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ABSTRACT Accurate traffic prediction can effectively alleviate traffic congestion problems. The complex
spatial correlation of traffic flow contributes to the challenging prediction problem. Most current prediction
methods focus on learning local spatial correlation, ignoring the spatial correlation of long-distance traffic
flow. In this paper, we combine the improved Graph Convolutional Network (GCN) with Gated Recurrent
Unit (GRU) to propose a hybrid model integrating local and global spatial correlation (T-LGGCN) for traffic
prediction. The model consists of two parts: global spatial-temporal component and local spatial-temporal
component. For the global spatial-temporal component, we construct the global correlation matrix to improve
the GCN for obtaining the global spatial correlation. And GRU is stacked to obtain the global spatial-
temporal correlation. For the local spatial-temporal component, we utilize the strategy of combining Fully
Connected Layer (FCL) and GCN to analyze the local spatial correlation. Similarly, GRU is used to perform
the output of local spatial-temporal correlation. The output of the two components is finally summed, and
the prediction results are generated with the dense network. Experiments were conducted using the highway
datasets PEMS04 and PEMSO08 from the Caltrans Performance Measurement System, and the results show
that our model significantly outperforms state-of-the-art baselines.

INDEX TERMS Traffic prediction, graph convolutional network, global spatial correlation, local spatial

correlation.

I. INTRODUCTION
With the acceleration of traffic construction, a large number
of highways have sprung up. As the connecting part between
cities, highways play an important role in our daily life
and have greatly improved the inter-city traffic capacity [1].
At the same time, due to the rapid economic development, car
ownership is gradually increasing, and traffic problems are
becoming more and more serious. Intelligent Transportation
System (ITS) effectively integrates advanced science and
technology in transportation, which can strengthen the
connection between cars, roads, and travelers. Also, it can
improve the rationality of traffic resource allocation and
mitigate traffic problems [2].

Traffic prediction is an important part of ITS. Accurate
traffic prediction is the key to implementing the ITS.
Prediction results will directly influence the effect of traffic
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guidance [3]. Generally, effective traffic prediction focuses
on capturing the spatial and temporal correlation of traffic
flow [4], [5]. Temporal correlation means that the traffic
flow state at one moment has a significant impact on the
state at the next moment. For example, if traffic congestion
occurred at the previous moment, it may still be congested
at the next moment. Moreover, the temporal correlation also
shows periodicity. For instance, the traffic peaks on weekdays
are usually from 8:00 to 9:00 in the morning and from
5:00 to 7:00 in the evening, which happen at a similar time
during the weekdays. All of this information is relevant
to the traffic flow state at the future moment. Currently,
temporal correlation features are commonly extracted by
models such as Temporal Convolutional Network (TCN) [6],
Recurrent Neural Network (RNN) [7], Long Short-Term
Memory (LSTM) [8], and Gated Recurrent Unit (GRU) [9].
As for the spatial correlation, it exists in the traffic flow in
the same direction. Specifically, when traffic flow at a sensor
is congested, the traffic flow around it will also be affected.
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Recently, the graph method is usually used to analyze the
spatial correlation, such as Graph Convolutional Network
(GCN) [10], Graph Attention Network (GAT) [11].

The spatial correlation analysis of traffic flow is a recent
research hotspot. Given the existing research, two main issues
need to consider:

(1) Current studies focus on the study of local spatial
correlation [12]. Suppose one sensor represents one node,
local spatial correlation means that the algorithm only
considers the spatial correlation between directly adjacent or
21 order adjacent nodes [13]. However, spatial correlation
also exists in a more extensive transportation network. Global
spatial correlation refers that the algorithm simultaneously
considers the spatial information of distant nodes. The
specific manifestation of global spatial correlation is,
for instance, traffic congestion can affect not only the
neighboring nodes but also the reachable long-distance
nodes [12]. In addition, areas with similar functions will have
a similar traffic flow state even if they are a far distance
from each other. For example, the traffic flow state around
schools in different areas is similar. They are all under
peak traffic during the morning and evening. Traffic around
malls on holidays is more congested than that on weekdays.
Considering the spatial information of these distant nodes
can also improve the algorithm prediction accuracy. The
existing studies are based on the physical adjacency to
characterize spatial correlation, ignoring that regions with
similar traffic flow state may be very distant from each
other [14]. Therefore, based on the local spatial correlation,
it is necessary to consider introducing the global spatial
correlation to further enhance the spatial correlation analysis
capability.

(2) GCN shows good prediction performance on the
non-Euclidean datasets [15]. By aggregating the spatial
information through the topology of the road network, it can
perform a better analysis of the spatial correlation of traffic
flow [16], [17]. However, it is already a well-known problem
that multilayer GCNs can cause smoothing [18]. T-GCN [19]
stacked two layers of GCN and one layer of GRU, and the
prediction curves have shown smooth. If the models fail to
predict the fluctuations of traffic flow, it will affect the quality
of subsequent traffic guidance, so this problem also needs to
be addressed urgently.

In this end, we propose a hybrid model integrating
local and global spatial correlation (T-LGGCN) for traffic
prediction. We model each sensor as a node to analyze the
spatial-temporal correlation of traffic flow. We use T-GCN
as the base structure to build the global spatial-temporal
component and the local spatial-temporal component. Firstly,
regardless of the physical connectivity of the sensors, the
correlation between any two sensors is analyzed using the
correlation method to construct the global correlation matrix.
After that, an improved graph convolution is used to encode
the global spatial features. Then, the local spatial correlation
between sensors and their neighboring sensors is considered.
The sensor’s features are first analyzed by Fully Connected
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Layer (FCL), and the output features are put into GCN for
local spatial correlation analysis. Finally, a layer of GRU is
stacked on each part for temporal correlation analysis. The
output of the two parts are summed and the predicted values
are obtained through the dense layer.

The contributions of our work are as follows:

(1) We design the global spatial-temporal component,
which considers the spatial correlation of traffic flow between
non-first-order neighboring sensors. The correlation matrix
is used to realize the weighted summation of spatial features
of sensors. And then, combined with GRU, it can effectively
analyze the global spatial-temporal correlation between
Sensors.

(2) We develop a local spatial-temporal component.
It combines the sensor nodes’ own features and the spatial
correlation between first-order neighboring nodes. This
component can effectively analyze the local spatial-temporal
correlation by weighted fusion of its own features and first-
order neighboring spatial correlation features. Meanwhile,
it avoids the smoothing problem of GCN and enhances the
ability to predict the fluctuation of traffic flow.

(3) We conduct extensive experiments on two real datasets,
PEMS04 and PEMSO08. The experiments show that our model
has a better prediction effect.

The rest of this paper is organized as follows. In section 2,
we introduce the related work about traffic prediction.
In section 3, we present the model proposed in this paper.
In section 4, we use two datasets of different area sizes to
validate and analyze our model. In section 5, we discuss our
model. In section 6, we summarize the work of this paper.

Il. RELATED WORK

Traffic prediction focuses on how to predict the traffic flow
state of the next moment based on historical and real-
time data, such as volume, density, speed, etc. Accurate
traffic prediction can provide real-time traffic information
for travelers, which is important to improve road capacity.
Traffic flow is complex, variable, and uncertain, and
the main characteristics are: nonlinearity, stochasticity,
periodicity, and spatial-temporal correlation [20]. To address
these characteristics, many prediction methods have been
available. The methods can be classified into traditional
methods and deep learning methods according to their
development process [15].

A. TRADITIONAL METHODS

Traditional methods include classical statistical methods and
machine learning methods. Classical statistical methods are
more used in the early stage of prediction, such as Historical
Average (HA) [21], Auto-Regressive Integrated Moving
Average (ARIMA), and its variants [22], [23]. These models
perform well under smooth traffic flow. However, when
the traffic flow changes drastically, they will show obvious
shortcomings and cannot better explore the nonlinearity
and uncertainty of traffic flow. Besides, these methods
only consider the temporal correlation, ignoring the spatial
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correlation. As the demand for prediction accuracy increases,
the prediction methods gradually turn to machine learning
methods such as Support Vector Regression [24], K-Nearest
Neighbor [25], and Bayesian model [26], etc.

B. DEEP LEARNING METHODS

With the rapid development of artificial intelligence
technology, more and more scholars are using deep learning
methods, especially neural networks, to solve traffic
prediction problems [27]. Neural networks can better fit
nonlinear mapping relationships and efficiently capture the
internal features of traffic flow. Commonly used networks
include Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), and Graph Convolutional Network
(GCN). CNN [28], [29] can efficiently process grid-type
data. It can only handle Euclidean data since its translation
invariance. RNN [30], LSTM, and GRU are suitable for
processing time-series data [31-33]. These networks rely on
the sequential temporal order of the data itself. We usually
use them to model the temporal correlation of traffic
flow. Graph structured data has emerged in recent years.
Researchers have started to study how to build deep learning
on graphs [34]. GCN [35] is an important branch of graph
neural networks. It has been applied to traffic prediction
and is effective in extracting the spatial correlation of traffic
flow [36]-[38].

In order to fully analyze the complex characteristics of
traffic flow such as nonlinearity, randomness, and spatial-
temporal correlation, hybrid neural network structure is
usually utilized instead of a single neural network structure.
Zheng et al. [39] developed an attention-based Conv-LSTM
module to extract spatial features and temporal features
separately. Zhang et al. [19] constructed a GCN-GRU
two-layer network structure to analyze the spatial-temporal
correlation and achieved good results when applied to the Los
Angeles freeway dataset. Zhang ef al. [40] used GCN and
feedforward neural networks to consider time, space, weather
conditions, and the date to predict highway traffic flow.

The original GCN can only analyze the geographical
correlation of sensors, which does not reflect the deep
spatial correlation. Some studies have been carried out
to improve the GCN. Li ef al. [41] combine GCN and
GRU to construct a DCRNN network. The model replaces
the parameter matrix in GRU with the convolution of
the parameter matrix and the Laplacian matrix. Based on
DCRNN, Guo et al. [42] constructed a dynamic Laplacian
matrix by summing the initial Laplacian matrix and the
parameterized residual matrix. Wu et al. [43] proposed
that initial graph structures do not always reflect true
spatial correlation. They use adaptive matrices to learn
internal spatial relationships for prediction. Li et al. [44] put
aside the inherent road network structure. They proposed
an adaptive graph convolution structure to automatically
learn the interrelationships between nodes through training.
Lv [45] et al. encoded the non-Euclidean correlation and
semantic structure of the road network into multiple graphs
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and then constructed a multi-graph convolutional network
to mine these correlations. Li [17] et al. used data-driven
adjacency matrices to mine the spatial relationships of graph
structures.

Compared with existing methods, our model combines
the local and global spatial correlation to explore the spatial
correlation of traffic flow comprehensively. In the actual
road, spatial correlation does not necessarily exist between
adjacent sensors. In the same traffic flow direction, spatial
correlation also exists between non-first-order neighboring
sensors. Through the global spatial-temporal component,
we can discard the useless sensor spatial information and
improve the capability of global spatial-temporal correlation
analysis. Also, in the local spatial-temporal component,
we separate node feature learning and neighboring nodes
spatial correlation mining, which can effectively avoid the
smoothing problem. By combining analysis from both global
and local perspectives, our model can deeply analyze the
spatial-temporal correlation of traffic flow and improve the
prediction capability.

lll. METHODOLOGY
A. PROBLEM DEFINITION
The relevant definitions covered in this paper are as follows:

Definition 1: Geographic adjacency matrix A € RV*V,
where A is composed of a;;, N is the number of sensors.
We use the distance between sensors to calculate the value of
ajj by the threshold Gaussian kernel [46], which is calculated
as follows:

a;={°¢ o2, dist(i, ) <A )
0, dist(i, j) =X

where a;; represents the adjacent weight between sensor i and
sensor j, dist(i, j) is the distance between sensor i and sensor
J> o2 is the variance, and X is the threshold.

Definition 2: Global correlation matrix C € , where
C;j stands for the spatial influence relationship of sensorion .
This matrix describes the correlation between sensors within
the research network. If the value is not 0, the value indicates
the degree of spatial correlation of sensor i on j.

Definition 3: Spatial-temporal feature matrix X5 € RT*5,
where T 1is the total time steps, S is the total number of
sensors. The spatial-temporal matrix is constructed using the
full amount of feature data of the traffic flow in the network
to be studied. Each column represents a sensor in the road
network, and the rows represent the values of one-time slice
for each sensor. The structure is as follows:

RN xN

4 gy
1 2 K
x x ... x
2 2 2
X}g - : : @)
T
where § = {1,2,..., s} represents the set of sensors. T =
{1,2,...,¢} denotes the set of time steps. And X; is the

spatial-temporal matrix, which contains s sensors and the
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FIGURE 1. The T-LGGCN structure which is composed of two parts: Global spatial-temporal component and local
spatial-temporal component. The feature matrix is used to calculate the correlation matrix. And the error between input feature

matrix and output feature matrix is adjusted by the loss function.

time step is #. X; is the value of sensor numbered s at the
moment £.

Therefore, based on the above definitions, assuming that
the current moment is ¢, our prediction task is to forecast the
traffic flow in the future period (i.e., y;+1) based on historical
traffic flow data (i.e., X;), geographic adjacency matrix (i.e.,
A) and global correlation matrix (i.e., C):

Ye+1 zf(X[S_Ta“ Xt 17

where T represents the time step of the input and f is the
model of this paper.

> A; C) 3

B. MODEL OVERVIEW

Fig. 1 shows the structure of the model proposed in this paper.
The model is composed of two components for modeling the
local spatial-temporal correlation and global spatial-temporal
correlation. The global spatial-temporal component consists
of a global graph convolution and a GRU network. We first
establish the global correlation degree matrix and use the
global graph convolution to extract the global spatial features.
Then the GRU is combined to capture the global spatial-
temporal correlation of traffic flow. Besides, the local spatial-
temporal component is stacked by a layer of FCL, GCN, and
GRU. The first layer of FCL is used to extract the nodes’ own
features, and the output is utilized to extract the local spatial
correlation by the GCN. The output of these two layers is
fused and input to GRU to obtain the local spatial-temporal
correlation of traffic flow. Finally, the output of the two
components is summed, and we use the dense layer to control
the output steps in order to obtain the prediction results.
We will describe each module in the following subsections.

C. SPATIAL CORRELATION
GCN is a popular neural network for processing spatial
correlation. The topology of the road network is represented
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as an undirected graph G = (V, E), where V is the set of
nodes representing the sensors, and E is the set of edges,
denoting the adjacency of the sensors. Convert the adjacency
of the graph G into the adjacent matrix by the method as
defined in Definition 1, then the propagation rule of GCN is
as follows:

AT = oAHOW D) 4

where A = D V2AD™V2 A =1+ A, 1 € RV*N is the
identity matrix, A € RV*VN represents the adjacency matrix
of the graph G, D, = A g H @ denotes the output of the
Ith layer, HO = X}e , W(/) is the weight parameter matrix of
the Ith layer.

The adjacency matrix represents the geographical structure
of the real road network. Equation 4 uses A to fuse the
features of adjacent sensors so that sensors can obtain the new
feature representation. However, considering the geographic
conditions of the highway, such as freeway hubs or ramps,
the spatial correlation between some neighboring sensors will
be weaker than non-adjacent sensors. Although the adjacency
matrix can show the intuitive sensors’ adjacency, it does not
express the internal spatial influence. Therefore, we analyze
the spatial correlation from two perspectives, global spatial
correlation, and local spatial correlation, respectively.

1) LOCAL SPATIAL CORRELATION COMPONENT

It can be found that the more adjacent nodes, the
smaller the weight of its node will be considered in
the feature aggregation process during the convolution
operation of equation 4. Therefore, in order to mine the
spatial characteristics of the nodes themselves, we use
the Approximate personalized propagation of neural
predictions (APPNP) model to mine the local spatial
correlation of traffic flow. APPNP [47] utilizes PageRank for
node feature propagation, using PageRank to encode features
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FIGURE 2. Local spatial process. It consists of a fully connected layer and
a GCN layer, which is used to capture the local spatial correlation.

for each root node and increase the chance of transmission
back to the root node. In this way, the model can balance the
need of retaining local features and mining neighborhood
features. The model calculation rules are as follows:

2O = H = fy(X)
Z®D = (1 - )Az® + oH ®)

where X represents the input of the nodes, fy denotes a neural
network. We use fy to extract each sensor’s self-features, « to
represent the percentage of self-features. As shown in Fig. 2,
we mine the spatial correlation of the nodes themselves and
their first-order neighbors, so we set k to 1. The local spatial
correlation mining formulas are as follows:

0 €] 6]
Z( ) f— WL X +bL
LGCN(X,A) = o((1 — )AZO + oz©) 6)

We use the FCL to extract node features. WL(I) represents

the weight matrix of the FCL, and b(Ll) is the bias matrix.
LGCN(+) denotes the output of local spatial correlation.

2) GLOBAL SPATIAL CORRELATION COMPONENT
Spatial correlation does not only exist between neighboring
sensors. As far as the whole road network is concerned,
spatial correlation exists between sensors separated by
long distances. So, we implicitly express the global spatial
correlation of the road network. For sensors data, we use
the Pearson correlation coefficient method to analyze the
correlation between sensors in the studied network. We set
a correlation threshold k to select high correlation sensors.
If the correlation is greater than k, the correlation value is
kept; otherwise, it is set to 0. In this way, we construct
the correlation matrix C. And then, we use it to aggregate
the highly correlated sensors’ features through the GCN
convolution method.

The correlation between two sensors is analyzed through
the Pearson correlation coefficient method, which is
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Correlation

Matrix >

FIGURE 3. Global spatial process. It models the global spatial correlation
between the distant roads. The process includes a correlation matrix
construction and a GCN layer.

calculated as follows:
¢y = Yt Of = X)0g — X))
NOSANCIES NG S oc

where X; = (x{, )fé', ... ,xti) represents the feature of traffic
flow of sensor i, X; is the mean value of X;. Similarly, X; =
(x’]_, xé, R x{ ) represents the feature of traffic flow of sensor
J» Xj is the mean value of Xj.

The node relationship described by the correlation matrix
is a directed weighted graph, as shown in Fig. 3. The
connections between nodes represent the influence weights,
and the directions are the influence relationships. By the
convolution of the correlation matrix and the feature matrix,
the high correlation node features can be aggregated, which
can deeply mine global spatial correlations. Therefore, the
calculation rule of the global graph convolutional network
based on the correlation matrix used in this paper is updated
as follows.

)

GGCN(X, C) = o (CXW) 8)

where W((;]) represents the weight matrix of the global graph
convolutional network, GGCN (-) is the output of the global
spatial correlation.

D. TEMPORAL CORRELATION
GRU is a mainstream neural network that addresses time
series prediction problems. It can avoid gradient explosion
and disappearance of RNN. GRU contains three parts: the
input layer, the hidden layer, and the output layer. The core
algorithm lies in the computation process in the unit block of
the hidden layer, as shown in Fig. 4.

The local and global spatial correlation output is input into
GRU separately. Take the local spatial correlation output as
an example, and the GRU calculation rules are as follows:

rl = o(WHLGCN (X, A), i1+ b)) )
2 = o(WLGCN(X, A), b1+ b') (10)
hy = tanh(Wi[LGCN (X, A), (r{  li_]1+ bl (11)
Hh=zbshl 4+ =2y« (12)
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FIGURE 4. Gated Recurrent Unit Network. The unit combines values at
this moment and the output of previous moment to capture the temporal
correlation.

where r/ represents the reset gate of time ¢, W/ and bl are the
weight matrix and bias matrix of the reset gate, respectively.
hf_ | is the output of the hidden layer at the previous moment.

For a given time slice, the unit first concatenates the output
hf_ | of the hidden layer at the previous moment and the input
LGCN(X,A) at the current moment. And then, the data is
transformed into [0,1] by the sigmoid function, which acts
as the gate signals ! and z/. After that, the network uses the
gate signal to selectively forget and save the information of
hf_l and LGCN (X, A). In this way, GRU saves the traffic
information of the previous moment and simultaneously
combines the traffic context of the current moment, thus,
achieves the temporal correlation.

E. T-LGGCN MODEL

To address the spatial-temporal correlation of traffic flow,
especially the spatial correlation, we respectively construct
the global spatial-temporal component and local spatial-
temporal component to mine it, as shown in Fig. 1.

For the global spatial-temporal component, the global
correlation matrix C is first calculated using the full amount
of feature data. And then, we feed the input X}q and C into
the global spatial correlation component to obtain GGCN(+),
which is put into the GRU to extract the temporal correlation
and get the output /5 of this component.

Next, the local spatial-temporal component is calculated.
We employ the fully connected layer to extract the node
features of input X; and use the GCN to implement the
aggregation and propagation of spatial features. The output
LGCN (+) is directly input into GRU to obtain the output hﬁ of
this component.

We use equation 13 to sum the output of the global
spatial-temporal component and the local spatial-temporal
component and input them into the Dense layer to output the
prediction results.

Ypre = Dense(h. + ) (13)

where hi is local spatial-temporal component output, /4’ is
global spatial-temporal component output.
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In the training process of the model, we define the loss
function of the model as follow:

Loss = |lypre — Ytruell + BLyeg (14)

where we introduce L2 regularization to avoid the overfitting
problems. And B is a hyperparameter, y, and y;. represent
the predicted value of the model and the true value of the
traffic flow, respectively.

Algorithm 1 outlines the training process of the T-LGGCN
model.

Algorithm 1 The T-LGGCN Training Process

Input: Historical traffic parameters data X;
Output: the predicted data yp.

Parameters:
wi, b, WG, WL bl Wbl WL L WE, b, WE, B,
ws, b8

R "h

1 construct the global correlation matrix C by X%

2 Initialize the parameters

3 for p-th epoch in total P training epochs do

/MNocal spatial—tem})oral component

zO =w'x + by

LGCN(X,A) = o(1—a)AZ© + oz

rl = o(WHLGCN(X, A),h._1+b)

Zh = o(WHLGCN(X, A),i_ | 1+b)

Bl = tanh(W;l[LGCN(X,A), rfxnl_ D1+ b%)

10 bl =z %l +(1—2h)xh!

11 //local spatial-temporal component

12 GGCN(X, C) = o (CXW{")

13 rf = o(WF[GGCN(X, C),hS_|1+b%)

14 2 = o(WE[GGCN(X, C),hf_|1+b%)

15 W = tanh(Ws [GGCN(X, C), (rf * h§_ l)]+bl§)

16 hf =25 % B | +(1—2)%h{

17 Ypre = Dense(h£ + h’f) //lcomponent fusion

18 Calculate the loss value in (14) and update the
parameters by AdamOptimizer

19 End for

[c <IN o) SV I

=)

IV. EXPERIMENTS

A. EXPERIMENTS SETTINGS

1) DATASETS

We evaluated the performance of T-LGGCN through two
real highway datasets: the PEMS04 dataset and the PEMS08
dataset. Both datasets are from the Caltrans Performance
Evaluation System. We took the traffic speed data as the
traffic flow information. PEMS04 was collected from San
Francisco Bay. It contains 307 sensors, and the time is from
January 1, 2018, to February 28, 2018. PEMS08 was from
San Bernardino. It contains 170 sensors, and the time is
from July 1, 2016, to August 31, 2016. The traffic data in
both datasets were aggregated every 5 minutes. There were
288 records per day and no missing data in both datasets.
We used the threshold Gaussian kernel to calculate the
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TABLE 1. Prediction results of different models on PEMS04 and PEMSO08.

Model PEMS04 PEMS08

RMSE MAE Accuracy R? RMSE MAE Accuracy R?
HA [15] 3.8387 1.7139 0.9402 0.7829 3.1179 1.3641 0.9513 0.7982

ARIMA [16] 6.7931 4.8239 0.8921 - 5.0256 3.5817 0.9201 -
SVR [18] 2.5629 1.2432 0.9601 0.9032 2.1578 1.0109 0.9663 0.9033
GRU [6] 2.5668 1.5293 0.9601 0.9029 1.6257 0.8733 0.9746 0.9451
GCN [34] 2.9232 1.8483 0.9545 0.8741 2.1545 1.2631 0.9663 0.9036
T-GCN [33] 2.1204 1.2027 0.9670 0.9337 1.9876 1.1737 0.9697 0.9216
T-LGGCN 1.8627 1.0088 0.9710 0.9489 1.5287 0.8382 0.9761 0.9515

adjacency matrix of both datasets. During the experiments,
we use 80% of the data as the training set and 20% for testing.
The normalization operation is performed first when the data
is input.

2) PARAMETER SETTINGS

The experiments were implemented based on the TensorFlow
framework. We used the Adam optimizer to optimize the
model. Adam is an optimization algorithm designed to find
the global optimal points. It combines the advantages of
Momentum and RMSProp to minimize the loss function [48].
Adam Optimizer is an optimizer that implements Adam
algorithm in TensorFlow which has been validated on a
large number of neural network experiments. After repeated
experiments, when the model performance reached the
optimum, the main parameters were set as follows: « is set
to 0.8, the GRU dimension is set to 64, the input step is set to
12, the learning rate is set to 0.001, the batch size is set to 32,
and the training epoch is set to 100.

3) EVALUATION METRICS

We use the root mean square error (RMSE), mean absolute
error (MAE), accuracy, coefficient of determination (R?) as
the evaluation metrics, and the detailed definitions are as
follows.

I
1
RMSE = | — D02 (15)
i=1 s=1
1 1 S
MAE = -2 > % Iy = (16)
i=1 s=1
)Y —Y'llp
Accuracy = 1 — —— (I7)
HYllr

JERND 3 W) Y v

Z{:I Zf:l O; =37

where I represents the input time steps, S is the numbers

of sensors, y! and y;" denote the real traffic speed data and

predicted data respectively, Y and Y’ are the sets of y; and
yf,, y is the mean value of Y.

(18)

B. BASELINES
To demonstrate the effectiveness of our model, we select
parametric methods (i.e., HA and ARIMA), non-parametric
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methods (i.e., SVR), and deep learning methods (i.e., GCN,
GRU, and T-GCN) for comparison.

(1) HA [15]: HA is the simplest parametric method. The
average value of historical traffic parameters is used as the
model prediction result in our experiments.

(2) ARIMA [16]: The basic idea of ARIMA is to treat
the time-series data as a random series and describe this
series approximately with a certain mathematical model.
A smoothness test is performed on the data first, and an
ARMA model is fitted for prediction. We set the value of
the autoregressive coefficient to 1, and the values of the
difference order and the moving average to 0.

(3) SVR [18]: SVR is one of the common nonparametric
prediction methods. The data are mapped to a
multidimensional space using a nonlinear function, and
then linear regression is performed on them.

(4) GCN [34]: GCN is a neural network method for
spatial correlation analysis. A one-layer graph convolutional
network is used, and the specific calculation process is
detailed in Equation (4).

(5) GRU [6]: GRU is a variant of RNN. It is usually used
to analyze the time-series data. The data is directly input into
GRU, and the calculation process is shown in 3.4. We set the
number of hidden layer neurons to 64.

(6) Temporal Graph Convolutional Network(T-GCN) [33]:
T-GCN is a hybrid neural network. It consists of one-layer
GCN and GRU. The feature data is input into GCN for
calculation, and the output of the GCN layer is input into GRU
to get the prediction results.

C. RESULTS OF TRAFFIC PREDICTION

Table 1 shows the prediction performance of our model and
other baseline models on the PEMS04 and PEMSO08 datasets
for 5 minutes prediction task. It can be seen that T"LGGCN
obtains the best prediction performance under all metrics.
Compared with the basic model T-GCN, the RMSE error of
our model is reduced by 12.1% on PEMS04 and by 23.1% on
PEMSO08.

From the overall prediction effect, the neural network
methods have the best performance, and the non-parametric
method SVR is weaker than the neural network but better than
the parametric methods ARIMA and HA. It is shown that the
neural network methods can better learn the non-smoothness
of traffic flow. It can deeply explore internal features of the
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traffic flow by training a large amount of data and effectively
improve the prediction accuracy.

The RMSE of GRU on the PEMS04 and PEMSO08 is 13.8%
and 32.5% lower than the RMSE of GCN, respectively. GRU
is used to capture temporal information. It can be found that
temporal correlation is one of the important features of traffic
flow. When we handle traffic prediction task, we need to take
the temporal correlation into consideration.

We can also see that the hybrid neural networks outperform
the single neural networks. Compared with GCN and GRU,
the RMSE of T-LGGCN on the PEMS04 is improved by
36.2% and 27.4%. This indicates that the hybrid model
takes into account both temporal and spatial features,
which can more comprehensively explore the traffic flow
characteristics.

It is noted from the table that T-LGGCN has a good ability
to mine global and local spatial features. Compared with the
T-GCN, the RMSE of T-LGGCN decreased by 12.1% and
23.1% on the PEMS04 and PEMSO08. T-GCN only aggregates
the spatial information of adjacent first-order sensors.
T-LGGCN combines the spatial features of the node itself,
first-order neighboring sensor spatial information, and long-
range highly correlated sensor spatial information so as to
analyze the spatial correlation comprehensively.

D. PREDICTION PERFORMANCE OF T-LGGCN

To have a deeper understanding of the T-LGGCN
performance, we visualize the prediction results of one
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sensor data on two test sets separately, as shown in Fig. 5.
We visualize the prediction results for one day and one week
on two datasets. It is observed that our model fits better.

Meanwhile, we compare the prediction results of T-GCN
with T-LGGCN, as shown in Fig. 6. Obviously, the fit
of T-GCN is poorer than that of T-LGGCN. Although the
T-GCN prediction results are mostly close to the true values,
we can find that the T-GCN does not accurately capture
the traffic flow characteristics when the traffic flow state
changes drastically. The T-GCN fit curve behaves relatively
smoothly in adjacent times (shown in the orange box). This
is because T-GCN uses GCN to perform spatial feature
aggregation operations, which may cause an over-smoothing
problem, resulting in smoother predicted values at the peak.
We improved the GCN spatial aggregation method, and it can
be seen that our model effectively avoids this drawback.

V. DISCUSSION

A. SPATIAL CORRELATION ANALYSIS

T-LGGCN considers the spatial correlation between sensors
in the global network. We use Pearson correlation coefficients
to analyze the correlation between sensors based on traffic
speed. The correlation values of each sensor are shown in
Fig. 7. Taking the PEMS04 dataset as an example, Fig. 7(a)
shows the correlation of the true first-order topological
correlation and Fig. 7(b) shows the sensor correlation used
in our model. The darker the color, the higher the correlation.
It can be found that the correlation in Fig. 7(a) is significantly
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TABLE 2. Prediction results of different output steps on PEMS04 and PEMS08.

PEMS04 PEMSO08
Steps RMSE MAE Accuracy R2 RMSE MAE Accuracy R2
15min  2.6374 14202 0.9589 0.8975 2.1966  1.1448 0.9657 0.8997
30min  3.5305  2.0247 0.9450 0.8165 29303  1.6418 0.9543 0.8214
45min  4.1566  2.1695 0.9353 0.7459 3.4309  1.9336 0.9465 0.7548
60min  4.9374  3.0945 0.9233 0.6417 3.8942  2.2749 0.9392 0.6838

weaker than that in Fig. 7(b). This shows that the real
topology does not adequately express the spatial correlations
of traffic flow. The correlation matrix can further improve
the ability of the model to capture global spatial features
by reconstructing the correlation between sensors. In this
manner, the model can have a better ability to capture global
spatial features.

The sensors correlation k is an important factor affecting
the prediction performance of the model. Fig. 8 shows the
change of RMSE and MAE at different correlations. Model
errors show an overall decreasing trend on the PEMS04
dataset. It indicates that discarding low correlation sensor
information can effectively improve the model performance.
When £ is 0.7, the model error reaches a minimum and then
increases, suggesting that 0.7 is the optimal correlation on the
PEMSO04. For the PEMSO08, the model error tends to decrease
at first with the increase of k. The model performance works
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best when k is 0.5. Subsequently, the error becomes larger
when the correlation increases. It is noticed that the optimal
k is different on different datasets. A possible reason for this
is that the PEMSO08 sensor number and the amount of data
are small, and when the correlation increases, most sensors
are abandoned, which results in the inability to capture the
global spatial features effectively. Therefore, it is necessary
to analyze the correlation of sensors specifically for different
sizes of road networks.

B. LONG TERM PREDICTION ANALYSIS

The long-time prediction can provide appropriate guidance
for those who are preparing to go out. To verify the long-
term prediction capability of the model, we adjust the output
time step of the model to validation. The results are shown in
Table 2. As we can see from the table, the model performance
decreases slightly when the prediction time step increases.
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This indicates that T-LGGCN is relatively insensitive to
the change of output step length. T-LGGCN can effectively
predict traffic in the future to a certain extent.

VI. CONCLUSION

In this article, we propose a hybrid model integrating
local and global spatial correlation (T-LGGCN) for traffic
prediction. On the one hand, our model can consider the
spatial correlation among distant sensors under the global
road network. On the other hand, by adopting the strategy
of separating the node feature analysis and the GCN local
aggregation, we can improve the ability of local spatial
correlation analysis. Compared with the baselines, the results
show the importance of fully considering global spatial
correlation and local spatial correlation. In conclusion, the
T-LGGCN model successfully captures the spatial-temporal
correlation of traffic flow and can be well applied to traffic
flow prediction tasks.
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