
Received November 18, 2021, accepted December 22, 2021, date of publication December 30, 2021,
date of current version January 20, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3139544

Development of Innovative Operational
Flexibility Measurement Model for Smart
Systems in Industry 4.0 Paradigm
AHMAD SAJJAD 1, WASIM AHMAD1, SALMAN HUSSAIN1,
AND RAJA MAJID MEHMOOD 2, (Senior Member, IEEE)
1Engineering Management Department, University of Engineering and Technology Taxila, Taxila 47080, Pakistan
2Information and Communication Technology Department, School of Electrical and Computer Engineering, Xiamen University Malaysia, Sepang 43900,
Malaysia

Corresponding author: Raja Majid Mehmood (rmeex07@ieee.org and rajamajid@xmu.edu.my)

This work was supported in part by the Directorate of Advanced Studies Research and Technology Development, University of
Engineering and Technology, Taxila, Pakistan; and in part by the Xiamen University Malaysia Research Fund (XMUMRF) under Grant
XMUMRF/2019-C3/IECE/0007.

ABSTRACT The exponential growth of cutting-edge technologies continuously pushing the manufacturing
industry into the paradigm of smart manufacturing. Smart manufacturing provides the pace of highly com-
petitive market demand and customized intensive production. The goal of smart manufacturing technologies
embedded systems in the Industry 4.0 paradigm and lean production is to enhance the flexibility in all tears of
the enterprise. It is a big challenge, to measure the flexibility of smart systems for decision-making and adap-
tation of the new manufacturing technologies. The conceptual architecture of smart manufacturing systems
has been proposed to solve the problem. Operational flexibility has been measured using a mathematical
model for smart manufacturing in the Open Platform Communication Unified Architecture enabled Cyber-
Physical Production System at shop floor level and validated. The results obtained from experimentation
depict the operational flexibility, maximum capacity, and breakeven point of the manufacturing system
have been improved by using smart manufacturing technologies. The proposed model improves the product
manufacturing using Smart Computer Numeric Control Machining, Smart Autonomous Robotic Machining,
Smart AdditiveManufacturing and Smart HybridAdditive&SubtractiveManufacturing up to 30.4%, 53.6%,
55% and 65% respectively. It will also help the decision-makers to overcome the challenges of transformation
from conventional to smart manufacturing industry 4.0 paradigm.

INDEX TERMS Additive manufacturing, computer numerical control, cyber-physical system (CPS), direct
metal laser sintering-DMLS, industry 4.0, industrial robots, Internet of Things (IoT), operational flexibility,
smart manufacturing.

I. INTRODUCTION
In the era of intense market competition for high quality, cost-
effective, and customize production, manufacturing indus-
tries are trying hard to transform existing manufacturing
systems to industry 4.0 or smart manufacturing. The Industry
4.0 short form of fourth Industrial revolution attributed to
the latest and most sophisticated manufacturing paradigm
enabled with the exponential technologies. These exponen-
tial technologies such as Internet of Things (IoT), cyber
physical system (CPS), smart sensors, adaptive robots, 3D
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printer, Cloud Computing big data and virtual reality. These
devices are interconnected, interlinked through unique iden-
tity on heterogeneous wireless network. Internet of Things
provides the decentralized and autonomous systems archi-
tecture in loosely coupled network which sense the physi-
cal phenomenon’s using smart sensors/actuators. Embedded
devices covert the physical processes into digital data in
real-time and stored in the cloud infrastructure. Industrial
IoT functionalities are not limited to data acquisition, data
processing and storing capabilities. Internet of things pro-
vides the controlling capabilities to design the cyber phys-
ical production systems (CPPS) and machine to machine
communication architecture. But the question is how the
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FIGURE 1. Characteristics and Sub features of industry 4.0.

transformation will be performed and what be the model or
framework for this servitization. The design principles of
smart manufacturing i.e. modularity, interoperability, decen-
tralization, virtualization, real-time capabilities, and service
orientation provide the bases to build a robust foundation to
design or transform the existing systems into smart manufac-
turing [1]. These set and well-defined design principles of
smart manufacturing (SM) pose some characteristics, asso-
ciated technologies, and enabling factors. The definition of
characteristic will be the distinctive property of any sys-
tem or product to make it distinguish from other elements
or give the vision of difference or similarity. In the case
of smart manufacturing characteristics named as flexibility,
adaptability, and reconfigurability. Technology is referred to
as the practical implementation of science and its rules to
address any real-world issue by the development of products
or services. Technologies involved in smart manufacturing
are cloud computing & manufacturing, 3D printing, IIoT
(Industrial Internet of Things), and cyber-physical production
systems (CPPS), etc. Technology is an indispensable func-
tion in system development regarding smart manufacturing
either it provides bases or pillars the whole system. Enabling
factors are pertaining to the rules, procedures, regulations,
policies, standards, and managerial practices involved during
the implantation and sustaining the system functionality. In a
smart manufacturing system requires some factors during
the implementation of characteristics and technologies in the
system, these factors include innovation, training, laws, and
regulations. The main characteristics of smart manufacturing
system design are adaptability, flexibility, self-adaptability,
learning characteristics and fault tolerance, etc. These charac-
teristics are the building blocks for the manufacturing system
to transform into smart manufacturing. These design fea-
tures are expressed in the sub-features by multiple authors
like [2]–[12] are summarized in Figure 1.

The similar characteristics are shown by lean production
system including flexibility, adaptability, agility and automa-

tion. The lean production system is attributed as the success-
ful paradigm for high quality production and waste elimi-
nation. The emergence of industry 4.0 paradigm has change
the dynamics of production. The lean production has some
limitations including less flexible, limited dynamic demand
driven production and less ICT integration. The industry
4.0 technologies have potential to transform the lean produc-
tion system. It is a major challenge for enterprises to align
the lean and Industry 4.0 operational strategies in chang-
ing the environment. At operational level requires robust
methodology and concepts to transform lean management in
technology projects of Industry 4.0. The proper models and
roadmap frameworks are missing to guide the enterprise at
the operational decision level.

The common characteristic of lean and Industry 4.0 is the
flexibility. The flexibility is an important characteristic of
smart system. Flexibility may define as the capability of any
system to adjust and operate despite its changing requirement
in the state, space, motion at cost of less time, resources with
maximum operational performance [13]. Ten types of flexi-
bility related to manufacturing and production systems have
been identified from literature ([14], [15]). Koste and Mal-
hotra [16] categorize of ten types of flexible’s into four lev-
els in manufacturing systems including enterprise/functional,
plant/factory, shop floor, and individual levels. The flexibility
measurement for modern systems like smart manufactur-
ing under a lean environment has not been yet measured
and assessed. At shop floor level operational flexibility has
been measured and calculated in a flexible manufacturing
system (FMS) by Juan Jose Pelaez-Ibarrondo [17]. Smart
manufacturing is needed transformation in all levels of an
enterprise including Plant level and shop floor level. This
research paper will focus on the calculation of the enabling
factor to transform the shop floor with flexibility under a
smart and lean environment. The concept of lean Kaizen,
agility, and flexibility have the same meaning. The difference
is only in the perception of various field experts.Management
experts consider any change in system and transformation as
Kaizen and Agility, on the other hand, system design experts,
called this flexibility of the system. Lean as a management
philosophy has been attributed as the best strategy for process
improvement since its inception. The lean manufacturing
paradigm primarily focused on waste reduction in the pro-
duction system to eliminate overproduction, cost reduction,
and transportation. The same functionality has been aimed
at a new type of manufacturing called smart manufacturing.
This smart paradigm is also focused on process improvement
initiatives and strategies by adopting digital technologies.
These sophisticated exponential technologies orchestrate the
connectivity and integration of all peers of the manufacturing
system to facilitate streamlined production. Indeed, Lean
manufacturing and smart manufacturing are complementary
to each other and have a vital role to reinforce the strategies
for the factory of the future. Before making collaborative
strategies for lean and smart manufacturing systems, it is
most important to highlight the implementation gaps and get
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a fine understanding of smart manufacturing deployment in
the production system. [18].

The contribution of this paper is (i) proposed the novel
conceptual model of Cyber Physical Production System for
shop floor integrated Open Platform Communication Unified
Architecture. (ii) The first study to formulate mathematical
modelling based operational flexibility measurement model
of smart manufacturing in scheduled production (iii) A new
method has been developed to integrate the energy cost esti-
mation mechanism in decision making process using opera-
tive data of smart systems parameters (iv) The effectiveness
of proposed mechanism has seen in the form of impressive
improvement has been observed in operational flexibility,
maximum capacity and break-even point after validation from
industrial case.

The rest of the paper is structured as follows.
Section 2 illustrate the brief introduction related to topic.
Section 3 pertains to literature review related to Indus-
trial IoT enabled CPPS in Industry 4.0 environment and
description of problem in adoption of smart manufacturing
design. Section 4 describes research methodology related to
model purpose, the flexibility measurement of the proposed
model. Section 5 validation by evaluating the results of
an industrial case study, whereas Section 6 concludes the
presented work.

II. LITERATURE REVIEW
Smart manufacturing provides workshop managers with use-
ful insights to use data and information to improve the flex-
ibility and responsiveness of the manufacturing process to
quickly and cost-effectively change the needs in the enter-
prise [19]. The distinguishing feature of the intelligent man-
ufacturing system is the flexibility of resource supply. The
key business and technical considerations for the implemen-
tation of intelligent manufacturing systems include but are
not limited to automation, industrial control systems, ser-
vice portfolio, flexibility, business models, and recommended
implementation models and architectures. In the smart manu-
facturing environment, the manufacturing supply chain rela-
tionship will be customer-centric and defined by improving
efficiency. Reduce costs, increase flexibility and enhance user
functionality [20]. The intelligent manufacturing system with
data life cycle and real-time monitoring functions can deploy
flexibility and adaptability in project changes or personal-
ized awareness environments [21]. The real-time capability
facilitates collecting and analyzing the data generated in the
physical world, helps to control the manufacturing processes
which make the traditional rigid manufacturing process more
and more flexible [22]. For example an adaptive intelligent
collaboration of advanced robots provides a high degree of
modularity and flexibility for the intelligent manufacturing
system framework [23]. The future European manufacturing
report points out that future manufacturing companies will
rely more on flexibility and low cost [24].

In the fourth industrial revolution, the gap between phys-
ical and virtual processes is going to be depleted. A new

FIGURE 2. IoT ecosystem components.

transformed shape of modern manufacturing paradigm has
been emerged, in which systems become more intelligent and
smarter. The machine becomes autonomous, self- controlled,
self-derived, and self-decision. The real-time system capabil-
ities getting more popular and system intelligence framework
become effective using modern technologies of information
& communication [25]. Machines and related physical activi-
ties are now more integrated with the connected environment
and minimize the humanized intervention. This connectiv-
ity, communication, control coverage, and cognition makes
the self- controlled system called Cyber-Physical Produc-
tion System (CPPS), attributed to the beginning of indus-
try 4.0 [26]. CPPS is a modern smart control system that
monitors all interconnected embedded smart physical sys-
tems, processes, and devices. This connectivity and coverage
provide the virtual footprint of the system because of an
enormous amount of data generated.

The abundance of data gathered called Bigdata. All deci-
sions related to system operation, monitoring, and control
are taken by using useful attributes of bigdata. The bigdata
stored in cloud computing infrastructure for data analytics.
Data analytics and algorithms used to extract useful features
from this data and convert them into meaningful information.
Based on this information, data processing help in decision
making, which makes the CPPS smarter [27]–[29]. The pro-
cess of data generation started from the sensing of data from
the physical environment. High-end smart sensors are used
to sense the data pass on to embedded devices through the
industrial internet of things (IIoT) infrastructure. Industrial
IoT is an integral part of CPPS for data sensing and com-
munication. Embedded devices e.g smart sensors, actuators,
and robots are interconnected with IoT gateway using the
internet as shown in Figure 2. It is evident that use of smart
systems, integrated with IoT are the need of every system to
transform from conventional to smart paradigm [30]. CPPS
can be represented in the form of a mathematical function as
in equation (1) [31].

CPPS = f (Sense,Connect,Content,Control, Share) (1)

CPPS is a combination of key technologies that provide
strength to industry 4.0 emergence. These exponential tech-
nologies are, industrial internet of things (IIoT), big data
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analytics, Cloud-native computing (CnC), Simulation & dig-
ital twin, autonomous robots, Augmented & virtual reality
(AR & VR), Cyber-Security, 3D printing. The ecosystem
made by a combination of one or more technologies for the
manufacturing system and treated as the sub-set of Cyber-
Physical System (CPS) called Cyber-Physical Production
System CPPS. [26], [32], [33]. It is observed multiple times
in literature, the implementation architecture of CPPS is a
5C model [34]. CPPS is implemented in a layered combina-
tion called 5C architecture. This architecture provides a gen-
eral guideline regarding the implementation of CPPS. These
design features are related to connectivity, communication,
cyber, cognitive, and configuration control of embedded sys-
tems [27]. Industrial IoT is considered a vital and integral part
of CPPS [28]. IoT enabled system is a combination of smart
sensors, embedded devises, IoT gateway, edge devices, and
cloud integration. Smart sensors collect real-time data from
physically connected embedded devices. This data has been
exchanged with the cyber world through some IoT protocol
governed by the IoT gateway. IoT infrastructure provides
connectivity to every ‘‘thing’’ that connects to the internet
andmade data communication. In industry 4.0 manufacturing
paradigm intensive digitization, computation, commination,
and data processing machines become smarter and intelli-
gent. This paradigm is self- controlled, machines that are
aware of its predictive maintenance, inspection capabilities,
and real-time monitoring of operations. It is all possible
due to the IoT systems which provide real-time and authen-
tic data to CPPS and intelligent control smoothly run the
function [35]. IoT is an acronym of industrial internet of
things and attributed as the subcategory of IoT dedicated and
designed for industrial automation applications. Typically,
IoT provides connectivity and integration to the smart sen-
sors, actuators, robots, processing machines, and embedded
devices in an industrial environment. IoT system collects,
process, and communicate real-time data to the cloud sys-
tems or any other database. Ultimately, intelligent monitoring
of machine health, processes, predictive maintenance, fault-
tolerant production system give the customized production
and smart value chain. [36].

The generic architecture of integrated IoT has been
proposed by [36]. The information & communication
technologies including allied exponential technologies like
data analytics, intelligent robotics are enabler to enhance
the efficiency and flexibility of manufacturing system [37].
The communication technologies available for IoT connec-
tivity are depended on the coverage area. Depending on
the required range these communication technologies like
proximity, Wireless Personal Area Network (WPAN), Wire-
less Local Area Network (WLAN), Lower-Power Wide Area
Network (LPWAN) and Cellular standards are available.
The technologies correspond to Proximity, WPAN, WLAN,
LPWAN and cellular standards are RFID, Blue-tooth, Wi-
Fi, LoRa and 5G, respectively [38]. The rapid personaliza-
tion of the production line includes not only geometry and
functional configuration, but also dynamic adaptability of the

FIGURE 3. Steps involved in research methodology.

execution system. The improvement of the adaptive ability of
the execution system depends strictly on the understanding
of the key field problems, which requires the optimization of
highly accurate mathematical modules and fast algorithms in
the process of manufacturing execution [39].

The proposed model has communication options areWi-Fi
and 5G for interconnectivity of machines on shop floor and
enterprise facilities integration, respectively.

III. RESEARCH METHODOLOGY
The methodology adopted for this research as shown in Fig-
ure 3, is composed of problem identification from extensive
literature review. The literature review has been conducted
from all major databases e.g Google scholar, Web of Sci-
ence and Scopus etc. The keywords used are smart manu-
facturing, Industry 4.0, Cyber Physical Production System,
additive manufacturing, industrial robots, 5G and operational
flexibility. After conducting literature review, and conceptual
architecture of CPPS enabled smart manufacturing shop floor
has been proposed. In next phase the operational flexibility
of measurement process has been explained and developed
the quantitative method to measure for four manufactur-
ing alternatives (CNC machining, flexible CNC machining
autonomous robotic CNC machining and additive manufac-
turing/direct metal laser sintering machine). Last phase is
related to the validation of developed system by industrial
case study.

A. PROPOSE MODEL
Rationale behind the adoption of industry 4.0 technologies
or transformation from conventional production system is
quality, on-time production, reliability, cost reduction, waste
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FIGURE 4. CPPS integration at shop floor with OPC UA.

reduction, and fast processing at the workplace to enhance
productivity. In view of many authors that industry 4.0
enabled smart manufacturing poses many characteristics
like flexibility [40]. The operational flexibility measurement
model is enabling the various decision architecture models.
Broadly, there are three main decision architectures are under
consideration in literature. These are holistic optimization
in integrated way, decentralized self-organizing way and
hybrid models. In holistic way, digital twin-oriented opti-
mization is used and its algorithms have two characteristics:
1) Quickly identify the best or near-optimized solutions in
a short period of time to meet the highly frequent dynamic
adjustment requirements of production systems and random
delivery needs: 2) coordinate multiple objectives of cou-
pling optimization issues [41]. Second way is decentral-
ized self-organizig approach in manufacturing chain using
blockchain-driven smart contracts in the social manufactur-
ing of product architecture products. Blockchain is a tamper-
proof, decentralized database that can be updated over time
to avoid vulnerabilities when centralized nodes establish trust
between manufacturers [42]. Third approach is hybrid model
to deal with current need for a high degree of flexibility in
manufacturing processes requires large-scale deployment of
the Industrial Internet of Things (IIoT). Because centralized
control of the Internet of Things lacks flexibility in deal-
ing with disruption and change, a decentralized organiza-
tional structure is a better choice, with blockchain-driven
licensing enabling partially decentralized self-organization
to offload and accelerate optimization of high-level man-
ufacturing planning. A new iterative, two-stage hybrid
intelligence model called ManuChain is proposed to elim-
inate imbalances/inconsistencies between overall plan-
ning and local execution in personalized manufacturing
systems [43].

In current study the hybrid model has been proposed for
a smart and CPPS integrated shop floor with a communi-
cation system as shown in Figure 4. This model provides

the integration of physical world with cyber world through
RAN (Radio Access Network)/ Air interface. In this paper,
a smart system at the shop floor level has been introduced
like CNCMachining, KuKa Robotic machining and EOSINT
M 280 additive manufacturing smart machines. To show the
impact of these sophisticated and intelligent machines on the
operational flexibility.

Flexibility measurement is an important task to design
the system and to guide the management regarding decision
making that the adoption of new manufacturing technolo-
gies will benefit the factory or other vise. At shop floor
level operational flexibility has been measured in the past
but for smart manufacturing systems, it has not been mea-
sured yet. This system is composed of three main dimen-
sion views: physical world, Air interface and cyber world.
To extend this concept partial modification has been made:
make that architecture more specific for practical implemen-
tation. The data exchange and communication architecture
of CPPS, 5G, and OPC UA (Open Platform Communica-
tion Unified Architecture) enabled system is shown in Fig-
ure 5. This is a detail depiction of system integration from
physical events to result oriented information extraction and
processing. The edge devices collecting sensors/actuators
data of machines/assets in real-time and transmit to the
industrial internet of things (IIoT) gateway. All the sen-
sors/actuators or physical assets are connected to the edge
devices through MQTT (Message Queuing Telemetry Trans-
port) protocol. The IIoT gateway pushes the real-time data
in the cloud infrastructure. The cloud infrastructure having
high power computation for advance data analytics, storage
facility and smart factor virtualization. The cloud transmit
the control data to handle the machine functionality through
programmable logic control (PLC). The Seimens S7 1500
PLC equipment has been proposed for this model. The PLCs
are communicating through wireless and Ethernet chan-
nels. The International Electrotechnical Commission (IEC)
standards are followed for communication between various
devices. The IEC 61131 are followed for PLC programing
and IEC 61784 for PLC communication through fieldbus.
For machine to machine communication IEC 62541 standard
been followed. The OPC UA (Open Platform Communica-
tion Unified Architecture) protocol has been recommended
for communication between PLC and Cloud infrastructure.
The PLC is connected to input/output(I/O) interfaces CNC,
Robotic Machining (KUKA) and additive manufacturing
machine (DMLS) through Profibus. The HMI provides the
access to solution for management of facility on industrial
scale.

In air interface reliable communication between distance
unit (shop floor/factory) and central control has established
through 5G microwave antennas. In bound reliable com-
munication also be performed using 5G low power anten-
nas and access points. The 5G infrastructure has reliable
data transmission capability in real-time. The base station
transvers (BTS) communicate with all the field devices in the
designed geographical region.
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FIGURE 5. Data exchange and communication architecture of CPPS shop floor enabled with 5G and OPC UA (source: auther’s self creation except
cyber word adopted from [44]).

OPC is an interoperability standard for safe and reliable
data exchange in the field of industrial automation and other
industries. It is platform-independent and ensures the seam-

less flow of information between devices from multiple ven-
dors. In Cyber space the virtually two main modules of OPC
UA are the factory CPPS model and OPC UA server. The
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virtual CPPS factory model is composed of three important
control systems which are CPPS node control, CPPS logic
control and product process control. The control systems are
integrated with the CPPS connect OPC UA for transmit the
control instructions. The OPC UA has three main categories;
Information exchange server, CPPS node generator andCPPS
connect OPC UA. The information exchange server serve
the purpose of asynchronous data transmission, monitoring
mechanism, alarm generation and record all information
updated in the address space. The recording method can be
through choose relational database, NoSQL database, XML,
binary file, etc. The connect CPPS OPC UA module update
and change all data that occurs in the OPC UA address space
and data used to communicate with CPPS node control, CPPS
logic control and product process control. OPC CPPS node
generator: automatic modeling generate attributes and codes
required for CPPS node control, CPPS logic control and
product processes control, register in OPC UA address space
and OPC UA client in the factory CPPS model.

1) HARDWARE PLATFORM
traditional PC hardware, cloud server, PLC, microcontroller
(ARM, etc.). Operating system:

Microsoft Windows, Apple OSX, Android or any Linux
distribution, etc.

The OPC UA provides the necessary infrastructure for
the interoperability of the entire enterprise, from machine to
machine, machine to enterprise, and everything in between.

The OPCUA information modeling framework transforms
data into information. With complete object-oriented func-
tions, even the most complex multi-level structure can be
modeled and extended. The modeling framework is the basic
element of the OPC unified architecture. It defines the rules
and basic building blocks required to use the OPC UA public
information model. Although OPC UA has defined several
core models that can be applied to many industries, other
organizations build models on these models and disclose
more specific information through OPC UA.

For client-server communication, access to a full range
of information models can be obtained through services.
This follows the service-oriented architecture (SOA) design
paradigm through which service providers receive requests,
process them, and send the results back to responses. Publish-
Subscribe (PubSub) provides an alternative mechanism for
data and event notification. Although in client-server com-
munication, each notification is for a single client and guar-
anteed delivery, PubSub has been optimized for many-to-
many configurations. With PubSub, OPC UA applications
do not directly exchange requests and responses. Instead, the
publisher sends the message to the message-oriented mid-
dleware without knowing which subscribers (if any) may be.
Similarly, the subscriber expresses an interest in a particular
type of data and processes messages containing this data
without knowing its source.

CPPS is the integration and interconnection of multiple
embedded devices through IoT network in real-time. IoT and

cloud are bridge between physical cyber communications,
provides the ubiquitous connectivity. The IoT- loud archi-
tecture. Cloud communicate and process data using multi-
ple protocols like MQTT. Message Queue Telemetry Trans-
port (MQTT) proposed in this model, is one of most secure
fast and energy efficient protocol used for data transmission
in IoT systems and devices [45].

It is evident that from almost all definitions of smartness
or digitization available in literation. The emergence of high
computing, communication technologies and IoT integration
has transform the industrial systems into industrial automa-
tion. This wireless connectivity and communication enabled
industrial systems have real time capability of prognosis
and diagnosis of problem to sustain the system functional-
ity [46]. The wireless systems for data communication are
vital. These systems have features of scalability, flexibility,
less implementation cost and mobility. 5G communication
and computing capabilities provides tremendous facility of
real-time data analytics by using computational intensive
processes. The ultimate target of smart embedded devices
in IoT environment is to provide the real time integration,
intercommunication, and interconnection between physical
and cyber world.

In this study, the operational flexibility index will be devel-
oped for the smart shop floor, and later measurement pertain-
ing to operational flexibility been evaluated. This evaluation
will be a guideline for the decision maker, to transform con-
ventional machining to smart machining systems. The smart
manufacturing is more suitable to develop new business mod-
els in the competitive market. Flexibility is important feature
of both lean manufacturing and IoT enabled smart manu-
facturing. The contribution of [17] is to define operational
flexibility that combines the volume and mix flexibility of
manufacturing system which proved that has connection with
flexible manufacturing. For quantify, organizational versatil-
ity described both volume and mix flexibility as an integrated
metric. Those constraints will be specific, hence the degree
of organizational versatility, even with the same production
method for each component together. Because of a mix of
goods to be produced over a planned duration, organizational
efficiency has extreme limits like lower and higher.
• Lower limit corresponds to break-even point would

assess minimum potential of production network, determined
by the quantity of products.
• Higher limit corresponds to the overall output of the

manufacturing method shall be calculated by the volume of
input provided.
• Break-even point: to measure the break-even point in

the planned duration implies that the point of production
(unit produced) where total production cost equals/meets the
revenue. This is expressed in equation (2), where:

BEPLL =

∑
FC

N∑
1
wix (SPi − VCi)

(2)
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BEPLL: Break-even point corresponds to lower limit of pro-
duction in scheduled timespan.

FC: Fixed costs incurred.
Vci: Variable cost associated to i product.
SPi: Per unit selling price of product i.
wi: Proportion in % of product i.

a: AVAILABLE TIME OF MACHINE
It is a time for which machine j is available for product
i. Mathematical expressed in equation (3), The difference
between total time machine j is on and maintenance time of
machine j where:

Avtj = Ttonj −Mtj (3)

Avtj: Time available time to machine j, Ttonj is time (total)
for which machine is in running state, Mtj is time corresponds
to maintenance of machine j.

i) OPERATIONAL TIME
It is the time consideration of operation on product I which
include operating machine time and the setup machine time,
calculation of this is shown in equation (4) where: Optj rep-
resenting time a machine j operate, Qj means in scheduled
production time amachine j can producted maximum number
of products, Tij, is the processing time of machine j for
product i, Tsij = setup time of machine j to process product i,

Optj =
n∑
1

(wi × Tij × Qj + Tsij) (4)

b: MAXIMUM CAPACITY
The maximum capacity of each machine will be attained
when the available time of the machine is equal to it oper-
ational time of this machine using equations (5, 6, 7)

Optj = Atj (5)

Qj =

Atj −
n∑
1
TSij

n∑
1
(wi × Tij)

(6)

QHL = min(Qj) (7)

c: OPERATIONAL FLEXIBILITY
The operational flexibility (OF) can be calculated as the
difference between the highest limit and the lowest limit (8).

OF = QHL − QLL (8)

B. COST ESTIMATION AND ECONOMIC ANALYSIS
In this section economic analysis of various manufacturing
processes has been evaluated. At job shop or shop floor level
smart manufacturing encouraging the additive manufactur-
ing, robotic CNCmachining andCNCmachining. To perform
the economic analysis of these processes, cost estimation and
measurement of real-time systems will be evaluated.

1) COST ESTIMATION OF ADDITIVE MANUFACTURING
PROCESS
In this case, the cost estimation model has been adopted
from [47], which is suitable for heavy production process
like additive manufacturing and more specifically Direct
Metal Laser Sintering (DMLS). This model is based on
activity-based cost modeling as contrary to the conventional
method which is mostly the arithmetic sum of the direct and
indirect cost of raw material. The mathematical expression of
the total cost of the build is:

Cbuild = (Cindirect .Tbuild )

+ (w.Pricematerial)+
(
Ebuild .Priceenergy

)
(9)

Byun and Lee have introduced a mathematical model in
which time to build and surface roughness is considered to
calculate the optimum part orientation [48]. This correla-
tion of time to build with geometric parameters like cross-
section area, length, height representing the part orientation
to be built. Mathematically, this relation of time to build and
parameters under consideration has been shown in Equation
10 [48].

Tbuild = N

(
Tp + dp

(
Āp
Aphr
+

Āp
Apsr

))
+ ds

A
Asr

(10)

As = SAdd/N .lt (11)

Ap = vp/N .lt (12)

Part Cross sectional area (average) [mm2].
ld: Diameter of laser beam spot [mm].
Apsr : Area irate scanning the interior of the part [mm2/s] lt:

Thickness of layer [mm] Aphr : Area irate hatching the interior
of the part [mm2/s]mmaterial : Material mass[kg] Āsi: Average
cross section area of support [mm2] N : Number of layers
Asr: Area rate scanning the support [mm2/s] Cbuild: Cost
of build [$] Priceenergy: Energy consumed price [$ / J], dp:
Part density [kg/m3] Pricematerial : Material price [$/ kg], VP:
Process velocity [mm3/s] Cindirect : Costs related to machines
[$/ h] SA: Surface area of part [m2].
Cmaterial : Material Cost used in [$ / kg] TBuild: Total build

time [h] Tp: layer to layer idle time/period [s], w: Mass of the
piece [kg], ds: Supporting Structure Density [kg/m3] Ebuild :
Energy consumption to build[J].

a: ENERGY COST OF SYSTEMS
Total energy investment, EBuild , can be modeled. However,
a purely time-dependent element of power consumption must
be expected in the continuous operation of the AM machine.
Equation (13) can be use to total energy investment.

Ebuild =Ejob + (EtimexTbuild )

+
(
Elayerxl

)
+

z∑
z=1

∑y

y=1

∑x

x=1
Evoxelxyz

(13)

Eadditive=
∑

n=N

0.001(W )(twarmup)
3600
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+
0.001(W )(tRuntime)

3600
(14)

Cost =Costtool_path_generation + Cmachining + CTool
+Csetup + Cmaterial + Coverhead . (15)

Cmachining=Machining_Time

∗ (MachineCost/Hr + LaborCost/Hr) (16)

Total energy investment, EBuild , can be modeled. It is time-
dependent system and power consumption required to operate
the additive manufacturing machine. Mathematically power
or energy consumption is the product of time to build TBuild
and energy consumption rate ĖTime. To model the energy rate
ĖTime, means energy consumption during the additive manu-
facturing process by the machine. This energy has been con-
sumed by the machine components which continued in oper-
ation to complete the processing. These components are the
control system, heating system, cooling fan, and pumps. [47].
In the above equation, E shows the energy consumption of the
system in kilowatts if the w weight of part in kilograms for t
time of processing, and total parts produced N in a rum [49].
In the above equation, E shows the energy consumption of the
system in kilowatts if the w weight of part in kilograms for t
time of processing, and total parts produced N in a run [49].

2) COST ESTIMATION OF CNC AND ROBOTIC MACHINING
PROCESSES
In CNC machining the complete job is combination of gen-
eration of tool path, machining processing, replacement of
tool, and setup activities. In the same way, the cost involved
in complete CNC machining is the summation of all costs of
these actives. Mathematically, equation (15) used to calculate
the total cost of CNC machining job. CTool−Path−Generation:
Cost associated to the tool path generation. It is product
of time to design the tool path generation and salary of
programmer.

To simplify the process and use existing CAD (Computer
AidedDesign) / CAM (Computer AidedManufacturing) soft-
ware, after the user generates CNC tool route, the machining
time is read directly from CAM software. All operations can
be performed in plain text format by most CAM applications.
This performance includes tool time for cutting, total machine
time, and process parameters for cutting. The difference
between the time of the tool cutting and the overall time of
the machine is the change of tool and the time of engagement.
The tool change and cost of engagement is included in the
overall cost of the machining in this job. Computer funding
is translated to the expense of the system per hour which is
used in the expense of measuring the capital spending on the
CNC.
MachineCost/Hr = Machine_Purchase_Cost/(Yearsof

Return x Average_work_hours/year)
Machine-Purchase-Cost: CNC machine purchasing cost.

Years-Of-Return: machine ROI (Return on Investment) will
pay off. Average-Work-Hours-Per-Year, Labour-Cost-Per-

Hour.

Ctl =
∑n

i=1
(TLi × CTPi)i = 1, 2, . . . , n (17)

where i represents the No. of tools used, TLi represents the
tool life in use of tool i and CTPi is purchasing cost of tool i.
In order to calculate tool life Toylor’s formula (equation

18) with operation has been used.

VxT n = C (18)

where V is the cutting speed in ft. /min. i T is the tool life in
minutes. i in is a constant based on the tool material. i C is a
constant based on the tool material, work piece material and
the cutting condition. C can be obtained from manufacturer’s
manual or determined experimentally. With this information,
tool life can be calculated for any given cutting speed. A tool
may be used several times in the machining. The used tool
life for a tool can be calculated as following

TLi =
n∑
j=1

(
Tut
Tlj

) (19)

where TLi is tool life during in use of tool i and expressed
as a decimal fraction. It provides the information when tool
will be replaced. For example, if its value equal to or greater
than one, then tool replacement will due. No. of i operations
are represented by in of tool i; j is the index of operations of
tool i. Tutj is the tool usage time of operation j for tool i. Tlj
is the tool life at the cutting speed of operation j for tool i.
Csetup is the total cost associated to work piece location and
clamping. Cmaterial is the product of work piece volume and
the material cost per unit volume. Coverhead is for all other
costs that machining involves but not listed above such as
management, rent, electricity, etc. In this work, the fixture
component inventory is included in the overhead; the setup
operation cost and custom-made fixture cost are included in
the setup cost as shown in equation (20).

Csetup =
∑

(NSCOxCSCO + NTCOxCTCO + NCSOxCCSO
+NMSOxCMSO + NSSOxCSSO + TALxCULC
+Cpfso + Cpfmc + Csfso + Csfmc) (20)

Csetup = Setup-Cost, Nsco = No. of side-clamping-
operations, Csco = Cost per side-clamping-operation,
NTCO = No. of Top-Clamping-Operations, CTCO = Cost
Per Top-Clamping-Operation NCSO = No. of Complex-
Supportive-Operations, CCSO = Cost per Complex-Support-
Add-Operation, NMSO = No. of Medium-Supportive-
Operations, CMSO = Cost per Medium-Support-Add-
Operation, NSSO = No. of Simple-Supportive-Operations,
CSSO = Cost per Simple-Support-Add-Operation, TAT =

Alignment-Time, CULC = Unit Labor-Cost, Cpfso =

Cost of Pin-Fixture-Setup-Operation, Cpfmc = Pin-Fixture-
Manufacturing-Cost, Csfso = Cost of Special-Fixture-Setup-
Operation, Csfmc = Special-Fixture-Manufacturing-Cost.
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FIGURE 6. 3D view of burner nozzle assembly.

FIGURE 7. Scheme of system scenario.

IV. INDUSTRIAL CASE STUDY
The case study selected for this research is the manufacturing
of product called burner nozzle assembly as shown in Figure
6. It is an important component in boiler of sugar mills plant
and the cost relationship between AM, CNC machining and
robotic machining to measure the operational flexibility of
these processes.

The steps involved in the case study system scenario are
formulated in Figure 7.

In this empirical research, five combinations have been
considered for scheduled period of production. The combi-
nations are shown in Table 1. Combination A: No mixture

TABLE 1. Five combinations of production scheme.

TABLE 2. Product, operation and sequence of CNC machine.

of part operations, only base plate manufactured as per pro-
cess 1. Combination B: No mixture of part operations, only
bolts and Nuts 4 fabricated as per process 2. Combination C:
All parts are fabricated with same percentage, balanced oper-
ations. Combination D: with mix production, predominance
to part 1. Combination E: withmix production, predominance
to part 2.

Simulation has been done using four alternatives.
Alternative 1: Operations performed through automated

CNC machining with less flexibility, Alternative 2: Oper-
ations performed through CNC machining and robotic
machining with more flexibility, Alternative 3: manufactur-
ing using CPPS enabled robotic CNC and additive manufac-
turing and Alternative 4: Fabrication using Smart Additive
Manufacturing (DMLS).

In case of additive manufacturing, the operations treatment
on the part/product is bypassed. Only CADfile has beenmade
to fit the desired combination of parts on the tray. The desired
geometry will automatically be formed during laser metal
sintering process.

V. RESULTS AND DISCUSSION
A computer software has been developed to perform the sim-
ulations and show the interactive results. The development
detail of software is not included in this paper, it’s only
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TABLE 3. Operation and sequence of robotic CNC machine.

FIGURE 8. Operational flexibility alternatives [1, 2, 3, 4].

FIGURE 9. Max Capacity trendlrnatives [1, 2, 3, 4].

focused on the interpretation of results and its implications.
The results achieved are displayed in Figure 12 (alternative-
1), Figure 13. (alternative- 2), Figure 14. (alternative-3) and
Figure (Alternative-4).

It is clear from these graphs, the highest limit, the lowest
limit, and the operational flexibility, for each combination of
products. Classical architecture and design of manufacturing
machines are introduced in alternative 1 and 2.

FIGURE 10. Breakeven trend of alternatives [1, 2, 3, 4].

FIGURE 11. Comparison of proposed model with existing model.

It is clear from graphs in Figure 10 and Figure that
operational flexibility values for alternative 1 and 2 are
comparatively smaller. In comparison with alternative 1, the
alternative 2 has larger value of operational flexibility. Mod-
ern architecture and design of smart manufacturing machines
are introduced in alternative 3 and 4. It is clear from graphs
in Figure 14 and Figure 15 that operational flexibility values
for alternative 3 and 4 are bigger. And same is case with the
maximum capacity of these two alternatives. The reason of
elevation of operational flexibility and maximum capacity
is due to reduction in processing machine times and prod-
ucts shift and machine-to-machine transportation time, when
smart and flexible system has been introduced.

For instance, Robotic machining has capability of self-
controlled autonomous operations with optimized motion
of axis and tool, this provides the advantage of reduc-
tion in Operation and transportation costs. The breakeven
point (lower-limit) of alternative 2, 3 and 4 has exponential
trend as machines are expensive and machinery amortization
cost increased despite of less production cost as less labor
required for these systems machines, increase the operational
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FIGURE 12. Alternative 1Smart CNC machining.

FIGURE 13. Alternative 2, smart robotic CNC.

flexibility of smart manufacturing systems. On the other
hand. Alternative1 representing the manufacturing machines
with lesser flexibility and limited smart system compatibility.
In Figure 8 it is clear that the operational flexibility value is
bigger in case of Alternative 4. Alternative 4 corresponds to
the IoT enabled CPPS and smart machines. So, it is evident
that introduction of IoT enabled CPPS (smart systems) in
manufacturing system enhance the operational capabilities of
system. Higher value of operational flexibility in a system
represents its capability and capacity to increase the produc-
tivity. And accommodate the changing demand of product
mix and volume by the customer at operational level.

FIGURE 14. Alternative 3, smart additive manufacturing.

FIGURE 15. Alternative 4, smart hybrid additive and subtractive
manufacturing.

This property of smart system provides the competitive
advantage and on time delivery to customer. It represents
the comparatively rigid and without functional flexibility
system. Alternative 2 has same machine with functional flex-
ibility. Alternative 3 comprised of smarter and autonomous
manufacturing systems. Alternative 3 represents the robotic
machining system integrated with self-controlled and self-
drive CPPS. This system provides the more functional flex-
ibility. In alternative 4 additive manufacturing system (3D
printer, Direct Metal Laser Sintering) has been introduced.
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The operational flexibility shown growing trend for alter-
native 3 and alternative 4. It is shown in Figure 9, that
maximum capacity of alternative 1 and 2 have same values
because both using same type of machines.

So, the highest limit in both cases will be remained same.
Alternative 3 and 4 shown variations in highest limit as sys-
tem composed of two different types of smart manufacturing
machines.

Alternative 3 which represent the robotic machining has
shown consistent trend pertaining maximum capacity irre-
spective of combination of product operations. Alternative
4 shown maximum value of highest limit for specific] com-
bination of products. If the product size mixed with smaller
product in size, the maximum capacity can be attained by
using additive manufacturing. The breakeven trend of alter-
native 3 is higher as compared to alternative 1 and 2. First and
second Alternatives has lesser lower limit because the cost of
machines and labor cost are lesser in scheduled production
time. The operational flexibility of proposed system is much
improved than the existing one as shown in Figure 11. The
design and architecture of industrial internet of things enabled
cyber-physical production system provides more operational
flexibility. The property of system architecture give decision
makers ease to transform the system and introduction smart
capabilities.

VI. CONCLUSION
A. OBJECTIVE ACHIEVED
The results obtained from the proposed model has revealed
that the objective of measuring operational flexibility for
smart systems has been achieved. The new conceptual archi-
tecture model of CPPS enabled shop floor has been val-
idated using the novel mathematical modeling scheme of
operational flexibility measurement. The break-even point
for smart system adoption has been enhanced and same is
the case for maximum capacity of machines. Ultimately, the
improvement in operational flexibility has been observed
by enhancing these parameters using smart manufacturing
technologies. The initial investment cost is much higher for
implementation of hybrid manufacturing machines, on the
other hand return of investment (ROI) period is manageable.
The enhanced production capacity and ability to manage the
customized production make it possible to reduce the ROI
period. The proposed model will be more suitable option for
decision makers and industrial experts to gauge the opera-
tional flexibility of smart systems at planning phase prior
to make the high investment decision. It provides the way
out, the challenges faced by the decision makers, consultants,
and top management of manufacturing enterprises to intro-
duce the smart technologies. On-time delivery performance
through selective changes (smart technology selection) in the
machines and functional flexibility to get the optimal level of
operational flexibility. The major benefits of proposed model
are; to provide the guideline before investment decision
options to add the smart systems on the basis of operational

flexibility. Management can be facilitated about the decision
to purchase the machines on the bases of operational flexibil-
ity. As management have to reduce the break-even point by
introducing smart/more flexible systems. It will help to oper-
ationalization of human resource and machines in scheduled
time for production. And from the system designer prospect
it will helpful to give the clear understanding about smart
technologies improve the operational flexibility up to certain
level. It will be used to develop the characteristics based
decision support system for industrial application. As the
historical data stored in the cloud/data base is important to
develop the demand driven production in schedule period.
It will be helpful for management to develop the tool used
for decision regarding modifications/changes.

B. FILLING THE GAP
previously, the model based operational flexibility measure-
ment for smart manufacturing systems has not been carried
out. Only one study pertain to measuring the operational flex-
ibility has been conducted for conventional manufacturing
systems. Current study filling the research gap by developing
model based measurement of operational flexibility for smart
manufacturing systems. The operational flexibility measure-
ment of smart systems is relatively complex, complicated
and computation intensive process. The innovative model has
been developed to facilitate the decision makers for smart
manufacturing transformation.

C. LIMITATIONS
The scope of this study is confined at CPPS enabled shop
floor and consideration of relatively less complex produc-
tion scenario due to certain limitations. To study the entire
enterprise in all levels is cumbersome and complex process.
To carry out current study, research is divided in to module
and limited to CPPS at shop floor level. In industrial case
study one product is selected to test and validate the system
due limited access to the more complex smart production
facility for real-time data collection.

D. FUTURE WORK
The future prospect of this study is to implement in complex
enterprise environment like multiple shop floor, smart factory
and plant level situated at various locations. The proposed
model can be extended for the consideration of more complex
enterprise operations. This model can been used to develop
the decision support system to manage the smart industrial
applications. This work can be extended to implementing for
self-organizing model (Blockchain decentralized distributed
process control) and hybrid approach (blockchian and indus-
trial internet of things IIoT) decision architectures in smart
manufacturing paradigm.
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