By introducing the auxiliary variables ti, tj, qi, qj ≥ 0, for
i = 1, 2, . . . , f and j = f + 1, f + 2, . . . , f + r , and adding
the constraints

yi + hi − di ≤ ti, a1−µii ≤ qi, 1 ≤ i ≤ f ,

yj+hj(ω)−dj(ω) ≤ tj, a
1−µj
j (ω) ≤ qj, f +1 ≤ j≤ f + r,

we can rewrite the summations in (34) and (35) as∑f
i=1 ti +

∑f+r
j=f+1 tj and

∑f
i=1

(
ciai + ĉin

µi
i qi

)
+
∑f+r

j=f+1(
cjaj(ω)+ ĉjn

µj
j qj

)
, respectively.

Given the above modeling framework, the two-stage
optimal random berth allocation problem is formulated as
the following two-stage stochastic mixed-binary nonlinear

programming model (32, 33), as shown at the bottom of the
page.

The nonlinear terms in (32) and (33) appear in the
seventh set of constraints in each, and they can be
handled by transferring them into hyperbolic constraints
and then using (2) to rewrite the resulting hyperbolic
constraints as a group of second-order cone constraints as
follows [64]:

When µi = 3.5, the inequality 1 ≤ aµi−1i qi is 1 ≤ a5/2i qi
with ai, qi > 0. Squaring both sides, we get 1 ≤ a5i q

2
i , which

is equivalent to hyperbolic constraints

u2i1 ≤ ai, u
2
i2 ≤ ui1qi, 1 ≤ aiui2,

ai, qi > 0, ui1, ui2 ≥ 0. (37)

Using (2), the hyperbolic constraints in (37) are equivalent to
the second-order cone constraints:

‖(2ui1; ai − 1)‖ ≤ ai + 1,

‖(2ui2; ui1 − qi)‖ ≤ ui1 + qi,

‖(2; ai − ui2)‖ ≤ ai + ui2,

min
f∑
i=1

(
ciai + ĉin

µi
i qi

)
+ λ

f∑
i=1

ti + E [Q(x; y;α;β, ω)]

s.t. xi + li ≤ L, 1 ≤ i ≤ f ,

xi + li ≤ xk + L(1− αik ), 1 ≤ i ≤ f , 1 ≤ k ≤ f + r, i 6= k,

yi + hi ≤ ti + di 1 ≤ i ≤ f ,

yi + hi ≤ yk +M (1− βik ), 1 ≤ i ≤ f , 1 ≤ k ≤ f + r, i 6= k,

ai ≤ ai ≤ ai, 1 ≤ i ≤ f ,

0 ≤ ai ≤ yi, 1 ≤ i ≤ f ,

1 ≤ aµi−1i qi, 1 ≤ i ≤ f ,

1 ≤ αik + αki + βik + βki ≤ 2, 1 ≤ i ≤ f , 1 ≤ k ≤ f + r, i < k,

xi, ti, qi ≥ 0, 1 ≤ i ≤ f ,

αik , βik ∈ {0, 1}, 1 ≤ i ≤ f , 1 ≤ k ≤ f + r, i 6= k, (32)

min
f+r∑
j=f+1

(
cjaj(ω)+ ĉjn

µj
j qj

)
+ λ

f+r∑
j=f+1

tj

s.t. xj + lj ≤ L, f + 1 ≤ j ≤ f + r,

xj + lj ≤ xk + L(1− αjk ), f + 1 ≤ j ≤ f + r, 1 ≤ k ≤ f + r, j 6= k,

yj + hj(ω) ≤ tj + dj(ω) f + 1 ≤ j ≤ f + r,

yj + hj(ω) ≤ yk +M (1− βjk ), f + 1 ≤ j ≤ f + r, 1 ≤ k ≤ f + r, j 6= k,

aj ≤ aj ≤ aj, f + 1 ≤ j ≤ f + r,

0 ≤ aj ≤ yj, f + 1 ≤ j ≤ f + r,

1 ≤ a
µj−1
j qj, f + 1 ≤ j ≤ f + r,

1 ≤ αjk + αkj + βjk + βkj ≤ 2, f + 1 ≤ j ≤ f + r, 1 ≤ k ≤ f + r, j < k,

xj, tj, qj ≥ 0, f + 1 ≤ j ≤ f + r,

αjk , βjk ∈ {0, 1}, f + 1 ≤ j ≤ f + r, 1 ≤ k ≤ f + r, j 6= k. (33)
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ai, qi > 0,

ui1, ui2 ≥ 0. (38)

Similarly, when µi = 4, the inequality 1 ≤ a3i qi
is equivalent to the following group of second-order cone
constraints

‖(2ui1; ai − 1)‖ ≤ ai + 1,

‖(2ui2; ui1 − qi)‖ ≤ ui1 + qi,

‖(2ui3; ai − ui2)‖ ≤ ai + ui2,

‖(2ui4; ui1 − 1)‖ ≤ ui1 + 1,

‖(2; ui3 − ui4)‖ ≤ ui3 + ui4,

ai, qi > 0,

ui1, ui2, ui3, ui4 ≥ 0, (39)

and when µi = 4.5, the inequality 1 ≤ a7/2i qi is equivalent to
the following group of second-order cone constraints

‖(2ui1; ai − 1)‖ ≤ ai + 1,

‖(2ui2; ui1 − qi)‖ ≤ ui1 + qi,

‖(2; ai − ui2)‖ ≤ ai + ui2,

ai, qi > 0,

ui1, ui2 ≥ 0. (40)

Constraints (38)–(40) were obtained for each i = 1, 2, . . . , f .
Similar constraints can also be obtained for each j = f +
1, f + 2, . . . , f + r .
Similar to other models built in this paper, in light of the

above conic transformation, a solution for Model (32, 33)
is now possible by applying the decomposition algorithm
developed in [53].

IV. ALGORITHMS
Asmentioned in Section II, there are available solution meth-
ods for SSOCP, SMILP, and DMISOCP. These optimization
problems are algorithmically more mature than the more
general case, the SMISOCP problem. Because the present
paper captures a variety of its important applications, in this
section we present a solution method for SMISOCP, leaving
the development of more specific methodologies for a future
research.
In the modeling process, the input requires that we solve

the stochastic program for a finite number of scenarios. For
this reason, in practice, the case of interest is when random
parameters have a finite number of realizations. Therefore,

we assume that the event space� is discrete, and has finitely
many outcomes with known probabilities.
Let p(ω) represent the probability of occurrence for ω ∈

�. The equivalent deterministic formulation of the SMISOCP
problem (3, 4) is Problem (36), as shown at the bottom of the
page.
Problem (36) is a huge-scale DMISOCP problem, and

therefore, we may not even able to solve Problem (36) using
state-of-the-art optimization solvers. However, the advantage
that makes the formulation in (36) different from other
formulations that involve uncertainty is the nice structure
that can be seen inside. We can use the solution methods
available in the literature for DMISOCP, particularly cuts and
relaxations, to solve the resulting extensive formulation, and
this can be successfully achieved by exploiting the special
structure of Problem (36). In this connection, we emphasize
that all application models proposed in Section III can be
formulated in the form of Problem (36).
In Subsection IV-A, we give a brief review for the

solution algorithms available for solving SSOCP with
more elaboration on the homogeneous self-dual method.
In Subsection IV-B, we describe a solution algorithm for
solving SMISOCP using cuts and relaxations by combining
the existing method in Subsection IV-A for SSOCP with
extensions of DMISOCP.

A. HOMOGENEOUS INTERIOR-POINT METHODS FOR
SSOCP
Numerous interior-point algorithms for SSOP have been
developed recently. We briefly outline these algorithms
ordered chronologically. In 2014, Alzalg [30] proposed a
homogeneous self-dual interior-point algorithm was pro-
posed for SSOCP. Later in the same year, Alzalg [28]
proposed a solution to the problem based on a logarithmic
barrier decomposition-based interior-point algorithm (see
also [27]). In 2015, Alzalg [29] proposed a volumetric
barrier decomposition-based interior-point algorithm for
solving the problem. In 2018, Alzalg et al. [31] proposed
an infeasible self-dual interior-point algorithm for solving
the problem. While the methodologies in [30] and [31]
are based on the deterministic equivalence, which is the
extensive form of a stochastic program that forms an
equivalent large one-stage problem containing all con-
straints and all scenarios, the methodologies in [28], [29]
are based on Bender’s decomposition, which decomposes

min cTx + p(1)d(1)Ty1 + p(2)d(2)Ty2 + · · · + p(|�|)d(|�|)Ty|�|
s.t. Ax �r b,

T (1)x + W (1)y1 �s h(1),
T (2)x + W (2)y2 �s h(2),
...

. . .
...

T (|�|)x + W (|�|)y|�| �s h(|�|),
x ∈ Zp × Rn−p, y1 ∈ Zq × Rm−q, y2 ∈ Zq × Rm−q, . . . y|�| ∈ Zq × Rm−q.

(36)
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a stochastic program into stages where, at each stage,
variables at preceding stages are considered as constraints
so that the subproblem at the current stage is easier to
solve.

In this part, we give a brief overview of the homogeneous
self-dual algorithm [30] used to solve the underlying
SSOCP. The continuous relaxation of (36) is obtained
by the same formulation as (36), but with x ∈ Rn

and y1, y2, . . . , y|�| ∈ Rm. If we re-define d(k) to be
p(k)d(k) for each k = 1, 2, . . . , |�|, the SSOCP is the
Problem (41), as shown at the bottom of the next page.

Note that we associate a different decision variable yk with
each realization to be slightly more general. The dual of (41)
is Problem (42), as shown at the bottom of the next page.

The homogeneous model for the pair (41,42) is

Ax− p− τb = 0,

T (k)x+W (k)yk − qk − τh(k) = 0, k = 1, 2, . . . , |�|,

−ATu−
|�|∑
k=1

T (k)Tvk + τc = 0,

−W (k)Tvk + τd(k) = 0, k = 1, 2, . . . , |�|,

bTu+
|�|∑
k=1

h(k)Tvk − cTx−
|�|∑
k=1

d(k)Tyk − κ = 0,

p �r 0, u �r 0, qk �s 0, vk �s 0, k = 1, 2, . . . , |�|,

τ, κ ≥ 0. (43)

The following system defines the search direction system
corresponding to (43).

A1x−1p−1τb = ηrp0,

T (k)1x+W (k)1yk −1qk −1τh(k) = ηrpk ,

k = 1, . . . , |�|,

−AT1u−
|�|∑
k=1

T (k)T1vk +1τc = ηrd0,

−W (k)T1vk +1τd(k) = ηrdk , k = 1, . . . , |�|,

bT1u+
|�|∑
k=1

h(k)T1vk − cT1x−
|�|∑
k=1

d(k)T1yk −1κ

= ηrg,

κ1τ + τ1κ = γµ− τκ,

1p ◦ u+ p ◦1u = γµe0 − p ◦ u,

1qk ◦ vk + qk ◦1qk = γµek − qk ◦ vk , k = 1, . . . , |�|,

(44)

where γ and η are two parameters, the product ‘‘◦’’ is the
Jordan multiplication defined in (1), and

rp0 = p+ τb−Ax,

rpk = qk + τh(k)− T (k)x−W (k)yk , k = 1, . . . , |�|,

rd0 = ATu+
|�|∑
k=1

T (k)Tvk − τc,

rdk = W (k)Tvk − τd(k), k = 1, . . . , |�|,

rg = κ − bTu−
|�|∑
k=1

h(k)Tvk + cTx+
|�|∑
k=1

d(k)Tyk ,

µ =
1

2(r + |�|s)+ 1

pTu+
|�|∑
k=1

qT
kvk + τκ

 .
We point out that a scaling may be needed to guar-

antee that we iterate on the interior of the underly-
ing second-order cone. Common examples of such a
scaling are the HRVW/KSH/M direction (introduced by
Kojima et al. [65] and Helmberg et al. [66] independently
and then rediscovered by Monteiro [67]), the dual
HRVW/KSH/M direction (introduced by Kojima et al. [65]
and rediscovered by Monteiro [67]), and the NT direction
(introduced by Nesterov and Todd [68], [69]).

The work in [30] describes an efficient method to find the
search directions as a solution to (44). This method exploits
the special structure in (41, 42) and decomposes into |�|
smaller computationswhich can be performed in parallel. The
results in [30] show that this method is both theoretically
and computationally efficient. In particular, the number of
arithmetic operations in each iteration when computing the
search direction grows cubically as a function of n,m, k and l,
and linearly as a function of |�| (see [30]).

B. GOMORY CUTS AND TIGHT RELAXATIONS FOR
SMISOCP
In this part, we introduce two algorithmic developments
for SMISOCP. The first development is based on the work
of Cezik and Iyengar [35], which proposes Gomory cuts
for solving (deterministic) mixed-integer conic programs by
extending well-known techniques from mixed-integer linear
programming to mixed-integer conic programs. In this part,
we particularly extend the Chvátal-Gomory approach for gen-
erating cuts to the equivalent deterministic formulation (36).
We introduce the following feasibility sets.

F1 :=
{
x ∈ Zn+ : Ax �r b

}
;

F (k)
2 (x) :=

{
yk ∈ Zm+ : W (k)yk �s h(k)− T (k)x

}
,

1 ≤ k ≤ |�|;

F :=
{
(x, y1, . . . , y|�|) ∈ Zn+ × Zm+ × · · · × Zm+ :
Ax �r b,W (k)yk �s h(k)− T (k)x,

k = 1, . . . , |�|
}
.

(46)

The extension in this part is based on the two equivalences
given in (45), as shown at the bottom of the next page, (see
also [35]).

Let ai and wj(k) denote the ith column of A and jth
column ofW (k), respectively, for k = 1, 2, . . . , |�|. We have
the following workflow which can be applied iteratively to
deterministically compute the convex hull of the feasibility
set F of the formulation (see also [35, Section 2]).
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Workflow 1 (Chvátal-Gomory Procedure): We consider
the following three steps for our setting:
(i) Choose u �r 0 and vk �s 0 for k = 1, 2, . . . , |�|. Then

(ATu)Tx =
∑n

i=1(a
T
i u)xi ≥ uTb, and (W (k)Tvk )Tyk =∑m

j=1(wj(k)
Tvk )ykj ≥ vT

k (h(k) − T (k)x), for k =
1, 2, . . . , |�|.

(ii) Without loss of generality, assume that x ≥ 0 and
yk ≥ 0, k = 1, 2, . . . , |�|. Then

∑n
i=1da

T
i uexi ≥ uTb,

and
∑m

j=1dwj(k)
Tvkeykj ≥ vT

k (h(k) − T (k)x), for k =
1, 2, . . . , |�|.

(iii) By the integrality of x and yk , k = 1, 2, . . . , |�|,
it follows that

∑n
i=1da

T
i uexi ≥ duTbe, and∑m

j=1dwj(k)
Tvkeykj ≥ dvT

k (h(k) − W (k)x)e, for k =
1, 2, . . . , |�|. Therefore, we add the above 1+|�| valid
linear inequalities to the second-order cone constraints
Ax �r b and T (k)x + W (k)yk �s h(k), k =
1, 2, . . . , |�|.

The following proposition is due to [35, Lemma 1].
Proposition 1: Assume that the feasibility set F is

bounded. Then every valid inequality for the convex hull of
F can be obtained by repeating Workflow 1 a finite number
of times.

The second development investigates the hierarchies of
relaxations studied by Lovász and Schrijver [37] and
Balas et al. [36]. Fix subsets P ⊆ {1, 2, . . . , p} and Q ⊆

{1, 2, . . . , q} with sizes |P| = p̃ ≤ p and |Q| = q̃ ≤
q. Without loss of generality, we can consider that Q =
{1, 2, . . . , q̃} and P = {1, 2, . . . , p̃}. Let x ∈ F1 and y(k) :=
yk ∈ F (k)

2 (x), k = 1, 2, . . . , |�|, where F1 and F (k)
2 (·) are

defined in (46). Let also

U (0)
=

[
u(0)1 ,u

(0)
2 , . . . ,u

(0)
p̃

]
∈ R(n+1)×p̃,

U (1)
=

[
u(1)1 ,u

(1)
2 , . . . ,u

(1)
p̃

]
∈ R(n+1)×p̃,

V (0)(k) =
[
v(0)1 (k), v(0)2 (k), . . . , v(0)q̃ (k)

]
∈ R(m+1)×q̃,

V (1)(k) =
[
v(1)1 (k), v(1)2 (k), . . . , v(1)q̃ (k)

]
∈ R(m+1)×q̃,

for k = 1, 2, . . . , |�|, where

u(0)ı = (1− xiı )
[
1
x

]
, u(1)ı = xiı

[
1
x

]
,

for ı = 1, 2, . . . , p̃, and

v(0) (k) = (1− yj (k))
[

1
y(k)

]
, v(1) (k) = yj (k)

[
1
y(k)

]
,

for  = 1, 2, . . . , q̃, and k = 1, 2, . . . , |�|.
Let U (1)

P and V (1)
Q (k) be the submatrices of the matrices

U (1) and V (1)(k) corresponding to the indices in P and Q,
respectively, k = 1, 2, . . . , |�|. Then, Problem (47), as
shown at the bottom of the next page, relaxes Problem (36)
with all binary variables.

Sherali and Adams [70], [71] and later Laserre [72]
introduced hierarchies of the relaxations to present tighter
relaxation of the underlying feasibility set. To extend their
work to our setting, let u be a vector indexed by the empty set ,
subsetsR ⊆ P, and sets of the formR∪{i},R ⊆ P, i /∈ P. Let
also v be a vector indexed by the empty set , subsets S ⊆ Q,
and sets of the form S ∪ {j}, S ⊆ Q, j /∈ Q. The vectors
u ∈ R(n−p̃+1)2p̃ and v(k) ∈ R(m−q̃+1)2q̃ are defined in (48),
as shown at the bottom of the next page.

For all subsets I ⊆ P, and subsets J ⊆ Q, let the values
ξI0 , ζ

I
0 (k) ∈ R, and the vectors ξI ∈ Rn, ζJ(k) ∈ Rm be

defined as in (48).

min cTx + d(1)Ty1 + d(2)Ty2 + · · · + d(|�|)Ty|�|
s.t. Ax �r b,

T (1)x + W (1)y1 �s h(1),
T (2)x + W (2)y2 �s h(2),
...

. . .
...

T (|�|)x + W (|�|)y|�| �s h(|�|).

(41)

whose dual is the problem

max bTu + h(1)Tv1 + h(2)Tv2 + · · · + h(|�|)Tv|�|
s.t. ATu + T (1)Tv1 + T (2)Tv2 + · · · + T (|�|)Tv|�| = c,

W (1)Tv1 = d(1),
W (2)Tv2 = d(2),

. . .
...

W (|�|)Tv|�| = d(|�|),
u �r 0, v1 �s 0, v2 �s 0, . . . v|�| �s 0.

(42)

Ax �r b ⇐⇒ (ATu)Tx ≥ uTb, ∀u �r 0,

T (k)x+W (k)yk �s h(k) ⇐⇒ (W (k)Tvk )Tyk ≥ vT
k (h(k)− T (k)x), ∀vk �s 0, k = 1, 2, . . . , |�|. (45)
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Multiplying the second-order cone constraints Ax �r b
and W (k)y(k) �s h(k)− T (k)x by the product∏

i∈I

xj
∏
i∈P\I

(1− xj)

and the product∏
j∈J

yj(k)
∏
j∈Q\J

(1− yj(k)),

TABLE 1. Comparing the number of variables and constraints of
relaxations (47) and (49).

respectively, we obtain

AξI − bξ I0 �r 0, I ⊆ P,

min cTx+
|�|∑
k=1

d(k)Ty(k)

s.t.
n∑
i=1

u(0)iı ai �r u
(0)
0ı b, ı = 1, 2, . . . , p̃,

n∑
i=1

u(1)iı ai �r u
(1)
0ı b, ı = 1, 2, . . . , p̃,

m∑
j=1

v(0)j (k)wj(k) �s v
(0)
0 (k) (h(k)− T (k)x) ,  = 1, 2, . . . , q̃, k = 1, 2, . . . , |�|,

m∑
j=1

v(1)j (k)wj(k) �s v
(1)
0 (k) (h(k)− T (k)x) ,  = 1, 2, . . . , q̃, k = 1, 2, . . . , |�|,

u(0)ı + u
(1)
ı =

[
1
x

]
, ı = 1, 2, . . . , p̃,

v(0) (k)+ v(1) (k) =
[

1
y(k)

]
,  = 1, 2, . . . , q̃, k = 1, 2, . . . , |�|,

u(0)ı ı = 0, ı = 1, 2, . . . , p̃,

v(0) (k) = 0,  = 1, 2, . . . , q̃, k = 1, 2, . . . , |�|,

u(1)ı ı = u(1)0ı , ı = 1, 2, . . . , p̃,

v(1) (k) = v(1)0 (k),  = 1, 2, . . . , q̃, k = 1, 2, . . . , |�|,

U (1)
P = U (1)T

P ,

V (1)
Q (k) = V (1)T

Q (k), k = 1, 2, . . . , |�|. (47)

uI =

 1, I = ∅;∏
i∈I

xj, I = R ⊆ P, I = R ∪ {i},R ⊆ P, i /∈ P,

vJ(k) =


1, J = ∅;∏
j∈J

yj(k), J = S ⊆ Q, J = S ∪ {j}, S ⊆ Q, j /∈ Q, for k = 1, 2, . . . , |�|,

ξI0 =
∏
i∈I

xj
∏
i∈P\I

(1− xj) =
∑

I⊆R⊆P

(−1)|P\R|uR ≥ 0,

ζ
J
0 (k) =

∏
j∈J

yj(k)
∏
j∈Q\J

(1− yj(k)) =
∑

J⊆S⊆Q

(−1)|Q\S|vS(k) ≥ 0, for k = 1, 2, . . . , |�|,

ξIν =
∏
i∈I

xi
∏
i∈P\I

(1− xi) =
∑

I⊆R⊆P

(−1)|P\R|uR∪{ν}, for ν = 1, 2, . . . , n,

ζJυ (k) =
∏
j∈J

yj(k)
∏
j∈Q\J

(1− yj(k)) =
∑

J⊆S⊆Q

(−1)|Q\S|vS∪{υ}(k), for υ = 1, 2, . . . ,m, for k = 1, 2, . . . , |�|. (48)
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min cTx + d(1)Ty(1) + d(2)Ty(2) + · · · + d(|�|)Ty(|�|)
s.t. AξI �r bξI0 , I ⊆ P,

T (1) x ζJ0 (1) + W (1)ζJ(1) �s h(1)ζ
J
0 (1), J ⊆ Q,

T (2) x ζJ0 (2) + W (2)ζJ(2) �s h(2)ζ
J
0 (2), J ⊆ Q,

...
. . .

...
...

...

T (|�|) x ζJ0 (|�|) + W (|�|)ζJ(|�|) �s h(|�|)ζ
J
0 (|�|), J ⊆ Q,

xν = u{ν}, yυ (1) = v{υ}(1), yυ (2) = v{υ}(2), . . . yυ (|�|) = v{υ}(|�|), 1 ≤ ν ≤ n, 1 ≤ υ ≤ m.

(49)

T (k) x ζJ0 (k)+W (k)ζJ(k)− h(k)ζJ0 (k) �s 0, J ⊆ Q,

1 ≤ k ≤ |�|.

Then, Problem (49), as shown at the top of the page, relaxes
the SMBSOCP version of Problem (36) (i.e., Problem (36) in
which x ∈ {0, 1}p × Rn−p and y(k) ∈ {0, 1}q × Rm−q).
Finally, we apply the solution technique described in

Subsection IV-A to solve Problem (49).
From Table 1, we can see that the number of variables

and constraints grow, as a function of |P| and |Q|, linearly
in Relaxation (47) and exponentially in Relaxation (49).

V. CONCLUSION
Stochastic mixed-integer second-order cone programming is
an important class of optimization problems that includes
stochastic second-order cone programming and stochastic
mixed-integer linear programming as special cases. In this
paper, we have described five different applications that
lead to two-stage stochastic mixed-integer second-order
cone programming, and this has been achieved by relax-
ing assumptions that include deterministic information to
incorporate random data. Application areas include facility
location, portfolio optimization, uncapacitated inventory,
battery swapping stations, and berth allocation planning. It is
important to indicate that all of the optimization models
that have been developed in this study are intractable for
an extensive form formulation. Therefore, solutions for such
application models are now possible by applying either the
decomposition algorithm developed recently in [53] or the
scenario-based cuts proposed recently in [54].

Developing other and more specialized algorithms to solve
the generic two-stage stochastic mixed-integer second-order
cone programming problem is an important subject of study.
In this paper, we have started this study by describing
solution methods for solving the generic stochastic mixed-
integer second-order cone programming problem using cuts
and relaxations by combining the existing homogeneous
interior-point algorithm for stochastic second-order cone
programming with extensions of mixed-integer second-order
cone programming. We emphasize that the work presented
in this paper is far from being a survey or a comprehensive
study, but we believe that it would rather shape a basis for
further research studies in second-order cone programs over
integers under uncertainty. In particular, it is our firm belief
that this research is a rich source for stochastic mixed-integer

second-order cone programmingmodels, and it can be greatly
utilized to implement numerous future algorithms for solving
this class of optimization problems.
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