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ABSTRACT In the machine learning jargon, multi-label classification refers to a task where multiple
mutually non-exclusive class labels are assigned to a single instance. Generally, the lack of sufficient labeled
training data demanded by a classification task is met by an approach known as semi-supervised learning.
This type of learning extracts the decision rules of classification by utilizing both labeled and unlabeled data.
Regarding multi-label data, however, current semi-supervised learning methods are unable to classify them
accurately. Therefore, with the goal of generalizing the state-of-the-art semi-supervised approaches to multi-
label data, this paper proposes a novel two-stage method for multi-label semi-supervised classification. The
first stage determines the label(s) of the unlabeled training data bymeans of a smooth graph constructed using
themanifold regularization. In the second stage, thanks to the capability of the twin support vector machine to
relax the requirement that hyperplanes should be parallel in classical SVM, we employ it to establish a multi-
label classifier called LP-MLTSVM. In the experiments, this classifier is applied on benchmark datasets.
The simulation results substantiate that compared to the existing multi-label classification algorithms, LP-
MLTSVM shows superior performance in terms of the Hamming loss, average precision, coverage, ranking
loss, and one-error metrics.

INDEX TERMS Multi-label classification, semi-supervised learning, smooth graph, Graph Laplacian,
manifold regularization, twin support vector machine.

I. INTRODUCTION
Classification is a well-known task in the field of machine
learning. Traditionally, machine learning techniques are
divided into supervised, unsupervised and semi-supervised.

In supervised learning, one or more labels are assigned to
each given data point by the intervention of a supervisor [1].
In supervised learning techniques, a model is constructed and
trained with features of train data to predict the class labels
of unseen data. Classification and regression algorithms
are supervised learning algorithms. In classification, the
output of classifier is a discrete number from a predefined
limited set [2], while in regression the output of regressor
is a continuous value [1], [3]. Support vector machine
(SVM) [4], twin support vector machine (TWSVM) [5] and
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neural networks [6] are well-known examples of supervised
learning. These types of learning have been used in a wide
range of applications like pattern recognition [7] and text
categorization [8].

With respect to the number of class labels of each data
point, the classification tasks are divided into single-label or
multi-label. For instance, spam email filtering is a single-label
classification problemwhere each instance has a single-label.
In this problem, once the classifier learns the features of a
spam email, it will be able to distinguish spam from non-spam
emails [9].

Multiple-label learning paradigm involves a process in
which several labels selected from a set of labels are assigned
to a data instance. There are varieties of application that
utilize multiple-label learning, music categorization [10] and
image annotation [11], to name a few. In practice, music or
an image can be associated with several topics.
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Learning based on multiple-label data has gained sig-
nificant attention [12], recently. These efforts can be
categorized to algorithm adaptation, problem transformation
and ensemble method. Algorithm adaptation strategy extends
single-label classifiers to the multi-label data classification.
Rank-SVM [13], BPMLL [14], MLRBF [15], MLIBLR [16]
and SS-MLLSTSVM [17], belong to this category. Problem
transformation strategy involves transforming a multi-label
problem to a set of single-label sub-problems. Then a sub-
classifier is constructed through transforming the afore-
mentioned single-label classifiers. Binary relevance (e.g.,
one-against-all) [18] and calibrated label ranking (e.g., one-
against-one) [19] are features of this category. Ensemble
strategy constructs a multi-label classifier by combining
several single-label classifiers. Generally, this strategy pro-
vides the most efficient solution for multi-label problems.
Boosting-based methods such as Adaboost [20] and an
ensemble of classifier chains [3], [21] are examples of this
strategy.

Unsupervised learning algorithms deal with unlabeled
data [22]. These techniques seek to recognize a meaningful
resemblance and pattern among data. Data clustering is a
major goal of the unsupervised learning. Data which lay in
a cluster bear a maximum similarity among themselves and a
maximum dissimilarity with other clusters at the same time.
K-means [23] and K-medoids [24] are two examples of this
technique.

Semi-supervised learning (SSL) is conducted by com-
bining the two aforementioned learning approaches (i.e.,
supervised and unsupervised learning) [25]. The principal
idea behind the constructing a classifier by means of SSL
is to exploit the unlabeled data which are excessive in
number accompanied by a few available labeled data [26].
The SSL technique establishes a model in which not
only are instance labels employed but also meaningful
patterns among instances are utilized [27]. One approach
to implement this type of learning is simply neglecting
unlabeled data [28]. However, this approach may result
in overfitting [29]. As already mentioned, the objective of
SSL is to utilize all available data for the construction
of the intended model [26]. Currently, there are varieties
of applications that deal with the data showing multi-label
and semi-supervised trait. Video surveillance [30], [31] and
protein 3D structure prediction [32] are two well-known
examples of such applications.

Generally, SSL is conducted through either inductive [33]
or transductive [27] approaches. Taking into account that
SSL consists of both labeled and unlabeled training data,
two main goals need to be achieved. The first goal is to
predict the label of test data and the second goal involves
predicting label of those training data with no label. These
two goals are reached by means of inductive and transductive
learning, respectively. Denoting labeled data and unlabeled
data are denoted by {(xi, yi)}Li=1 and {(xj)}

L+U
j=L+1, respectively.

Inductive SSL seeks to train a functionf : x → y in such a
way that this function shows better performance in predicting

unseen data compared to the case where unlabeled data
are solely exploited. Analogous to the supervised learning,
an established way to assess performance of semi-supervised
classifier is to use these test data {(xk , yk )}mk=1 that do not
participate in training phase.

Transductive SSL trains a function f : xL+U → yL+U so
that the label of unlabeled training instances can be predicted
bymeans of this function. It is worthmentioning that function
f can only be employed for training data set and not to predict
any data outside of this set.

Semi-supervised algorithms are grounded on the cluster
assumption and the manifold assumption in leveraging
unlabeled data. The cluster assumption implies that similar
data have the same class label, so the decision boundary
passes from a low-density region. According to the manifold
assumption, data can be represented by a Graph Laplacian.
This graph is utilized by a classifier that assigned the same
label to similar instances. Almost all the SSL algorithms
are based on either one or both assumptions. For example,
maximum margin semi-supervised learning method such
as transductive support vector machine (TSVM) [34] and
semi-supervised SVM (S3VM) [35], LapSVM [36] and
LapTSVM [37], leverage the cluster assumption. Graph-
based semi-supervised classification methods like label
propagation [38] and manifold regularization [39] adopt the
manifold assumption.

Graph-based semi-supervised learning [40] schemes are
mainly inductive, which makes them incompetent in practical
applications, where predicting unseen instance is required.
To tackle this incompetency, recent graph-based multi-
label semi-supervised schemes follow transductive approach
among which are image retrieval [41] and web spam
identification [42] applications.

The promising performance of the MLTSVM [43] has led
to its widespread application in the development of multi-
label classifiers. MLTSVM, however, entails a number of
drawbacks as follows. It ignores unlabeled data during the
classifier construction process, and consequently it merely
shows favorable performance in the cases where data samples
have a limited number of labels. Moreover, this construction
process involves solving quadratic programming problems,
as a result of which the learning is decelerated. Therefore,
we propose a novel two-stage method called LaplacianMulti-
Label Twin Support Vector Machine (LP-MLTSVM) that
addresses the aforementioned drawbacks by utilizing both
labeled and unlabeled data. In its first stage, leveraging a
Graph Laplacian an undirected weighted graph is constructed
where training instances constitute its vertices and the weight
of each edge reflects the similarity of its corresponding ver-
tices. The second stage constructs sub-classifiers exploiting
MLTSVM and manifold regularizer [44]. In other words,
the major contributions of the proposed method to address
shortcomings of the MLTSVM are:
• Utilizing both labeled and unlabeled data by predicting
a label ( or labels ) for each unlabeled instance, and
avoiding neglecting unlabeled instance.
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FIGURE 1. The schematic explanation of the porposed method.

• Constructing sub-classifiers exploiting MLTSVM and
manifold regularizer.

• Employing successive over-relaxation (SOR) to enhance
the learning speed.

Fig 1 exhibits the steps of the proposed method. The
simulation results show that compared to the existing
multi-label classification algorithms, LP-MLTSVM shows
superior performance in terms of the Hamming loss, average
precision, coverage, ranking loss and one-error.

The rest of this paper is structured as follows: section II
presents the related works. The proposed scheme is elab-
orated in section III. Section IV is devoted to results and
discussion. Finally, section V concludes the paper.

II. RELATED WORKS
Since the proposed method is based on SVM, in this section
we briefly introduce the SVM and some extensions.

A. SUPPORT VECTOR MACHINE (SVM)
Assume Tc is a set of training instances of a binary classifier
defined as

Tc =
{(

X i,Yi
)
, (i = 1, . . . ,m)

}
, (1)

where X iεR and Yiε{−1, 1}. Let m1 denote samples labeled
by +1 and similarly m2 represent samples with -1 label.
Accordingly, matrix Am1×n and Bm2×n are constructed such
that i − th row represents a data sample labeled as +1 and
−1, respectively and we have m = m1+ m2.

Original SVM [4] separated the two sets of data denoted
byA and B through establishing two parallel hyperplanes.
These two hyperplanes are obtained using the following
equations.

AwT + eb = +1, (2)

BwT + eb = −1, (3)

where bεR, wεRn, and e is appropriate vector of ones. This
approach seeks to establish a trade-off between misclassifi-
cation error and the decision margin. This trade-off can be
formulated as the following optimization problem:

min
(w,b,ε)

1
2
wTw+ C

m∑
i=1

εi

s.t: Yi
(
wT x i + b

)
εi ≥ 1,

εi ≥ 0, (i = 1, . . . ,m) (4)

where εi and C are slack variable and a user defined penalty
factor, respectively. The Wolf dual of (4) can be expressed as

max −
1
2

m∑
i=1

m∑
j=1

YiYj
(
x i
)T

x jαiαj +
m∑
j=1

αj

s.t:
m∑
i=1

Yiαi = 0

0 ≤ αi ≤ C, (i = 1, . . . ,m) (5)
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Let α∗ = (α∗1 , . . . , α
∗
m) be the optimal solution of (5).

Karush–Kuhn–Tucker (KKT) conditions yield a hyperplane
represented as xTw∗ + eb∗, where

w∗ =
m∑
i=1

α∗i Yi x
i, (6)

b∗ = (Yi−
NSV∑
i=1

α∗i Yi) ∗
1
NSV

. (7)

Here x i and αi are data samples used as support vectors
and their respective multipliers. NSV denotes the number of
support vectors holding 0 < αi < C . A new sample is labeled
as +1 or −1 according to the proposed classifier.

B. TWIN SUPPORT VECTOR MACHINE (TWSVM)
TWSVM [5] has been proposed to classify binary data.
It relaxes the requirement that the hyperplanes should be
parallel in the classical SVM. It establishes two non-parallel
hyperplanes in such a way that each of them has the highest
possible distance from a class and is the lowest possible
distance from another one. Unlike standard SVM, which
solves a large dimensional quadratic programming problem
(QPP), TWSVM arranges to solve two reduced dimensional
QPPs, and accordingly it performs faster than SVM. Indeed,
each of these reduced problems follows the relations of the
standard SVMwhere each data sample can only appear in the
constraint of just one problem. Those two hyperplanes are

AwT+ + eb+ = +1, (8)

BwT− + eb− = −1. (9)

where w+,w−εRnand b+, b−εRn also as well as e represent
a vector of ones with a proper size. Construction of hyper-
plane leveraged by TWSVM involves solving the following
optimization problems.

min
1
2
‖Aw+ + e+b+‖22 + C1eT−ε

s.t: − (Bw+ + e−b+)+ ε ≥ e−, ε ≥ 0 (10)

min
1
2
‖Bw− + e−b−‖22 + C2eT+η

s.t: (Aw− + e+b−)+ η ≥ e+, η ≥ 0 (11)

whereC1,C2 ≥ 0 are the error penalty, and e−, e+are vectors
of ones with a proper size. Applying some algebra on (10) and
(11) yields

max eT−α −
1
2
αTG

(
HTH

)−1
GTα

s.t: 0 ≤ α ≤ C1e− (12)

max eT+β −
1
2
βTP

(
QTQ

)−1
PTβ

s.t: 0 ≤ β ≤ C2e+ (13)

where C1,C2 and e−, e+ are Lagrange multipliers and
the followings relations are yielded G =

[
B e−

]
,

H =
[
A e+

]
,P =

[
A e+

]
and Q =

[
B e−

]
.

The non-parallel hyperplanes (8), (9) are obtained from the
solutions α, β of (12), (13) by

v1 = −
(
HTH

)−1
GTα where v1 =

[
wT+b+

]T
, (14)

v2 = −
(
QTQ

)−1
PTβ where v2 =

[
wT−b−

]T
. (15)

Depending onwhich of two hyperplanes it is close to, a new
data point is labeled as +1 or -1, that is

f (x) = argmin d+
−
(x), (16)

d+
−
(x) = | wT+

−

x + b+
−
| . (17)

where | . | gives the distance of point x from planeswT
+

−

x +b+
−
.

C. MULTI-LABEL TWSVM (MLTWSVM)
Let us consider a multi-label classification problem in Rn

consisting Kclasses [45]. Suppose XL+iεR, (i = 1, . . . ,U )
and Y are input samples and label set, respectively. A multi-
label task involves constructing a decision function h(.) :
X → 2Yaccording to the training samples, which is

Tc = {(xL+i yi) | 1 ≤ i ≤ U , 1 ≤ j ≤ K } , (18)

xL+iεXdenotes training samples and yiεY is the label asso-
ciated with class expressed as yj = [yj1, . . . , yjk , . . . , yjK ]T

where

yjk =


+1, if xi belings to k − th class;
−1, if xi not belings to k − th class;
0, Otherwise.

(19)

In this problem, K non-parallel hyperplanes represented
as fk (x) = wTk + bk = 0 are established such that K − th
hyperplane is as close as possible to the samples of class
K while it is as far as possible from samples of other
classes. Here, wk and bk are normal vector and bias terms
of K − th hyperplane, respectively. The classifier h(x) ⊆ Y
is associated with an unseen instance xεXL+i predicting its
label.

D. MANIFOLD REGULARIZATION (MR)
Regularization is an overfitting suppression technique [46].
Recently it is employed in SSL problems [47].

Let (xL+1 . . . , xL+U ) be the set of mixture of labeled and
unlabeled data where xL+iεRn, i = 1, . . . ,U and labels are
distributed according to, pdf,Px . In MR, labels are distributed
according to Riemannian manifold [39] in a way that more
geometrically close data resemble more to their respective
label. Generally, data are stored in a matrix MεR(L+U )×n.
Applying MR requires representing training sample as a
weighted graph where these samples are its vertices [43].
The adjacency matrix of this graph is denoted as wij where
its elements capture the similarity of the training samples.
Accordingly, the elements of i − th row and j − th column
are calculated as

wij =

{
exp(−‖xi − xj‖22/ 2σ, if xi, xj are neighbor;
0, Otherwise,

(20)
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where ‖xi − xj‖22 denotes the Euclidean distance between
sample xi and xj. Also, σ is known as the bandwidth
parameter that controls the decreasing rate of the weight.

Graph Laplacian L is obtained as L = D − W , where
D and W are two (L + U ) × (L + U ) matrices. W is the
symmetry matrix which can be constructed according to (20).
D is an orthogonal matrix whose elements are defined as
Dii =

∑l+u
i=1 wij.

In the Graph Laplacian, nodes are sorted in such a way that
at first, labeled nodes are located followed by the unlabeled
ones. This matrix can be divided into sub matrices as follows:

L =
[
Lll Llu
Lul Luu

]
. (21)

According to a Graph Laplacian L, a prediction function f
can be articulated as:

f (xi) = yi, (22)

f (xj) =

∑l+u

k=1
wjk f (xk )∑l+u

k=1
wjk

, j = l + 1 · · · l + u. (23)

In this function, the values of the labeled instances are the
respective label of these instances. However, the value of each
unlabeled instance is the average of its neighbor’s weight,
which can be obtained from the following optimization
problem:

min
l+u∑
i,j=1

wij(f (xi)− f (xj))2

s.t: f (xi) = yi for i = 1 · · · l. (24)

The function f generates values in the range [−1, 1].
By defining the threshold value as 0, the generated values
of this function can be mapped to the labels of unlabeled
instances. The optimization problem (24) can be reduced to:

1
2

l+u∑
i,j=1

wi,j(f (xi)− f (xj))2 = f TLf . (25)

Solving this problem yields:

fl = yl, (26)

fu = −L−1uu Lulyl . (27)

For the sake of clarification, an example is provided.
Let the graph of Fig 2 be a training data whose nodes are
numbered from left to right. Among these nodes are only
those numbered as 1 and 7 which have label +1 and −1,
respectively, and other nodes are unlabeled. Bymoving nodes
that are associated with labeled instance to the front of this
graph, the order of nodes is arranged as (1, 7, 2, 3, 4, 5, and
6). Applying (26) and (27) on matrices L,D and Wyields
fu = ( 23 ,

1
3 , 0,

−1
3 ,
−2
3 )Twhere yl = (1,−1)T .

Setting the threshold value as 0, the labels of unlabeled
instances are determined. Accordingly, the labels of nodes
2 and 3 will be +1 and nodes 5 and 6 are labeled with −1.

FIGURE 2. Chain graph comprised of seven nodes among which only
nodes 1 and 7 are labeled +1 and −1, respectively. The other nodes do
not have any label.

The aforementioned example shows that at the first stage
of the proposed algorithm, the label of the unlabeled training
data are predicted, leveraging a Graph Laplacian. In the sec-
ond phase utilizing TWSVM a multi-label semi-supervised
classifier called LP-MLTSVM is established through which
the labels of the unseen data can be predicted.

E. SS-MLLSTSVM
Semi-supervised multi-label least square (SS-
MLLSTSVM) [17] employs the concept of the least
square to increase the learning speed of the MLTSVM.
Unlike MLTSVM, it uses manifold regularization to fully
utilize both labeled and unlabeled data. SS-MLLSTSVM
can be expressed as the following optimization problem:

min
1
2

(
Akwk + eAkbk

)2
+

1
2
ck2

(
‖wk‖2 + b2k

)
+

1
2
ck1ξTBk ξBk

+
1
2
ck3 (Twk + ebk)T L (Twk + ebk) ,

s.t: − (Bkwk + eBkbk )+ ξBk = eBk , (28)

where cki are the penalty parameters, ξBk is the salck variable,
and L is the Laplace matrix. The samples belonging to the kth
class are denoted by Ak and the samples not belonging to the
kth class are shown by Bk . Like the linear case, the linear
SS-MLLSTSVM is extended to the nonlinear case using
approximate kernel generating surface. The optimization
problem of nonlinear SS-MLLSTSVM is as follows:

min
1
2

(
K
(
Ak ,T T

)
wk + eAkbk

)2
+

1
2
ck1ξTBk ξBk

+
1
2
ck3

(
K
(
T ,T T

)
wk + ebk

)T
× L

(
K
(
T ,T T

)
wk + ebk

)
+

1
2
ck2

(
‖wk‖2 + b2k

)
,

s.t: −
(
K
(
Bk ,T T

)
wk + eBkbk

)
+ ξBk = eBk , (29)

where K (., .) is a suitable kernel function.

III. LAPLACIAN MULTI-LABEL TWIN SUPPORT VECTOR
MACHINE FOR SEMI-SUPERVISED CLASSIFICATION
TWSVM supposes that each sample can take only one
label [5]. However, samples can have multiple labels. This
paper extends TWSVM to multi-label problems.
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A. LINEAR LP-MLTSVM
Inspired by TWSVM, the proposed scheme employs square
loss function and Hing loss function as:

Vk = (xi, yi, fk ) = ((Ak .wk )+ bk)2 + max (0, 1− fk (Ak )) ,

(30)

Vk = (xi, yj, fk ) =
(
(Ak .wk )+ bk

)2
+ max

(
0, 1− fk (Ak )

)
.

(31)

Ak represents data samples with label k and Ak are other
data samples. The decision functions of these problems can
be expressed as

fk (x) = (wk .x)+ bk , (32)

fk (x) = (wk .x)+ bk . (33)

Also the regularization terms are defined as

‖fk‖2H =
1
2

(
‖wk‖22 + b

2
k

)
, (34)

‖fk‖
2
H =

1
2

(
‖wk‖

2
2 + b

2
k

)
. (35)

Accordingly manifold regularizations are

‖fk‖2M =
1

(L + U )2

L+U∑
i,j=1

wij
(
fk (xi)− fk (xj)

)2
= f Tk Lfk

(36)

‖fk‖
2
M =

1
(L + U )2

L+U∑
i,j=1

wij
(
fk (xi)− fk (xj)

)2
= f T

k
Lfk .

(37)

where wij is the element of data adjacency matrix in which
higher similarity between xi, xj will lead to a larger wij. Also
L is Graph Laplacian as

fk = [fk (x1), . . . , fk (xL+U )]T = Mwk + ebk , (38)

fk =
[
fk (x1), . . . , fk (xL+U )

]T
= Mwk + ebk . (39)

where MεR(L+U )×nconsists of all labeled and unlabeled
data, and e vectors of ones with an appropriate size.

For kernel function k(., .), which is associated with a
reproducing kernel Hilbert space Hk , the decision function
can be obtained by minimizing

f ∗ = arg min
f εH

L+U∑
i=1

V (xi, yi, f )+ γH‖f ‖
2
H + γM‖f ‖

2
M.

(40)

where f is an unknown decision function, V represents some
loss functions on the labeled data, and γHis the weight of
‖f ‖2H that controls the complexity of f in reproducing the
Kernel Hilbert space, γM is the weight of ‖f ‖2Mand controls
the complexity of the function in the intrinsic geometry of
marginal distribution, and ‖f ‖2Mis able to penalize f along
the Riemann manifoldM.

Substituting (30), (31), (34) and (35) into (40), the primal
problems of linear LP-MLTSVM can be written as

min
(wk ,bk ,ξ )

{1
2
‖Akwk + ekbk‖22 + cke

T
k
ξ

+
1
2
λk (‖wk‖22 + bk )

+ γk (wTkM
T
+ eTk bk )L(Mwk + ekbk )

}
s.t: − (Akwk + ekbk )+ ξ ≥ ek , ξ ≥ 0,

k = 1, 2, . . . ,K . (41)

The Lagrangian corresponding to the problem (41) is given
by

L(2) =
1
2
(Akwk + ekbk )T (Akwk + ekbk )+ ckeTk ξ

+
1
2
λk (‖wk‖22 + b

2
k )

+
1
2
γk (wTkM

T
+ eTk bk )L(Mwk + ekbk )

−αTk (−(Akwk + ekbk )+ ξ − ek )− β
T
k ξ. (42)

Where 2 = {wk , bk , ξ, αk , βk}, αk = (αk1 , . . . , αkm1 )
T ,

βk = (βk1 , . . . , βkm1 )
T are the Lagrange multipliers for class

k . The dual problem can be formulated as

max L(θ )

s.t: L(θ ) = 0,
(wk ,bk ,ξ )

αk , βk ≥ 0. (43)

From (43), we obtain

∇L
wk
= ATk (Akwk + ekbk )+ λkwk

+γkMTL(Mwk + ekbk )+ ATk αk = 0, (44)

∇L
bk
= eTk (Akwk + ekbk )+ λkbk

+γkeTk L(Mwk + ekbk )+ e
T
k
αk = 0, (45)

∇L
ξ
= ckek − ak − βk = 0. (46)

Since βk ≥ 0, (46) turns out to be 0 ≤ αk ≤ ckek . Next,
combining (44) and (45) leads to(
ATk
eTk

)
[Ak ek ]

(
wk
bk

)
+ λk

(
wk
bk

)

+ γk

(
MT

eT

)
L [M ek ]

(
wk
bk

)
+ αk

(
AT
k
eT
k

)
= 0. (47)

Let H = [Ak ek ], J = [M ek ], G = [Ak ek ] and
Vk = [wTk e

T
k ]
T .

Equation (44) can be rewritten as

(HTH + λk I + γkJTLJ )Vk + GTαk = 0

i.e : Vk = −(HTH + λk I + γkJTLJ )−1(GTαk ). (48)

where I is an identity matrix of appropriate dimensions.
Substituting (48) into (43), we obtain the Wolf dual of (41)
as follows:

max eT
k
αk −

1
2
G(HTH + λk I + γkJTLJ )−1(GTαk ).

s.t: 0 ≤ αk ≤ ckek (49)
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Problem presented as (49) is a convex optimization
problem that can be solved by quadratic programming
technique to yield α. It is relaxed as

Q = G(HTH + λk I + γkJTLJ )−1GT , (50)

max eT
k
αk −

1
2
αTk Qαk .

s.t: 0 ≤ αk ≤ ckek (51)

Predicting a label for an unseen data xεRninvolves using

f (x) = arg min dk (x)
k=1...K

. (52)

where

dk (x)
k=1...K

=
| wTk + bk |

‖wk‖
< 1k . (53)

If a new sample x is close enough to the proximal
hyperplane of k , its corresponding label is assigned to this
sample.

We can summarize the steps of the proposed successive
over relaxation [48] to be employed in LP-MLTSVM in
Algorithm-1.

This algorithm obtains α used in LP-MLTSVM classifier
as presented in algorithm-2.

Algorithm 1 The Successive Over-Relaxation Algorithm
Input:
The penalty parameter Ck , the relaxation factor ωε(0, 2)
And the matrix Q is defined by (50).
Output:
The optimal solution αk for the problem.
1: Initialize iterate i = 0 and start with any α0k εR

L+U

2: SplitQ = L+D+L ′, where L is the strictly lower triangular
matrix and D is the diagonal matrix
3: while

(
‖αi+1 − αi‖ < 10−6

)
do

4: Compute αi+1 = αi + ω1α , where 1αis given by
1α = −Di

(
Qαi − e+ LT (αi+1 − αi)

)
.

5: Project αi+1to the feasible range [0.Ck ].
6: end while.

Algorithm 2 LP-MLTSVM Algorithm
Input:
Labeled data Lε {(xi, yi)}li=1,unlabeled data Uε

{
xj
}l+u
j=l+1.

Output:
Label assigned to the unlabeled data.
1: Construct graph according to similarity function

wij =
exp(−‖xi−xj‖22)

2σ .

2: Compute diagonal matrix Dii =
∑l+u

i=1 wij.
3: Compute Laplacian matrix L = D−W .
4: Apply L according to (41).
5: Obtain α according to SOR function.
6: Construct K non-parallel proximal hyperplane.

B. NONLINER LP-MLTSVM
Now we extend the linear LP-MLTSVM to the nonlinear
case. Like linear case, the cost function of the errors
Vk = (xi, yj, fk ) and Vk = (xi, yj, fk ) can be expressed
as (32) and (33). The decision function can be written
as fk (x) = (wk .φ(x)) + bk , fk (x) = (wk .φ(x)) + bk ,
where φ(x) is a nonlinear mapping from low dimensional
space to a higher dimensional Hilbert space H. According
to Hilbert space theory, wk and wk can be expressed as
wk =

∑L+U
i=1 φ(xi)λk = φ(M )λk , wk =

∑L+U
i=1 φ(xi)λk =

φ(M )λk . For the nonlinear case, LP-MLTSVM construct
K approximate kernel generating surfaces. These kernel
generated surfaces are:

K (XT ,M )λk + bk = 0, (54)

K (XT ,M )λk + bk = 0. (55)

where K (., .) is a suitable kernel function defined as
K (xi, xj) = (φ(xi), φ(xj)). By means of the kernel matrix
K and relevant coefficient, λk ,λk the regularization term
‖fk‖2H and ‖fk‖

2
H can be expressed as

‖fk‖2H =
1
2
(λTk Kλk + b

2
k ), (56)

‖fk‖
2
H =

1
2
(λT
k
Kλk + b

2
k
). (57)

For manifold regularization, on the basis of fk =

[fk (x1), . . . , fk (xL+U )]T = Kλk + ekbk and fk =

[fk (x1), . . . , fk (xL+U )]
T
= Kλk+ekbk , ‖fk‖

2
M and ‖fk‖

2
M can

be written as

‖fk‖2M = f Tk Lfk = (λTk K + e
T
k bk )L(Kλk + ekbk ), (58)

‖fk‖
2
M = f T

k
Lfk = (λT

k
K + eT

k
bk )L(Kλk + ekbk ). (59)

Thus, the nonlinear optimization problems are expressed
as

min
(λk ,bk ,ξ )

1
2
‖K (Ak ,MT )λk + ekbk‖2 + ckeTk ξ

+
1
2
γk (λTk Kλk + b

2
k )

+
1
2
ηk (λTk K + e

T
k bk )L(λkK + ekbk )

s.t: − (K (Ak ,M
T )λk + ekbk )+ ξ ≥ ek , ξ ≥ 0. (60)

Define the Lagrangian corresponding to the problem (60) as

L(θ ) =
1
2
‖K (Ak ,MT )λk + ekbk‖2 + ckeTk ξ

+
1
2
γk (λTk Kλk + b

2
k )

+
1
2
ηk (λTk K + e

T
k bk )L(λkK + ekbk )

= αTk (−(K (Ak ,M
T )λk + ekbk )+ ξ − ek − β

T
k ξ (61)

where θ = {λk , bk , ξ, αk , βk}.
The dual problem can be formulated as

max
(θ )

L(θ )

s.t: ∇L(θ )
(λk ,bk ,ξ )

= 0, αk , βk ≥ 0. (62)
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TABLE 1. Specification of the synthetic datasets.

From (62), we obtain

∇L
λk
= K (Ak ,MT )T (K (Ak ,MT )λk + ekbk )+ γkKλk

+ ηkKL(Kλk + ekbk )+ K (Ak ,M
T )Tαk = 0, (63)

∇L
bk
= eTk (K (Ak ,MT )λk + ekbk + γkbk

+ ηkeTL(Kλk + ekbk )+ eTk αk = 0, (64)

∇L
ξ
= ckek + αk − βk = 0. (65)

Combining (63) and (64) leads to[
K (Ak ,MT )T

eTk

] [
K (Ak ,MT ) ek

] [
λk
bk

]
+ γk

[
K 0
0 1

] [
λk
bk

]
+ ηk

[
K
eT

]
L
[
K ek

] [ λk
bk

]
+

[
K (Ak ,M

T )T

eTk

]
αk = 0. (66)

Let

Hφ =
[
K (Ak ,MT ) ek

]
, Oφ =

[
K 0
0 1

]
,

Jφ =
[
K ek

]
, Gφ =

[
K (Ak ,M

T )T ek
]
. (67)

and the augmented vector ρk = [λk , bk ]T , can be rewritten as

HT
φ Hφρk + γkOφρk + ηkJ

T
φ LJφρk + G

T
φαk = 0

i.e : ρk = −(HT
φ Hφ + γkOφ + ηkJ

T
φ LJφ)

−1(GTφαk ).

(68)

So the Wolf dual problem (60) is formulated as follows:

max eT
k
αk −

1
2
(αTk Gφ)(H

T
φ Hφ + γkOφ

+ ηkJTφ LJφ)
−1(GTφαk )

s.t: 0 ≤ αk ≤ ckek . (69)

Once vector ρk is obtained from (68), a new data point
xεRn might be assigned to class K , in a manner similar to
the linear case.

IV. EXPERIMENTAL RESULTS
This section is devoted to the evaluation of the proposed
scheme.We compare it withMLTSVM, Rnak-SVM, BPMLL
and SS-MLLSTSVM using synthetic and real datasets. All
synthetic data are generated by Mldatagen according to

TABLE 2. Specification of the real datasets.

the some predefined parameters such as (hyperspheres or
hypercubes), number of relevant, irrelevant and redundant
features, number of instance and number of labels. We add
5% noises to labels of each instance to make the learning
task more arduous.Table 1 summarizes the specifications
of the synthetic datasets. Also, the real datasets Emotion,
Yeast, Scene, Medical, Flags and Birds are widely used
for evaluating multi-label learning methods. All real-world
datasets summarized in Table 2. It is worth mentioning that
these datasets are obtained from UCI [49].

RBF kernel expressed as wij =
exp(−‖xi−xj‖22)

2σ is utilized to
evaluate the proposed scheme. Its only parameter is σ .

Moreover, parameters C, λ, γ which are used by this
scheme need to be determined optimally. 10-fold cross
validation is employed to determine the parameters. It selects
the best value of these parameters by assigning a range
of values to each of them from {2i | i = −5, . . . , 5}.
It should be mentioned that this procedure is applied to
all data sets and the best parameter values are obtained
according to Table 3. For the Rank-SVM, the kernel
function parameter and penalty parameter C are selected
from

{
2−6, . . . , 20, . . . , 26

}
. For the BPMLL, the number

of hidden neurons is {5%, 10%, . . . , 25%} of the number of
input neurons, the training epochs is set to be 100. For the
SS-MLLSTSVM, the penalty parameters and regularization
parameters are selected from

{
2−6, . . . , 20, . . . , 26

}
.

Our algorithm code is written in MATLAB 2013 on a PC
with an Intel Core I5 processor with 2GB RAM. Hamming
loss, Average precision, coverage, ranking loss one-error and
one-error are the comparison metrics.

A. HAMMING loss (Hloss)
Hamming loss calculates the number of times that an
instance-label pair is misclassified between the predicted
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TABLE 3. Specification of the best parameter values.

TABLE 4. Performance comparison of the proposed method in terms of the Hloss.

TABLE 5. Performance comparison of the proposed method in terms of the Avepre.

label set h(x) and the ground-truth set Y:

Hloss ↓=
1
p

∑p

i=1

1
K
| h(xi)1yi | ε [0, 1] . (70)

where 1 stands for the symmetric difference of the two sets.
The small value of Hloss shows the better performance of a
scheme. Table 4 and Fig 3 represent the performance of the
proposed scheme terms of Hamming loss.

B. AVERAGE PRECISION (Avepre)

Average precision evaluates the average fraction of labels
ranked above a particular label yεyi (71), as shown at the
bottom of the next page.

The large value of this metric approves the better
performance of the scheme. The performance of the
proposed scheme in terms of Avepre is demonstrated
in Table 5 and Fig 4.
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TABLE 6. Performance comparison of the proposed method in terms of the Cov.

FIGURE 3. Comparison of proposed scheme based on Hloss.

FIGURE 4. Comparison of the proposed scheme based on Avepre.

C. COVERAGE (Cov)
Coverage evaluates how far we need, on average, to go down
the ranked list of labels in order to cover all the possible labels

FIGURE 5. Comparison of proposed scheme based on Cov.

of the instance:

Cov ↓=
1
p

∑p

i=1

(
Max
yεyi

rankf (xi, y)− 1
)
ε [0,K − 1] .

(72)

The smaller this metric is, the higher the performance
of the algorithm will be. Table 6 and Fig 5 represent the
performance of the algorithm in terms of this metric.

D. RANKING LOSS (Rloss)
Ranking loss evaluates the average fraction of label pairs that
are reversely ordered. Let y be the complementary set of y in
Y , so we have

Rloss ↓

=
1
p

∑p

i=1

×

(
1

| yi || yi |

∣∣∣{(y′, y′′) | fy′εy′′ (xi) ≤ fy′εy′′ (xi)}∣∣∣) ε [0, 1] .
(73)

Avepre ↑ =
1
p

∑p

i=1

(
1
| yi |

∑
yεyi

| {y′εyi | rankf (xi, y′) ≤ rankf (xi, y)} |
rankf (xi, y)

)
ε [0, 1] . (71)
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TABLE 7. Performance comparison of the proposed method in terms of the Rloss.

TABLE 8. Performance comparison of the proposed method in terms of the Oerr.

FIGURE 6. Comparison of proposed scheme based on Rloss.

The smallest value of this metric shows the best perfor-
mance of the algorithm. Table 7 and Fig 6 represent the
performance of the algorithm in terms of this metric.

E. ONE-ERROR (Oerr)
One-error evaluates the number of times the top-ranked label
is not in the set of proper labels of the instance

Oerr ↓ =
1
p

∑p

i=1
H (xi)ε [0, 1]

H (xi) =

{
0 if arg max fy(xi)εyi
1 Otherwise.

(74)

FIGURE 7. Comparison of proposed scheme based on Oerr.

The smallest value of this metric shows the best perfor-
mance of the algorithm. Table 8 and Fig 7 illustrate the
performance of the algorithm in terms of this metric.

F. DISCUSSION
LP-MLTSVM algorithm suffers from a high time complexity
in the training phase, because of its need to construct Graph
Laplacian for determining labels of the unlabeled instances.
This shortcoming, however, does not make this approach
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TABLE 9. Rank of the five considered algorithms for Hloss.

TABLE 10. Rank of the five considered algorithms for Avepre.

TABLE 11. Rank of the five considered algorithms for Cov.

impractical as the learning phase needs to be conducted only
once.

According to the results provided in Table 4, we can
observe that in the proposed algorithm the established
decision boundary only passes the low-density region of
feature space and does not meet the unlabeled data instances.
It is imperative that the weights assigned to the edges of

the graph be smooth without any abrupt changes, since
the weights reflect the similarity between instances. Equa-
tion (20) implies that if two instances are connected through
a high weight edge, these two instances share the same
labels.

Construction of a competent graph depends on a deep
insight from the problem domain as well as defining
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TABLE 12. Rank of the five considered algorithms for Rloss.

TABLE 13. Rank of the five considered algorithms for Oerr.

TABLE 14. p-value of Hloss according Bonferroni-Dunn analysis.

TABLE 15. p-value of Avepre according Bonferroni-Dunn analysis.

appropriate distance functions and parameters employed in
Table 3. A label predictor function needs to be designed in a
way that

1) Euclidean distance is not considered.
2) Whole graph is smooth.

In the proposed algorithm, these two criteria are satisfied by
employing MR as indicated in (58), (59), which results a
higher accuracy in Table 4.

We list the rank of different multi-label classificationmeth-
ods in terms of Hamming loss, average precision, coverage,
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TABLE 16. p-value of Cov according Bonferroni-Dunn analysis.

TABLE 17. p-value of Rloss according Bonferroni-Dunn analysis.

TABLE 18. p-value of Oerr according Bonferroni-Dunn analysis.

ranking loss and one-error in Table 9 to 13, respectively.
We can observe that, the proposed LP-MLTSVMoutperforms
other algorithms in all metrics.

According to the average results provided in Table 9 to 13,
except average precision and ranking loss the proposed
method demonstrates a higher performance.

We conduct Bonferroni-Dunn analysis to determine if there
is a significant difference between the proposed approach
and the compared ones in terms of the comparison metrics.
Table 14 to 18 presents the result of this analysis according
which we can conclude that except coverage metric the
proposed approach outperforms significantly.

V. CONCLUSION
This paper aimed to leverage a large number of unlabeled data
along with a limited number of labeled data for increasing
classifier’s precision. The main reason for employing semi-
supervised learning stems from this fact that the number
of available data is generally limited; on the other hand
unlabeled data is prevalent. Accordingly, inspired from
TWSVM this paper proposes a semi-supervised learning
scheme called LP-MLTSVM, for the classification of multi-
label data.

This scheme provides a classification model with a
significant degree of precision which can more precisely
classify training data compared to previous works. The
proposed scheme is grounded on manifold theory on Graph
Laplacian. Training data constitute the vertices of this graph.
The weight of an edge between two vertices reflects their

similarity. In other words, the more similar the two vertices
are, the higher weight of their connecting edge is.

We applied the proposed scheme to several standard data
sets to compare its performance with MLTSVM, Rnak-
SVM, BPMLL and SS-MLLSTSVM based on performance
metrics. The evaluation results demonstrate the outstanding
performance of LP-MLTSVM compared with other works.
As a future work, this scheme might be extended to the
structural learning problems.
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