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ABSTRACT The rapid growth of Internet of Things (IoT) is expected to add billions of IoT devices connected
to the Internet. These devices represent a vast attack surface for cyberattacks. For example, these IoT
devices can be infected with botnets to enable Distributed Denial of Service (DDoS) attacks. Signature-based
intrusion detection systems are traditional countermeasures for such attacks. However, these methods rely on
human experts and are time-consuming in terms of updates and may not exhaust all attack types especially
zero-day attacks. Deep learning has shown some promise in intrusion detection. This paper shows that it is
possible to use generative deep learning methods like Adversarial Autoencoders (AAE) and Bidirectional
Generative Adversarial Networks (BiGAN) to detect intruders based on an analysis of the network data. The
recently posted full IoT-23 dataset based on Somfy door lock, Philips Hue and Amazon Echo devices was
used to train generative deep learning models to detect a variety of attacks like DDoS, and various botnets
like Mirai, Okiruk and Torii. Over 1.8 million network flows were used to train the various models. The
resulting generative models outperform traditional machine learning techniques like Random Forests. Both
AAE and BiGAN-based models were able to achieve an F1-Score of 0.99. A BiGAN to detect unknown
attacks was also trained to detect novel zero-day attacks with an F1-Score from 0.85 to 1.

INDEX TERMS Adversarial autoencoders, cyber security, generative adversarial networks, Internet of
Things, intrusion detection systems.

I. INTRODUCTION
Internet of things (IoT) is one of the leading technologies
today and is considered a natural extension of the internet by
incorporating machine to machine communications and sen-
sors. IoT applications have appeared in a variety of domains
including health care, fitness, home energy management,
classroom automation, smart cities andmanymore [1]. A typ-
ical IoT application consists of three layers; the perception
layer, network layer and application layer. The perception
layer is responsible for sensing and gathering information
on the environment and sending it to the network layer.
For example, surveillance cameras are one type of sensor
recognizing unusual events like movement using sensors.
The network/transport layer is considered a link between
the perception layer and the cloud. This layer consists of
many internet protocols and has to integrate communication
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technologies for information exchange such as Zigbee, 5G,
MQTT, and Wi-Fi [2]. For example, a surveillance camera
may use the home router andWi-Fi to send amotion detection
event to the main server. The application later utilizes the data
received from the network layer to provide any operations or
services required by users [3]. For example, the cloud service
may send an alarm to a mobile application being used a home
owner indicating that a movement was detected in one of their
surveillance cameras.

IoT is vulnerable to security risks at every architectural
layer and has faced security challenges since its emer-
gence [4]. For example, Butt et al. [5] examined the type of
attacks in Smart Health Systems and found that the attacks
are Denial of Service Attack (DoS), Fingerprint and Timing-
based Snooping (FATS), Router Attack, Select Forward-
ing (SF) Attack, Sensor Attack and Replay Attack. In general,
the perception layer can suffer from attacks such as malicious
code injection, eavesdropping and interference [3], [6].
Similarly, the network layer is susceptible to attacks like

6430 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0543-9165
https://orcid.org/0000-0003-1270-3005
https://orcid.org/0000-0002-1048-5633
https://orcid.org/0000-0001-5129-7789
https://orcid.org/0000-0002-1468-6686


N. Abdalgawad et al.: Generative Deep Learning to Detect Cyberattacks for IoT-23 Dataset

spoofing, denial of service, man-in-the-middle and routing
information [6]. Privacy is another major concern [4]. IoT
devices require strong authentication systems, which a lot
of IoT devices do not have due to resource constraints like
CPU or power/battery limitations [7]. Finally, the application
layer is also open to attacks from viruses, worms and phishing
attacks. Andrea et al. [8] classified such attacks into four
categories; physical, software, network and encryption. The
physical attack occurs when the perpetrator is close to
the system physically, while the software attack is when the
device contracts a bug that allows unauthorized access to the
device that can harm the system. The network attack occurs
when the IoT network is accessed to manipulate a device to
cause damage and the encryption attack takes place when the
IoT encryption is compromised.

Botnet is a specific attack mechanism exploiting IoT
devices. Angrishi et al. [9] describes a botnet as a large group
of internet-enabled devices that are controlled in order to
make simultaneous requests to a specified server (or group
of servers) to overwhelm it and prevent it from responding to
legitimate requests, thereby essentially stopping its service.
This attack is a distributed denial of service (DDoS) attack.
Two methods used in such DDoS attack: reflection and
amplification. Both lead to an exhaustion of the bandwidth
and resources of the target. And due to the increase
in sophistication of these attacks, they are very hard to
identify [9]. IoT botnets are not only a threat to IoT device
owners but also to anyone on the internet. Because DDoS
attacks need a significant network traffic to compromise
services, and IoT devices provide a perfect host due to the
sheer number of IoT devices available and in use today as
well as their generally poor security, making them the low-
hanging fruit [10].

The earliest known botnet was Linux/Hydra that was
released in 2008. It had both spreading features and ability
to launch DDoS. The Psyb0t in 2009 targeted routers and
modems, compromising almost 100 thousand devices. The
infection methods used brute force attacks using 6000 prede-
fined usernames and 13 thousand predefined passwords [9].
Linux.Darlloz is another example of an IoT botnet that
infected more than 31 thousand devices and was an IoT
worm. After infecting the IoT device, it would prevent any
users from accessing the device by dropping telnet traffic and
terminating the telnetd process [9]. Spike (Dofloo) is another
botnet that was targeting windows and Linux based PCs and
was using in launching several attacks on organizations in
Asia and the US. It had a peak of 215Gbps, allowing it to
launch several types of attacks for DDoS. BASHLITE is
another botnet that controlled over a million IoT devices and
could launch attacks at 400 Gbps [9].

Das et al. [11] describes Mirai, a recent Botnet in which a
virus scans for vulnerable devices and attaches itself to them
making them connected to Command-and-Control Servers
(C&C servers). By being connected to C&C servers, they
are vulnerable to attacks or can be used to attack other
devices.

Das et al. [11] and Tushir et al. [12] stated that IoT devices
connected to Mirai Botnets are mostly used to carry DDoS
attacks against a target device. Tushir et al. [12] examined
the effects of the Mirai attack in IoT devices and found that
the energy consumption by IoT devices increases by around
40% and the storage used is increased by half. The extent
of the danger that a botnet could pose was truly shown in
2016, when the Mirai botnet was unleashed. This botnet
infected 4000 devices per hour and had around half a million
active infected devices at a ground-breaking 1.1Tbps attack.
The infected IoT devices were spread over 164 countries.
Since then, there have been many Mirai botnet versions
and variations such as Persirai, Hajime and BrickerBot [13].
DDoS attack victims included websites, cloud providers,
individuals, colleges, telecommunication companies, DNS
providers (Dyn) which offered services to multiple websites
such as Reddit, Amazon, Spotify, Airbnb and others [9].

There is clearly a need to reinforce IoT security in order
to prevent the development of such botnets, but also ensure
that all possible DDoS victims are well-prepared in detecting
such attacks, especially since advances in these botnets make
them very hard to identify until it is too late. According
to Statista [14], in 2021 there are almost 8.74 billion IoT
connected devices worldwide and a Cisco white paper [15]
estimates there will be around 30 billion connected devices
in 2023 compared to around 18 in 2018. According to the
same paper, it is expecting to have around 15 million DDoS
attacks by 2023 compared to 7 million in 2018 [15].

One of the key methods of preventing such attacks is the
deployment of a strong IntrusionDetection System (IDS) [16]
that can detect any type of intrusion. Currently, IDS’s use
two primary methods for detecting attacks: signature-based
and anomaly-based. Signature-based methods depend on the
well-known attacks and their updates are time consuming.
Anomaly-based attacks, on the other hand, are based on
data and depend on the machine understanding the normal
behavior and rejecting all incoming connections that seem
abnormal. Developing an IDS for automatic detection of
cyberattacks requires an appropriate dataset for training. Iot-
23 Garcia et al. [17] is one such data set that has been recently
released and specifically addresses cyberattacks involving
IoT devices. This dataset was published early 2020.

This paper used the Iot-23 data set to explore the use of
generative deep learning techniques that can automatically
detect and classify IoT cyberattacks. The primary contribu-
tion of this paper is that it used the complete IoT-23 dataset
for building an IDS and achieved state-of-the-art result in
anomaly detection.

II. RELATED WORK
Much work has been done in building intrusion detection
systems using a variety of machine learning and deep
learning models. For example, Pang et al. [18] reviewed the
different models that have been used for anomaly detec-
tion including Generative Adversarial Networks (GANS).
Resende et al. [19] surveyed different random forest models
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used in intrusion detection systems with a variety of datasets
using different features and classes.

Li et al. [20] proposed using convolutional neural networks
(CNN) to classify the botnet attacks. They split the dataset
into 4 separate parts (according to the correlations between
the features) and trained and tested the same model on
the data separately for binary classification (CNN1, CNN2,
CNN3, CNN4). Another model called CNN0 was trained
using the complete data. All models were trained on the
NSL-KDD dataset [21] and tested on the KDDTest+ and
KDDTest-21. The highest accuracy was obtained by the
CNN1 model on both testing sets yielding 82.62% and
67.22% accuracy respectively. An ensemble of all models
resulted in accuracies of 86.95% and 76.67% on both testing
datasets respectively.

Latif et al. [22] presented a deep random neural network
(DRaNN) and trained it using the UNSW-NB15 dataset [23].
Their model achieved an accuracy of 99.54%.

Xu et al. [24] proposed an autoencoder (AE) model
based on Long Short-Term Memory (LSTM) for detecting
intrusions. They trained the model on 5 datasets in total:
ARP, Fuzzing, Mirai, SSDP Flood, and Video Injection from
the Mirsky team [25]. They trained their model on each
dataset separately with a binary classification. They then
compared the results of their model with two traditional
machine learning methods. The results of their model ranged
between F1-scores of 92.4-96.8 with the Mirai performing
the best at 99.6. Their model generally outperformed Support
Vector Machine (SVM) and K-Nearest Neighbors (KNN),
an Autoencoder (AE) and a stacked auto-coder.

Shahriar et al. [26] proposed a G-IDS framework that
included 4 segments: database module, IDS module, con-
troller module and synthesizer module. The database module
collects real intrusion detection data as well as synthesized
data from the GAN/synthesizer module, each with a flag to
distinguish the data sources. The synthesized data can be
either pending, which cannot be used until further notice,
or synthetic which is verified generated data that stays in the
database. The controller module inspects the pending data
and checks if it contributes to the performance of the IDS
and if it does, the flag is changed to synthetic. Their core
was an ML-based IDS which was a multi-layer ANN model
with 4 hidden layers 50 neurons each. It was trained twice,
once with the pending data and once without to calculate the
performance metrics. The GAN was then used mainly for the
generator to produce real-like data to train the ANN model
which was used to perform the multiclass classification. Most
of the labels had relatively high F1 scores but a few had lower
scores like 0.41 and 0.68.

Like most anomaly detection tasks, cyberattacks often
result in unbalanced data. Fan et al. [27] built artificial
anomalies based on known classes to test their model. Since
the boundary between the normal data and the unknown
anomaly is unknown and may be very close, they only
changed the value of one feature randomly and kept the rest
the same. They used the NSL-KDD’99 dataset [21] and their

model is an inductive decision tree learner, RIPPER. They
kept injecting new data into their training set and testing with
new anomalies and their results showed an increase in the true
detections from 59% up to 100%.

R.M. et al. [28] proposed a deep learning model to detect
attacks in Internet of Medical Things (IoMT). The models
involved a hybridization of Principal Component Analysis
(PCA) technique and Grey wolf optimization metaheuristic
algorithm. The model had an accuracy of 15% higher than
existing models and a reduction in training time by 32%.

GANs have also been used in data generation and aug-
mentation related to intrusion detection tasks. For example,
Shahid et al. [29] used a GAN to build a sequence of packets.
The dataset was built using Google Home Mini creating 42
packets in a sequence with vocabulary size 535. The model
consisted of an autoencoder and aGAN. The encoder built the
latent space from the sample and sent it to theGAN. TheGAN
tries to learn this latent space and generate samples based
on it. Then the decoder takes in the latent space generated
and convert it to actual text-based packets. Similarly,
[30]–[32] used GANs to balance the datasets then train it
using other models. This wasmostly done by generatingmore
samples of the minority class in order to balance it with the
majority. For example, Salem et al. [30] used cycle-GAN
and aMulti-Layer Perceptron for classification. The F1-score
of traditional balancing methods like Synthetic Minority
Over-Sampling Technique (SMOTE) performed poorly when
compared with their model and cycle-GAN performed the
best out of the three with an F1-Score of 41.64%.

GANs have also been used to directly implement intrusion
detection systems. For example, Huang et al. [31] developed
a system called Imbalanced Generative Adversarial Intrusion
Detection System (IGAN-IDS). The proposed architecture
had three modules: feature extraction, IGAN and the DNN
modules. The feature extraction was a filter and consisted
of an embedding with dimension of 356 and MLP which
consisted of 2 fully connected layers both of dimensions
128 and output of sigmoid function. The IGAN modules
was responsible for generating samples and had, for both
discriminator and generator, a learning rate of 0.00005 and
batch size of 128. The discriminator was a 3 fully connected
MLP with dimensions 256, 128 and 64. The generator
consisted of 3 fully connected MLP all with dimension
256, 64 kernels of size 16 that constituted the convolutional
layers. The IGAN was fully optimized until the discriminator
converged to 0.5. The DNN module was then trained on
the newly generated samples. The DNN had 6 layers: fully
connected layer of size 256 with sigmoid function, followed
by 2 convolutional layers each of size 64 with ReLU function,
followed by dropout layer with rate 0.2, followed by fully
connected layer of size 32 with Leaky ReLU function,
followed by a fully connected layer with the size of classes
using a Softmax function. The experiment used 3 different
intrusions datasets: NSL-KDD [21], UNSW-NB15 [23],
CICIDS2017 with 5, 10 and 6 classes respectively [33].
The system achieved an accuracy of 84.45%, 82.53% and
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99.79% respectively and F1-scores of 84.17, 82.86 and
99.79 respectively.

A similar work was reported by Yilmaz et al. [32] where
they did binary classification on an imbalanced dataset
having 5 hidden layers for both discriminator and generator
with activation functions ReLU, Sigmoid and learning rates
0.0025 for discriminator and 0.02 for generator.

Chauhan et al. [34] used GANs to demonstrate that deep
learning methods were not sufficient in the detection of
new attack profiles. They first trained a GAN based on the
CICIDS2017 [33] dataset and used the SHapley Additive
exPlanations (SHAP) [35]method to extract features from the
dataset based on their importance and impact on the output.
The highest detection rate while training the model was 79%.
After that they used two techniques to update the feature
profile including increasing the number of features used and
swapping the current features with others. This resulted in
several adversarial attacks that went undetected with the
detection rate decreasing to 5.23% and 3.89% respectively
for each change.

Adversarial autoencoders (AAE) is an autoencoder based
on a GAN; AAE’s can reduce the probability of overfitting
because it can influence the distribution approximated by
the hidden layer as shown by Makhzani et al. [36] and
Puuska et al. [37]. The encoder tries to generate samples
based on the chosen distribution, while the decoder tries
to recreate the original data from the latent space. The
discriminator tries to know if the sample which was generated
by the encoder, is in fact generated or from the chosen
distribution. For example, Puuska et al. [37] used an
adversarial autoencoder was applied to a DARPA intrusion
dataset and the accuracy achieved was higher than that of
normal autoencoder but based on anomaly detection.

Hara et al. [38] also used an AAE for intrusion detection.
Their focus was to validate the implementation of semi-
supervised learning through AAE and DNN by changing
the percentage of labelled data. They use the NSL-KDD
dataset [21], and concluded that the higher the labelled the
data, the higher the accuracy. Their highest accuracy achieved
was 83.11%.

The BiGAN architecture has also been used for intrusion
detection. The difference between a regular GAN and a
BiGAN is that the BiGAN has an encoder to map out the
data back to latent space as shown in Kaplan et al. [39].
The generator converts some latent space z to fake data
G(z), and the encoder converts the real data x into some
represented latent space E(x). Unlike standard GANs, the
discriminator also learns concatenated inputs mapped to the
same dimension (z, G(z)) and (E(x), x). Donahue et al. [40]
first evaluated the feature learning capabilities of the BiGAN
by using unsupervised training then transferring the trained
encoder to use in supervised learning tasks. They evaluated
them using images in the ImageNet database. However,
their maximum classification accuracy for the ImageNet was
56.2%. On the other hand, Donahue et al. [41] attempted to
extend the state-of-the-art BigGAN to a BiGAN (BigBiGAN)

TABLE 1. Summary of related work that used GANs.

on the same database. They trained their architecture using
unsupervised learning and achieved an accuracy of 60.8%
which improved previously published results from 55.4%.

Kaplan et al. [39] used a BiGAN for anomaly detection
through training them on the normal data of the KDDCUP99
dataset [21] and placed samples of the attack classes in the test
set. BiGAN with their proposed algorithm attained the best
performance with an F1-score of 90.8. Alabugin et al. [42]
used a similar approach using BiGAN on benign data they
produced from their testbed.

Table 1 shows a summary of the most recent and related
work. The table show pros and cons of each work. The cons
do not necessarily mean an inherent issue with the work, but
rather a research gap that is being addressed in this paper.

III. METHODOLOGY
A. THE IOT-23 DATASET
This paper used the IoT-23 dataset [17]. This data is based
on the network traffic obtained from Internet of Things (IoT)
devices with 20 malware and 3 benign captures. It is worth
noting that the 3 benign captures were carried in three real
IoT devices: Somfy door lock, Philips Hue and Amazon
Echo. The 20 malware captures were captured using a
Raspberry Pi.

In the IoT-23 data set, after the .pcap files were generated,
they were passed through the Zeek network Analyzer to
generate log files. One of the capabilities of Zeek is to
produce connection log files that show the properties of a
connection or a flow between two entities [43]. The .pcap
files were analyzed manually to identify the properties of the
different labels. Then, a python script was run through the log
files to add labels based on the analysis. The malware files
sizes varied from few kilo Bytes to about 10 Giga Bytes. The
unit of analysis is therefore a flow.

Although the IoT-23 dataset is multi-labelled, the labels
have similar classes. Labels are the different types of attacks,
but classes can be a combination of different attacks. For
example, a label could be C&C or PartOfAHorizontal-
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PortScan and both have different meanings, whereas a class
could beC&C-PartOfAHorizontalPortScanwhichmeans that
both malware attacks are present for the flows in this class.
The labels are described as below [17]:
• Attack: a type of attack from the infected device to
another host where it tries to take an advantage of a
vulnerability.

• Benign: no suspicious or malicious activities were found
in the connections.

• C&C: the infected device was connected to a CC server.
• DDoS: a Distributed Denial of Service attack is being
executed by the infected device.

• FileDownload: a file is being downloaded to our infected
device.

• HeartBeat: the packets sent on this connection are used
to keep a track on the infected host by the C&C server.

• Mirai: the connections have characteristics of a Mirai
botnet.

• Okiru: the connections have characteristics of a Okiru
botnet.

• PartOfAHorizontalPortScan: the connections are used
to do a horizontal port scan to gather information to
perform further attacks.

• Torii: the connections have characteristics of a Torii
botnet.

The frequency of flows in classes obtained from the labelled
data are shown in Table 2.

This dataset had 19 features .as shown in Table 3
([44], [45]).

Certain features had values or letters with special mean-
ings. These features were conn_state and history and their
values’ description can be seen in Table 4 and Table 5
respectively [45].

B. FEATURE SELECTION AND DATA CLEANING
Features ‘local_orig’, ‘local_resp’ which were empty for all
the files and hence they were dropped. Based on previous
work on pre-processing of intrusion detection datasets,
features including IP addresses and port numbers were
dropped. The ‘history’ feature was a sequence of values
that describe the history of the connection was also initially
dropped. Fig. 2 shows the correlation graph of the remaining
features.

Based on the correlation graph, orig_pkts and orig_ip_bytes
correlate, similarly with resp_pkts and resp_ip_bytes. The
correlated features (orig_ip_bytes and resp_ip_bytes) we
hence dropped. Fig. 1 shows boxplots of the remaining
features and as can be seen in Fig. 1 (a), all the values
were zero so this feature was dropped. The boxplots of the
other features show variations between classes, so they are
distinguishable. The final features included proto, service,
duration, orig_bytes, resp_bytes, conn_state, orig_pkts and
resp_pkts.

Extreme minority classes with less than 100 samples
in the dataset were dropped; ‘C&C-FileDownload’, ‘File-
Download’, ‘C&C-Torii’, ‘C&C-HeartBeat-FileDownload’,

TABLE 2. Number of flows for each class in the dataset.

TABLE 3. Feature description of the IoT-23 dataset.

‘PartOfAHorizontalPortScan-Attack’, ‘Okiru-Attack’ and
‘C&C-Mirai’. The features ‘orig_bytes’, ‘resp_bytes’ and
‘duration’ contained null values and based on the previous
work, the null values were replaced with mean value of the
respective features. Data type ‘duration’ feature was recoded
from timedelta64 to time in seconds. Finally, after dropping
several features, the remaining flows contained duplicates
that were removed as well. After dropping the duplicate
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FIGURE 1. Correlation graph of the features.

FIGURE 2. Boxplots of different features versus labels.

flows, Table 6 shows the final number of remaining flows
in each class.

Preprocessing involves various tasks like feature selection,
encoding, normalization, balancing, etc. Faker et al. [46]
summarized some of the pre-processing techniques for
network data including removing socket specific information
such as IP addresses and port numbers, replacing missing
values with mean value of the feature, replacing infinity
values with the maximum value in the features, normalizing
and encoding the data.

Categorical features like ‘service’, ‘proto’ and ‘conn_state’
required encoding. For example, Ieracitano et al. [47], Wu et
al. [48], and Xiao et al. [49] used one-hot encoding to
encode categorical data, whereas Zhang et al. [50] used
dummy variable encoding. As per the previous work, the
most common type of encoding was one-hot encoding and
therefore, these three categorical features were one-hot-
encoded. The data was then normalized between 0 and 1 using
min-max scaling.

Since there was considerable data imbalance even after
removing the extreme minority classes, common balancing
techniques [51] were explored namely Random Over-
Sampler, Random UnderSampler and Synthetic Minority
Oversampling Technique (SMOTE) by Chawla et al. [52].

TABLE 4. Description of the conn_state values.

TABLE 5. Description of history values.

TABLE 6. Number of each class after dropping duplicates.

Acombination of RandomUnderSampling and SMOTEwere
used to under sample the majority class while oversampling
the minority classes.

The balancing regime involved calculating 25% of the
majority class and down sampling the majority class to this
number. A threshold of 10% of this down sampled number
is selected and the minority classes which fell below this
threshold were up sampled to this number. This further helped
reduce the imbalance ratio to 10:1.
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C. INTRUSION DETECTION MODELS
Building intrusion detection systems using the IoT-23 data
set has been done before. For example, using only the Mirai
botnet samples from the IoT-23 dataset, Hussain et al. [53]
investigated the possibility of a universal features set that
would allow machine learning algorithms to classify Mirai
botnet attacks regardless of the dataset used. They extracted
features from the .pcap files using CICFlowmeter and found
that top 6 features among several datasets. They created
training and test sets of the ratio 80:20 and resulted in 100%
accuracy using Random Forest. Similarly, Hegde et al. [54]
focused on identifying botnets by running multiple machine
learning and deep learning classifiers. They used the IoT-23
dataset (for botnets only) as well as some benign data they
captured from a testbed environment. They created a small
and large dataset with 95% benign data and 5% malicious.
They achieved the highest accuracy of 99.9%. With four
malware and three benign captures of the IoT-23 only,
Dutta et al. [44] implemented a deep learning model for
anomaly detection using a stacked generalization method
leveraging a Deep Neural Network (DNN) and a Long Short-
Term Memory (LSTM) with KFold cross validation. The
highest F1-score achieved was 0.98 with an accuracy of
0.997. Finally, Kumar et al. [55] used the C&C samples of
the IoT-23 dataset to verify an architecture.

This paper proposed and evaluated three generative deep
learning models using the complete IoT-23 data set. Each
model is described below.

D. ADVERSARIAL AUTOENCODER MODEL
Fig. 3 shows the proposed model. As the figure shows,
an adversarial autoencoder [35] took an input x of feature
size 27 and created a latent representation E(x) of size 6.
Generator, G, generates the original data, x’, from the latent
features. The discriminator, D, takes in the generated features
and a random z and distinguishes them. Intrusion detection
is done by encoding the test data to the latent space and
then training a classifier like KNN, for example, to identify
the intrusion class (e.g., Mirai). This model is similar to the
previous work in [56].

The original 27 features were used and reduced to a
latent dimension of size 6 using the autoencoder. The AAE
was trained for 1000 epochs with batch size of 10. Adam
optimizer with a learning rate of 10^(−4). The loss equation
used for the autoencoder was the mean square error as shown
in equation (1). The loss function of the discriminator and
the generator was the binary cross entropy which is shown
in equation (2). Table 7, Table 8 and Table 9 show the
characteristics of the layers of the encoder, decoder, and
discriminator respectively.

MSE =
1
n

n∑
i=1

(Ai − Pi)2 (1)

where Ai = actual,Pi = predicted, n = data point

min
G
max
D

Ex∼pdata [logD(x)]+ Ez∼p(z) [log(1− D(G(z))] (2)

FIGURE 3. AEE and classifier (e.g. kNN).

FIGURE 4. BiGAN and classifier (e.g. kNN).

FIGURE 5. Known/Unknown BiGAN architecture.

E. BIDIRECTIONAL GENERATIVE ADVERSARIAL
NETWORKS (BIGAN)
As Fig. 4 shows, a BiGAN was also used to create a latent
representation of the input data. The encoder E took in all
27 features and produced their latent representation of size
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TABLE 7. AAE encoder’s layers characteristics.

TABLE 8. AAE decoder’s layers characteristics.

TABLE 9. AAE discriminator’s layers characteristics.

TABLE 10. BiGAN encoder’s layers characteristics.

8 and the generator G produced generated network data from
the noise z of the same size as the latent representation. Both
sets (input data, E (input data)) and (G (noise z), noise z))
were fed to the discriminator, D. The BiGAN was trained
using 1,000 epochs with a batch size of 32. Adam optimizer
with a learning rate of 0.0002 was used. The objective
function of the BiGAN is shown in equation (3). Table 10,
Table 11 and Table 12 describe the layers of the encoder,
generator, and discriminator.

min
G,E

max
D

V (D,E,G) (3)

where

V (D,E,G) := Ex∼px
[
Ez∼pE (·|x)[logD(x, z)]

]︸ ︷︷ ︸
logD(x,E(x))

+Ez∼pz
[
Ex∼pG(·|z)[log(1− D(x, z))]

]︸ ︷︷ ︸
log(1−D(G(z),z))

F. BIDIRECTIONAL GENERATIVE ADVERSARIAL
NETWORKS (BIGAN) TO DETECT UNKNOWNS
A BiGAN that can detect unknown anomalies as well as
its testing is shown in Fig. 5. The training architecture is

TABLE 11. BiGAN generators’s layers characteristics.

TABLE 12. BiGAN discriminator’s layers characteristics.

TABLE 13. Generator of Known/Unknown testing.

similar to the previous GAN used. The testing architecture
differs here where we are using the trained discriminator,
D, to distinguish whether the input is known or unknown
behaviour. The BiGAN was trained on all the data including
benign and anomalies. In order to test if the BiGAN could
detect unknown anomalies, synthetic unknown anomalies
were created by randomly selecting a sub-set of features
(1 or 2, for example) and then randomly changing the value of
the features. The BiGANwere trained for 40,000 epochs with
a batch size of 32 and used Adam optimizer with a learning
rate of 0.003 and a latent space of 8. The architectures used
for the encoder and the discriminator layers are as previously
shown in Table 10 and Table 12. The layers of the generator
are described in Table 13.

IV. EVALUATION
Stratified 10-fold sampling strategy was used for evaluation.
This strategy generates train and test sets at each split. When
the training set is generated, it gets normalized and balanced
as mentioned previously. At this point, different classifiers
and GANs were trained on the training data.

Four metrics were used to evaluate the models: accu-
racy, recall, precision and F1-score. Given True Positives
(TP), True Negatives (NP), False Positives (FP) and False
Negatives (FN), equations of accuracy, recall, precision and
F1-score are written in (4), (5), (6) and (7) respectively.
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TABLE 14. KNN precision, recall and F1-score.

TABLE 15. RF precision, recall and F1-score.

TABLE 16. AAE + KNN precision, recall and F1-score.

TABLE 17. BiGAN + KNN precision, recall and F1-score.

The F1-score is used here because alternative metrics like
accuracy are potentially misleading for imbalanced datasets
which are common in anomaly detection tasks. Since
F1-score is a geometric mean of recall and precision, this
metric provides more meaningful results for imbalanced data
sets.

Accuracy =
(TP+ TN )

All
(4)

Recall =
TP

(TP+ FN )
(5)

Precision =
TP

(TP+ FP)
(6)

F1 =
2× Recall × Precision
(Recall + Precision)

(7)

K Nearest Neighbor (KNN) and Random Forest (RF) were
used for baseline comparison. Table 14 and Table 15 show the
results of the precision, recall and F1-score of the KNN and
the RF respectively.

Table 14 and Table 15 show that both RF and KNN did not
perform well and resulted in F1-scores of as low as 0.02 in
some instances.

The results for using Adversarial Autoencoder and BiGAN
are shown in Table 16 and Table 17, respectively.

Table 19 shows that all metrics including accuracy,
precision, recall and F1-Score were different across the
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TABLE 18. Comparison of the various models based on average macro F1.

TABLE 19. Statistical comparison of various metrics of the models
(kruskal-wallis test; N = 10).

TABLE 20. Performance metrics for the BiGAN to detect unknowns.

various models. Pair-wise Mann-Whitney tests (p < 0.05)
showed that AAE + KNN and BiGAN + KNN were not
significantly different for all metrics while they were both
different than RF and KNN for all metrics.

Table 18 summarizes the results. As can be seen using both
AAE and the BiGAN had significantly better F1-Score than
KNN or Random Forest.

Table 19 shows that all metrics including accuracy,
precision, recall and F1-Score were different across the
various models. Pair-wise Mann-Whitney tests (p < 0.05)
showed that AAE + KNN and BiGAN + KNN were not
significantly different for all metrics while they were both
different than RF and KNN for all metrics.

Finally, the BiGAN and AAE models was also evaluated
for the goodness of data being generated. The first evaluation
was the Leave One Out (LOO) of KNN using Euclidean
Distance as proposed by Guan et al. [57]. In this evaluation,
real data labelled as 1 and GAN generated data labelled as
0 was passed to a KNN. For the AAE synthetic data was
generated by using the decoder on random inputs from the
latent space. The KNN (with distance = 1) was then trained
on all data except for one instance that was used for testing.
For both AAE and BiGAN, the accuracy of almost 100%
meaning that the decoder and generator were not generating
data from the same distribution. However, the mapping to
the latent space thus generated was sufficient for a better
classification than the original space.

The second evaluation was the GAN-train and GAN-train
as proposed by Shmelkov et al. [58]. In this evaluation, the
classifier, such as KNN, was used twice. The classifier was
first trained on real train data and evaluated on GAN/AAE

generated data. The KNN was also trained on generated data
and tested on actual test data. In both AAE and BiGAN,
the accuracy was almost zero supporting the conjecture that
where the AAE and BiGAN were able to represent the
data but could not generate data coming from the same
distribution.

Table 20 shows that the BiGAN to detect unknown
anomalies was very effective with F1-Scores of 1 as the
number of mutations to features were increased. Even for a
single mutation, the model had a decent F1-Score of 0.85.

V. DISCUSSION
As observed in the results section, the accuracies, and
F1-scores of both AAE + KNN and BiGAN + KNN were
almost same. Both models were able to recognize the DDoS
and Attack. The classes C&C-PartOfAHorizontalPortScan
and C&C-HeartBeat had the least F1-scores (0.93). This
could have arisen from two reasons. The first reason is that
both classes included devices connected to C&C server and
the second reason is that both PartOfHorizontalPortScan and
HeartBeat meant that the devices were being tracked but in
different ways.

Because the .pcap files of the collected data are avail-
able, additional network analysers can be used to retrieve
additional features. There is also more work to be done on
increasing the number of instances of the minority classes.
Another interesting aspect that could be done for anomaly
detection is to find the shared features between different
attacks and possibly detect new attacks that share those same
features.

VI. CONCLUSION
The rapid increase in deployment of IoT devices has made
them a dangerous unsuspecting participant in cyberattacks.
This paper has shown that for a limited set of attacks and
IoT devices, it is possible to use generative deep learning
methods like AAE and BiGAN to classify attacks with a very
high accuracy. Although there are several datasets regarding
intrusion detection, it is better to use a dataset which was
generated from IoT devices. Hence, in this paper we used
a recent dataset called IoT-23. We implemented baseline
models, Adversarial Autoencoders and Bidirectional GANs.
Our results show that the GAN based models are more
effective at identifying attacks and classifying them. We also
tried randomizing the test set in a way that we can inject
new information and the model was able to consider it as an
anomaly.
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