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ABSTRACT Due to the randomness of load and renewable energy generation (REG), microgrids face
multiple uncertainties. These uncertainties lead to the uncertainty of microgrid operation and bring more
challenges to the economic evaluation of microgrids. In this paper, an economic evaluation method for deter-
mining microgrid revenue distribution is proposed. Considering the dual uncertainties of source-load and
forecast, and temporal autocorrelation of time series, the probabilistic model of uncertainties is established
by multivariate kernel density estimation (KDE). Then the random scenarios including forecasting values are
generated and used in optimal dispatch calculation for the detailed production simulation. The probabilistic
revenue is derived with a method based on Monte Carlo method. Finally, a case study is carried out based on
the real data of an industrial park. The results demonstrate the necessity and effectiveness of the probabilistic
revenue analysis proposed in this paper. This method can reveal the actual values of each component of a
microgrid (e.g., device or algorithm) in specific scenes and provides more insights into investment decisions.

INDEX TERMS Autocorrelation, cost-benefit analysis, microgrid, Monte Carlo method, production simu-
lation, uncertainty.

NOMENCLATURE
BOS Balance of system.
CUC Component use costs.
DC Demand charges.
DER Distributed energy resource.
DG Distributed generation.
EC Energy charges.
ESS Energy storage system.
KDE Kernel density estimation.
LCOE Levelized cost of energy.
MAPE Mean absolute percentage error.
PCS Power conversion system.
PDF Probability density function.
PV Photovoltaic.
REG Renewable energy generation.
ROI Return on investment.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nagesh Prabhu .

RMSE Root-mean-square error.
SOC State of charge.
TC Total costs.

I. INTRODUCTION
Microgrids are the systems that integrate distributed energy
resources (DERs), energy storage systems (ESSs), and flexi-
ble loads [1]. In recent years, microgrids have been increas-
ingly used to improve local reliability, reduce costs, and
promote renewable energy consumption [2]. However, due
to the high price of DERs and ESSs, economic viability has
become an essential issue in microgrids’ large-scale applica-
tions. Cost-benefit analysis is an essential means to provide
decision support for the planning, reconstruction, and opera-
tion of microgrids.

Most conventional planning tools in power systems are
based on deterministic cost-benefit analysis. That is, evalua-
tion and decision-making are based entirely on historical data.
QuESt is an open-source software for energy storage simula-
tion and analysis which can estimate the maximum revenue
from participating in energy arbitrage or providing ancillary
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services [3]. HOMER software performs a one-year hourly
simulation of microgrids to help users design a microgrid
according to the costs [4]. References [5], [6] use load dura-
tion curve to perform production simulation and economic
analysis. Life-cycle-cost analysis is often used to compare the
economic feasibility of projects [7]. In [8], an optimal design
model of microgrids is proposed along with three economic
evaluation indicators, which are combined to comprehen-
sively evaluate the microgrids’ economic performances and
investment risk. Deterministic cost-benefit analyses rely upon
some deterministic assumptions about uncertain issues, such
as load demand and economic parameters. If the costs and
benefits are sensitive to some influencing factors, the results
will have fortuities and limitations.

In power system studies, uncertainty has always been a
topic of interest. With the development of smart grids, renew-
able energy usage, and load diversification, the influence of
uncertainty has become increasingly prominent. The com-
mon methods of dealing with power system uncertainties can
be classified into GUM (guide to the expression of uncer-
tainty in measurement) approaches, probabilistic approaches,
and non-probabilistic approaches. Some distribution models,
such as normal, Gamma and Weibull distribution, are often
used to fit the distribution of samples. In [9], it is believed
that the probability distributions of load and wind power in
power systems obey the normal distribution centered on the
day-ahead forecast, and the standard deviation is related to
the average forecast accuracy. When there is not enough prior
system knowledge, kernel density estimation (KDE) is more
suitable for uncertainty quantification [10]. In [11], a data-
driven temporal-dependency Haar expansions approach is
used to quantify the household energy demand. In [12], infor-
mation gap decision theory (IGDT) is employed to model the
load uncertainty. There is no unified conclusion on which
approach to adopt to model uncertainties, which depends
on the situation. However, many existing methods are too
extensive to take data’s detail characteristics into account. For
example, the temporal autocorrelation and nonstationarity of
time series cannot be considered. In this study, the model-
ing method based on multivariate KDE can solve the above
difficulties.

Probabilistic analysis can incorporate uncertainty factors
and give the statistical distribution of results, which is widely
used in power systems [13]–[18]. In recent years, proba-
bilistic analysis is applied to cost-benefit analysis. In some
studies, the costs and benefits are modeled as Gaussian
variables or uniform variables [19]–[21]. The parameters
of variable distribution (e.g., mean, standard deviation, and
correlation coefficient) are estimated according to historical
data. A recognized defect of this method is the accuracy
of the statistical modeling of the cost and benefit. When
the probability density function (PDF) of input variables is
simple, the results of probabilistic analyses can be obtained
by system theoretic methods [21]. For cases of increasing
complexity, Monte Carlo simulation is the more commonly

used solution technique [21]–[24]. In [22], considering the
uncertainties of unit capital costs and power demand, the cost
uncertainty for different generation portfolios is qualified.
Reference [23] considers the uncertainties of inputs and the
endogeneity between inputs when calculating the levelized
energy cost of a nuclear and gas power project. Under the
uncertainty of energy prices, the optimal dispatch calculation
is carried out to determine the economic value of the energy
hub [24]. The details of power system operation, such as unit
commitment and power reserve, are not considered in most of
the above studies. Besides, when solving optimal dispatch,
all studies assume perfect foresight of the future data (e.g.,
knowing the real load for the next day in advance), which is
inconsistent with the facts.

The demand and supply of microgrids are more uncertain
compared with the bulk power system. On the other hand,
microgrids have more operational flexibility. Probabilistic
cost-benefit analysis is more challenging and meaningful to
microgrids. In this paper, with the temporal autocorrelation
considered, the dual uncertainties of source-load and forecast
are modeled by multivariate KDE. Since the uncertainty of
forecasting errors has been quantified, the random scenarios
with forecasting values can be generated and used in optimal
dispatch calculation for the detailed production simulation.
When using Monte Carlo simulation to calculate the revenue
distribution, sampling from the scenario set reduces the com-
putational time to some extent.

Compared with existing state-of-the-art, the main contri-
butions of this study are as follows:
i) The potential information in historical data is fully uti-

lized by modeling the dual uncertainties of source-load
and forecast using multivariate KDE. The generated
random scenarios with forecasting values are close to
reality, so that we can simulate microgrid operation
in detail and get more accurate cost-benefit analysis
results.

ii) The proposed economic evaluation method can reveal
the actual values of each component of a microgrid
(e.g., device or algorithm) from the perspective of prob-
ability, which provides more insights into economic
evaluation.

This paper is organized as follows: In Section II, the uncer-
tainties involved in this paper are quantified by probabilistic
models. Section III describes the basic issues and steps of
probabilistic revenue analysis. Section IV presents the results
of a use case. Section V concludes the paper.

II. PROBABILISTIC MODELING OF UNCERTAINTIES
For a microgrid with a given configuration and energy man-
agement strategy, the uncertainties of economic dispatch and
operating revenue stem from the uncertainties of load and
renewable energy generation (REG) such as PV and wind
power. The historical load and REG reflect the basic situ-
ation of a microgrid’s load demand and renewable energy
resources. However, historical data is only a possible scenario
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that cannot reappear. Only using historical data to analyze the
operating revenue of microgrids will ignore many possible
situations.

Economic dispatch of microgrids based on the forecasting
results of load and REG is helpful to optimize the use of
dispatchable distributed generation (DG) units and ESSs,
which has been widely adopted in many studies and practical
projects [25]–[28]. For a determined load demand and renew-
able energy generation power, the accuracy of forecasting
will affect the final dispatching result. Considering this, the
forecast of load and REG is also the reason for the uncertain
microgrid revenue.

Therefore, the uncertainties include two aspects: source-
load uncertainty and forecast uncertainty. Reasonable model-
ing of these uncertainties is the basis of probabilistic revenue
analysis. In this section, the uncertainties are quantified by
probabilistic models.

A. SOURCE-LOAD UNCERTAINTY
In microgrids, the daily load profiles are mainly affected by
the production and living behaviors, presenting several typi-
cal patterns. The daily REG profiles are mainly affected by
weather conditions, which also have several typical patterns.
Different patterns of load/REG have different characteristics
(e.g., forecasting error distributions). Therefore, classifying
load/REG according to profile similarity can simplify the
subsequent analysis.

Although it is impossible to know the load/REG pattern
of every specific day in advance, each load/REG pattern’s
probability can be obtained according to historical data. The
K-means clustering algorithm is used to identify each his-
torical day’s load/REG pattern [29], and then the proportion
of each load/REG pattern can be calculated. The number of
clusters (i.e., the number of patterns) is optimized by the
Calinski-Harabasz index [30]. These days with the same load
pattern and REG pattern are said to be of the same day type.
Considering the independence of load and REG, we can get
the occurrence probability of each day type.

For example, historical data of a season are selected for
analysis, including m kinds of load patterns and n kinds
of REG patterns. After obtaining the proportions of each
load/REG pattern in historical days, we can calculate the
occurrence probabilities of m× n kinds of day types:

pk = αLi × αREGj (1)

where pk is the probability that a day of the season belongs
to the kth day type; αLi and αREGj are the proportions of the
ith load pattern and the jth REG pattern; i ∈ 1 : m, j ∈ 1 : n,
k ∈ 1 : m× n.

Even in the same load/REG pattern, the load/REG at each
time step will show randomness affected by some random
factors. To describe this randomness, KDE is used to establish
the ambiguous distribution of load/REG in the same pattern at
each time step. KDE is a nonparametric estimation method,
which has a wide range of applications. It studies the data
distribution characteristics from the data sample itself, which

do not rely on any data distribution assumptions. Because the
kernel function and bandwidth can be chosen flexibly, the
distribution of load/REG at each time step can be well fitted.

Let x1, x2, . . . , xn be an independent and identically dis-
tributed sample drawn from some distribution with an
unknown density f . Its kernel density estimator is [31]:

f̂h(x) =
1
n

n∑
i=1

Kh(x − xi) =
1
nh

n∑
i=1

K (
x − xi
h

) (2)

where K is the kernel function, and the normal kernel is often
used due to its convenient mathematical properties; h is a
smoothing parameter called the bandwidth.

Since the load/REG sequence is continuous and usually
will not change drastically, it has strong autocorrelation
[32]–[34]. Autocorrelation is the correlation of values of a
time series at different time steps. The correlation strength
can be described by Pearson correlation coefficient (also
called Pearson’s r). Given paired data {(x1, y1) , . . . , (xn, yn)}
consisting of n pairs, Pearson correlation coefficient is
defined as:

rxy =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)
2
√∑n

i=1 (yi − ȳ)
2

(3)

where rxy is Pearson correlation coefficient between variables
x and y; x̄ and ȳ are the sample mean.
In order to simplify themodel, only the correlation between

the load/REG at two consecutive time steps is considered.
Therefore, it is necessary to introduce the multivariate KDE
theory which is used to establish joint PDF.

Let x1, x2, . . . , xn be samples of d-variate random vectors
drawn from a common distribution described by the density
function f . The kernel density estimate is defined to be [31]:

f̂H(x) =
1
n

n∑
i=1

KH(x− xi) (4)

where H is the bandwidth d × d matrix which is symmetric
and positive definite; K is the kernel function which is a
symmetric multivariate density.

Use the standard multivariate normal kernel throughout:

KH(x) = (2π )−d/2|H|−
1
2 e−

1
2 x

TH−1x. (5)

Bandwidth h or bandwidth matrix H has a great influence
on the estimation results. Bandwidth or bandwidth matrix can
be selected based on minimizing the mean integrated squared
error (MISE) or directly using some rules of thumb [35].

B. FORECAST UNCERTAINTY
The defects of forecasting models, the influence of unex-
pected events, the quality of input data, and other prob-
lems will cause forecasting errors. Compared with the bulk
power system, the load and distributed REG in microgrids
are more uncertain and more difficult to forecast. Therefore,
it is critical to consider the influence of forecast in microgrid
production simulation. We first need to model the uncertainty
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FIGURE 1. Distribution of load forecasting errors.

of forecasting errors so that the forecasting results of each
scenario’s load/REG can be generated. In the same pattern
and time step, the numerical results show that the actual
values and forecasting errors of load/REG are weakly cor-
related. Under such conditions, we can assume that they are
independent.

Some studies point out that the forecasting errors of short-
term load, PV, and wind power are approximately Gaussian
distribution [18]. In [36], the study examines the distribution
of errors from operational forecasting systems in two dif-
ferent Independent System Operator (ISO) regions for both
wind power and load forecasts; The conclusion is that the
distribution of forecasting error is leptokurtic, and the hyper-
bolic distribution provides a better fit for it. The forecasting
error is affected by many factors, such as the forecasting
algorithm and application scenario, and its distribution model
is inconclusive. In the microgrid used in the case study, it is
difficult to describe the forecasting error of load/REG at each
time step with a unified distribution model. Fig. 1 is the
frequency distribution histogram of load forecasting errors in
a pattern at a time step and the Gaussian fitting. It can be seen
that the fitting effect with Gaussian distribution is not good.
At some time periods, the forecasting errors may even show
multi-peak distribution.

Since KDE does not need to assume the distribution in
advance, it is used to fit the distribution of load/REG fore-
casting errors. Besides, it is also found that the forecasting
errors have a strong autocorrelation [37]. For example, if the
load/REG is over-forecast for one hour, the error tends to
persist in the next several hours. The most important reason
is that forecasting errors mainly stem from the inability to
accurately predict weather conditions and production plans,
and the influence of these factors is continuous. Therefore,
the joint distribution of forecasting errors at two consecutive
time steps is also modeled by multivariate KDE.

III. PROBABILISTIC REVENUE ANALYSIS
The main steps of probabilistic revenue analysis of a micro-
grid are as follows: First, a series of random scenarios of load
and REG are generated by sampling in time step order. Then,
according to the energy management strategy, microgrid pro-
duction simulation is performed in each generated scenario.

The operation of each unit is simulated, and the microgrid’s
operating cost is calculated. Finally, the revenue distribution
of the microgrid is obtained by Monte Carlo simulation.

A. RANDOM SCENARIO GENERATION
When using Monte Carlo simulation to calculate the monthly
revenue distribution of a microgrid, if the load and REGmust
be regenerated every time and the production simulation must
be performed repeatedly, it will lead to high computational
efforts. In fact, although there are countless scenarios, there
are only slight differences between many scenarios, which
have little impact on the operation and revenue of microgrids.
We only need to generate enough random scenarios for a day
type so that the revenue in these scenarios can represent the
revenue in this day type. Enough here means that the gen-
erated scenarios obey the characteristics of the original data.
The characteristics include probability distribution and auto-
correlation, which can be tested by statistical methods [38].
Based on experience, the number is usually set to hundreds.

If there are M day types and set the number of each day
type’s random scenarios to N , there are M × N scenarios.
Different scenarios include different actual and forecasting
values of load and REG. Based on the probabilistic models
in Section II, the steps to generate random scenarios for each
day type are as follows:

S1) Randomly sample the PDF of the actual load/REG
(f (P1)) and the PDF of its forecasting error (g(1P1))
at the first time step, getting the simulated actual value
(P1) and forecasting error (1P1).

S2) Given the simulated load/REG (Pt−1) and the simu-
lated value of forecasting error (1Pt−1) at time step
t − 1 (t ≥ 2), the conditional PDF of the actual value
at time step t is calculated by the joint PDF of the
actual values at time step t and t− 1 (f (Pt−1,Pt )); The
conditional PDF of the forecasting error at time step t
is calculated by the joint PDF of the forecasting error
at time step t and t − 1 (g(1Pt−1,1Pt )):

f (Pt |Pt−1) =
f (Pt−1,Pt )
f (Pt−1)

(6)

g(1Pt |1Pt−1) =
g(1Pt−1,1Pt )
g(1Pt−1)

(7)

Random sampling is carried out on the above distribu-
tion to obtain the simulated actual value and forecasting
error of load/REG at time step t . Sampling is carried out
in time step order until the last time step.

S3) The simulated actual values (P = [P1,P2, . . . ,PnT ])
and forecasting errors (1P = [1P1,1P2, . . . ,1PnT ])
of the whole day are obtained. Then the day-ahead
forecasting result is:

P ′ = P +1P (8)

S4) Step S1-S3 is repeated N times to obtain the N random
scenarios of the day type.
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B. MICROGRID PRODUCTION SIMULATION
Under the uncertainties of load demand and REG,
a double-layer energy management model is used to simulate
the operation and cost of a microgrid. This energy man-
agement strategy is based on the double-layer coordinated
control framework in [25], and some improvements are made
for demand charge management. Demand charges are fees
charged by utilities based upon the peak power demand
during a month. To ensure stable operation and minimize
the operating costs of microgrids, the strategy is divided
into two steps, including day-ahead scheduling and real-time
dispatching.

In day-ahead scheduling, the whole day is divided into
several time steps. Considering the technical and economic
constraints, the scheme for the next day is made based on
the load and REG forecasting results. In order to minimize
a microgrid’s operating cost, the day-ahead scheduling is
formulated as a mixed-integer linear programming (MILP),
and it is solved by CPLEX [39].

The objective function is given as follows:

min f (x, u) = fG(x, u)+ fB(x, u)+ fgrid (x, u) (9)

fG(x, u) =
∑
t∈θT

∑
i∈θG

(cfGiP
t
Gi + c

on
GiM

t
Gi) (10)

fB(x, u) =
∑
t∈θT

∑
i∈θB

[cBi(PtBi+ + P
t
Bi−)

+ ccycleBi (M t
Bi+ +M

t
Bi−)] (11)

fgrid (x, u) =
∑
t∈θT

(ctgrid+P
t
grid+ − c

t
grid−P

t
grid−)+ c

∗
dcDgrid

(12)

where fG is the cost of dispatchable DG units, including fuel
costs and startup costs; fB is the wear cost of ESSs; fgrid is
the utility bill charged by public grids, which includes two
parts: electricity consumption charges and demand charges;
PtGi is the output power of dispatchable DG units; PtBi+ and
PtBi− are the discharge and charge power of ESSs; Ptgrid+
and Ptgrid− are the power bought from and sold to public
grids, respectively;M t

Gi is the sign of change in dispatchable
DG units’ operation state; M t

Bi+ and M t
Bi− are the sign of

change in ESSs’ discharging and charging states; Dgrid is
the maximum demand variable; c∗dc is demand charge rate
converted to a day; cfGi, c

on
Gi, cBi, c

cycle
Bi , ctgrid+ and ctgrid− are

the corresponding cost coefficients; θT , θG and θB represent
the sets of all time steps, dispatchable DG units and ESSs.

In real-time dispatching, the dispatching plan for the next
time step is calculated based on the real-time data. The dis-
patching plan should compensate for the forecasting errors
while following the day-ahead scheme so that the dispatching
can follow the economic operation scheme without affecting
microgrids’ stable operation. The real-time dispatching is
formulated as a quadratic programming (QP) and solved by
IPOPT [40], aiming at minimizing the deviation between the
dispatching plan and the day-ahead scheme.

The objective function is given as follows:

f (x) =
∑
i∈θG

µGi(PGi − P̂Gi)2 +
∑
i∈θB

µBi(PBi − P̂Bi)2

+µgird (Pgrid − P̂grid )2 (13)

where PGi, PBi and Pgrid are the output power of dispatchable
DG units, ESSs, and public grids; P̂Gi, P̂Bi and P̂grid are
the output power at the current time step in the day-ahead
scheme; µGi, µBi and µgird are the deviation penalty factors
set artificially, which affect the sensitivity of each variable
deviating from the day-ahead scheme.

In [25], the exchange power betweenmicrogrids and public
grids has a fixed upper limit value limited by the transformer’s
capacity. In contrast, the upper limit value in this model’s
day-ahead scheduling stage is set as an optimization variable
to reduce demand charges. In real-time dispatching stage, the
optimized demand limit needs to be followed and it can be
automatically enlarged when the problem fails to be solved.

In this strategy, ESSs need to satisfy the state of
charge (SOC) constraints and maximum charge/discharge
power constraints. The setting of cycle costs in fB(x, u) avoids
frequent changes of ESSs’ charging and discharging states.
There are also constraints such as the power balance equation
and units’ technical constraints to be considered in the model.
It should be noted that the proposed probabilistic revenue
analysis applies to not only this energy management strategy
but also any other forecast-based dispatch strategy.

C. REVENUE ESTIMATION USING MONTE CARLO
SIMULATION
The microgrid operation and costs under each random sce-
nario are obtained by substituting the generated scenarios into
the production simulation program.

Since demand charges are accounted monthly, the costs
and benefits of microgrids are calculated on a monthly
basis. Monthly total costs (TC) include energy charges (EC),
demand charges (DC), and component use costs (CUC):

TC = EC + DC + CUC (14)

EC =
D∑
d=1

(Cec,d − Bfi,d ) (15)

DC = cdc × Pmaxgrid+ (16)

CUC =
D∑
d=1

(CB,d + CREG,d + CG,d ) (17)

where D is the number of days in the month; Cec,d is the
electricity consumption charge of day d ; Bfi,d is the income
from feed-in tariff (FIT) of day d ; cdc is the monthly demand
charge rate; Pmaxgrid+ is the maximum amount of power pur-
chased from public grids during the month; CB,d , CREG,d and
CG,d are life cycle costs of ESSs, REG, and dispatchable DG
units in day d , which are calculated based on levelized cost
of energy (LCOE).
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FIGURE 2. Monte Carlo simulation process.

The monthly net revenue of a microgrid investment is
defined as:

R = TCb − TCa (18)

where TCb and TCa are the monthly total cost before and
after the investment, respectively.

The Monte Carlo method is a repeated solution of a given
problem by random sampling the inputs, which is used to
calculate the monthly revenue distribution of microgrids. The
process is shown in Fig. 2. At each iteration of simulations,
the day type of each day in the month is determined according
to each day type’s occurrence probability. Thus, the number
of days for each day type in a month is determined, which
obeys the multinomial distribution. Then, the corresponding
days are randomly selected from the corresponding random
scenario set, and themicrogrid’s monthly revenue is obtained.
Through a large number of iterations, the revenue tends to
converge in distribution.

IV. CASE STUDY
A. BASIC DATA
The typical microgrid studied in the case study is located in
an industrial park in Shanghai, China. The microgrid is con-
nected with the public grid through a 1600-kVA transformer,
which contains PV generators of 150 kWp and is equipped
with a Li-ion ESS of 150kW/500kWh. The peak load demand
in summer is about 650 kW. The schematic of the microgrid
is shown in Fig. 3. The analyses are based on the historical

FIGURE 3. Microgrid schematic.

TABLE 1. Time-of-use electricity price.

and forecasting data in the summer of 2019 (from July to
September) with an interval of 15 minutes.

The time-of-use electricity prices in summer are shown
in Table 1. In addition, the monthly demand charge rate is
42 CNY/kW (1 CNY = 0.155 USD).
The basic technical and economic parameters of the ESS

are shown in Table 2. The investment cost of the ESS is
divided into two parts: energy cost and power cost, which
are proportional to rated energy and rated power, respec-
tively. Energy cost mainly relates to the cost of battery packs.
For commercial Li-ion ESS, the power cost mainly includes
power conversion system (PCS) cost and balance of sys-
tem (BOS) cost, accounting for a large part of the system
cost [41].

TABLE 2. ESS techo-economic data.

B. CHARACTERISTICS OF HISTORICAL DATA
The historical daily load are clustered into three patterns by
K-means clustering: ‘‘high level’’, ‘‘medium level’’ and ‘‘low
level’’, which are mainly determined by the daily production
schedule. The daily PV power are clustered into two patterns:
‘‘high level’’ and ‘‘low level’’, which are determined by daily

2474 VOLUME 10, 2022



Y. Yang et al.: Probabilistic Revenue Analysis of Microgrid Considering Source-Load and Forecast Uncertainties

FIGURE 4. Historical load/pv data and pattern division. a) Daily load
profiles. b) Daily PV power profiles.

TABLE 3. Probability of load/PV patterns and day types.

solar resources. The historical data and typical profiles of
three load patterns and two PV power patterns are shown
in Fig. 4. Three load patterns and two PV power patterns
constitute six different day types. The proportion of each load
pattern and PV power pattern, and the occurrence probability
of each day type are shown in Table 3.

Whether actual values should be considered in the forecast-
ing error modeling depends on the correlation between them.
According to historical data, after distinguishing the pattern
and time step, Pearson correlation coefficients between load
forecasting errors and actual values in more than 90% of time
steps are less than 0.5. For PV, the ratio is 70%. In general,
Pearson correlation coefficients whose magnitude are less
than 0.5 indicate that variables have a low correlation or little
correlation. Therefore, we assume that the forecasting errors
and the actual values are independent to simplify the model.

In order to validate the autocorrelation of load/PV power
and its forecasting errors, the correlation coefficient is cal-
culated. Table 4 shows the Pearson correlation coefficient
between the load/PV power at two consecutive time steps
and between their forecasting errors. In general, two random
variables can be considered highly correlated if the absolute
value of Pearson’s r is greater than 0.7. The results show
that the load and the PV power and their forecasting errors

TABLE 4. Autocorrelation of actual values and forecasting errors.

FIGURE 5. Heatmaps of correlation coefficient matrix. a) Actual load.
b) Actual PV power. c) Load forecasting error. d) PV power forecasting
error.

all have significant autocorrelation. We divide the whole
day into 96 time steps, and the data of each time step is
regarded as a random variable. Therefore, the 96× 96 cor-
relation coefficient matrix can be obtained as shown in
Fig. 5 in the form of heat maps. Most of the elements near
the main diagonal are close to 1, which indicates a strong
correlation between the actual values/forecasting errors of
adjacent time steps, and the closer the time steps are, the
stronger the correlation is. It proves that it is necessary to
consider the autocorrelation of both actual values and fore-
casting errors when establishing the probabilistic models.
The generated scenarios not only retain the inhere charac-
teristics of load/PV power and its forecasting errors but also
embodies the randomness, which increases the reliability
of production simulation results. By using the probabilistic
models in this paper, hundreds scenarios and the correspond-
ing day-ahead forecasting results are generated. For exam-
ple, the simulated ‘‘high level’’ load scenarios are shown in
Fig. 6.

C. ESS VALUATION
Probabilistic revenue analysis can be used to evaluate the
values of each component of a microgrid in specific scenes.
In this part, taking the ESS as an example, the value of
the ESS is quantified by calculating the difference between
microgrid monthly total cost with and without ESS. In this
case, the ESS mainly contributes to the microgrid in the
following two ways:
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FIGURE 6. Typical ‘‘high level’’ load profile and the corresponding
random scenarios.

- Energy arbitrage: charging at the off-peak period of
TOU or when there is PV surplus, and discharging at
the peak period;

- Reducing demand charges: discharging at demand peak
to reduce peak power demand.

Due to the lack of actual data for a whole year, July is
selected as the target for analysis. In summer, the peak load is
higher, and the difference between peak and valley electricity
prices is larger, which is beneficial for ESS to realize its
value in demand charge management and energy arbitrage.
It should be noted that the proposed probabilistic revenue
analysis method is universal. Although the analysis results
of the whole year may be more convincing, the results of a
single season are enough to demonstrate the necessity and
effectiveness of the method.

Fig. 7 visually presents the calculation results. Through
probabilistic revenue analysis, we can get some conclusions
that are hard to find in deterministic economic analysis.
Considering the uncertainties of source-load and forecast,
DC savings and net revenue fluctuate considerably, while the
fluctuation of EC savings is slight. It means the uncertainties
of load and PV power have a significant influence on demand
charge management, but little influence on energy arbitrage
in this case.

Several revenue statistics indicators are shown in Table 5.
Mean revenue is the average of 10000 (enough to make the
revenue converge in distribution) simulations. This value can
be approximately regarded as the mathematical expectation
of revenue, so it has great reference value for the long-term
benefit that ESS can gain under the uncertainties of load and
REG. The probability that the actual revenue is higher than
conservative revenue is 90%. It means that the revenue is
less likely to be lower than 7300. Optimistic revenue is the
revenue in the 90th percentile, which is the optimistic esti-
mate of the revenue. Compared with the maximum revenue
with extremely low possibility, this value is more suitable as
the maximum achievable revenue. These statistical indicators
quantify the value of ESS under the dual uncertainties of
source-load and forecasting, which provide more insights for
users when they evaluate ESS.

FIGURE 7. Results of probabilistic revenue analysis. a) Distribution of DC
savings. b) Distribution of EC savings. c) Distribution of net revenue.
d) Survival curve of net revenue.

TABLE 5. Revenue statistical indicators.

D. ESS SIZING BASED ON PROBABILISTIC REVENUE
ANALYSIS
For ESS with fixed rated energy, the higher the rated power,
the better it can play the role of demand reduction and energy
arbitrage. However, with the increasing cost of ESS, the
benefits it brings cannot increase indefinitely, which will lead
to the decline of its economic efficiency. To evaluate the
rationality of the current ESS’s rated power configuration,
four ESSs with the same rated energy and different rated
power are selected for comparison. The initial investment
costs and probabilistic revenue analysis results of four ESS
configurations are shown in Table 6.

According to the analysis results, mean DC savings grad-
ually increase with the increase of ESS rated power. In con-
trast, the extra DC savings brought by the increase of rated
power from 200 kW to 250 kW significantly decline. This
is because with the increase of demand reduction degree,
the required ESS capacity becomes larger and larger, and
the demand reduction is limited by the rated energy of ESS.
The difference of EC savings in the four cases is slight,
indicating that the rated power of ESS has little influence
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TABLE 6. Analysis results.

TABLE 7. Probabilistic and deterministic economic analysis results.

on energy arbitrage. With the rated power of ESS increasing
from 200 kW to 250 kW, themean net revenue hardly changes
and has a downward trend. At this time, it is not cost-effective
to increase the rated power of ESS, which is consistent with
the previous judgment.

The probabilistic analysis provides more comprehensive
results and various analysis perspectives. When comparing
the economic efficiency of different investments under uncer-
tainty, the investment costs, the expected value and fluctu-
ation degree of revenue usually need to be considered at
the same time. Therefore, annual return on investment (ROI)
and utility function in the field of investment are introduced,
which are defined as:

ROI =
Ry
Ci
× 100% (19)

U = E(ROI )−
1
2
Aσ 2 (20)

where Ry is annual net revenue; Ci is the initial investment
cost;U is the utility function;E(ROI ) and σ 2 are the expected
value and variance of ROI ; A is the coefficient of risk aver-
sion, which represents the investor’s degree of risk aversion.

In this paper, the utility function is used as the basis for
selecting the optimal rated power of ESS. For risk averters,
the value of A is positive. This means that under the same
expected value of revenue, risk averters prefer schemes with
smaller variance. For ordinary investors, the value of A is
usually between 2 and 10, and the middle value of 6 is
taken here. To highlight the difference between probabilistic
revenue analysis and conventional deterministic method, the
actual situations in July 2019 are simulated and taken as
deterministic analysis results. The two types of results are
shown in Table 7.
The best choice is case 3 based on probabilistic revenue

analysis. However, based on the deterministic analysis, the
best choice is case 2. The reason for the difference is that
the ESS selected by probabilistic revenue analysis is the most
suitable choice for thousands of random scenarios, while in

FIGURE 8. Revenue distribution for different forecasts in a summer
month.

deterministic analysis the ESS is selected only based on the
unique historical situation. In case 2, the revenue calculated
according to the historical situation is 10750 CNY, which
is close to the optimistic revenue in probabilistic analysis.
Therefore, in this case, using the results of deterministic
economic analysis to guide the ESS sizing may lead to a
high expectation of the revenue and ultimately fail to get the
expected revenue. On the contrary, if the results of determin-
istic economic analysis are close to the conservative revenue,
the results cannot fully reflect the benefits that this investment
can bring. Overall, it is effective and necessary to carry out
probabilistic revenue analysis considering source-load and
forecast uncertainties in microgrids.

E. IMPACT OF FORECAST ON MICROGRID REVENUE
To illustrate the impact of forecast on revenue analysis,
we process the original load forecasting data of the industrial
park (MAPE = 21.8%), and assume that there are three
different load forecasting algorithms, of which the MAPE are
21.8%, 10%, and 0, respectively. Different load forecasting
data will only affect the modeling of forecasting errors, and
will not affect the actual load in production simulation.

Through the probabilistic revenue analysis, the distribution
of monthly revenue obtained by ESS are shown in Fig. 8.
As the load forecasts become more and more accurate, the
revenue gradually moves to the right of coordinates and
becomes more concentrated. That is to say, reducing the
forecasting error can not only improve the revenue but also
reduce the uncertainty of the revenue. The mean and standard
deviation of the three cases’ revenue in Table 8 also reflect
this phenomenon.
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TABLE 8. Revenue distribution parameters.

The case ‘‘MAPE = 0’’ can be regarded as the result
of other probabilistic analysis methods without considering
forecasts. It can be seen that forecasts have a great impact
on the results of microgrid economic analysis. Therefore,
it is unreasonable to ignore the impact of forecasts and use
historical data for production simulation when analyzing the
costs and benefits of microgrids. The above explains why
this paper models the uncertainty of forecast and considers
forecasts when analyzing the revenue.

Besides, when evaluating a forecasting algorithm, we usu-
ally use some evaluation indexes, such as MAPE, RMSE.
However, the numerical value of these indexesmay not reflect
the value brought by the algorithm. Compared with these
evaluation indexes, microgrid ownersmay bemore concerned
about the actual benefits brought by the improvement of
forecasting accuracy. In this regard, the proposed probabilis-
tic revenue analysis method also provides a perspective to
evaluate the forecasting algorithm under the uncertainties of
load and REG.

V. CONCLUSION
Aiming at the problem that a microgrid’s revenue cannot be
accurately described under the randomness of load and REG,
this study establishes the probabilistic models considering
the dual uncertainties of source-load and forecast to generate
random scenarios, and proposes the probabilistic revenue
analysis method. Through the simulation and numerical anal-
ysis, the following conclusions can be drawn:

1) The actual values and forecasting errors of load/REG in
microgrids have strong temporal autocorrelation. Pre-
serving the autocorrelation when probabilistic model-
ing can increase the fidelity of the generated scenarios,
which contributes to better estimation of microgrid
revenue;

2) The uncertainties of source-load and forecast cannot
be ignored, since they make a microgrid’s operating
revenue fluctuate within a certain range. Conventional
deterministic cost-benefit analyses have fortuities and
limitations, so it is necessary to introduce probabilistic
revenue analysis;

3) The proposed probabilistic revenue analysis method
quantifies the revenue from microgrid operation and
assists the sizing of ESS. This method can reveal the
actual values of each component of a microgrid in spe-
cific scenes and be used to guide investment decisions.
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