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ABSTRACT The application of data deduplication technology reduces the demand for data storage and
improves resource utilization. Compared with limited storage capacity and computing capacity of a single
node, cluster data deduplication technology has great advantages. However, the cluster data duplication
technology also brings new issues on deduplication rate reduction and load balancing of storage nodes. The
application of data routing strategy can well balance the problem of deduplication rate and load balancing.
Therefore, this paper proposes a data routing strategy based on distributed Bloom Filter. 1)Superchunk is used
as the basic unit of data routing to improve system throughput. According to Broder’s theorem, k leastsized
fingerprints are selected as the Superchunk features and send to the storage node. The optimal node is selected
as the routing node by matching the BloomFilter, and the storage capacity of the node and maintained in
the memory of the storage node. 2) Design and implement system prototypes. The specific parameters of all
kinds of routing strategies are obtained through experiments, and the routing strategies proposed in this paper
are tested. The theoretical analysis and experimental results prove the feasibility of the strategies proposed
by this paper. Compared with the other routing strategies, our method improved 3% of the deduplication
rate, reduces the communication query overhead by more than 36% and improves the load balancing degree

of the storage system.

INDEX TERMS Cloud, deduplication, data routing, load balancing.

I. INTRODUCTION

Data is more important today than ever for enterprises and
individuals. With exponential growth of data, it is difficult to
manage a huge lump of data. Normally the volume of data
reaches the PB level even EB- level in the enterprise data
manage center, which increase the cost of data management.
Improving the storage efficiency on data backup has become
a research hotspot. Almost 75% data in the data world are
duplicated based on survey [1], and duplicated data reaches
approximately 90% in the backup data and file system [2].
The development of deduplication technology in recent years
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has provided an effective solution for duplicated data, and
deduplication is a data compression strategy applied to stor-
age systems with high data compression rates [51]-[56].
Limited to the computational and storage capacity of a
single node, Cloud Deduplication (CD) makes use of the
powerful storage capacity and parallelism of clustered sys-
tems so that deduplication can be used in large-scale dis-
tributed storage systems [57]-[60]. Cloud deduplication is
benefit for data routing strategy to send data to each storage
node and implement data deduplicate at each storage node,
or the data is deduplicated before it is sent to the storage node.
Both approaches have their pros and cons, but to ensure the
parallelism of the system and low system overhead, the cur-
rent cluster deduplication system mainly uses the former for
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data routing [3]-[5]. Implement the routing strategy requires
maintaining fingerprint indexes of data blocks in the memory
of storage nodes, which the size of data block is 4KB and the
fingerprint size of each data block is about 40B. The ratio
of the size of the block fingerprint to the size of the data
volume is about 1:100 [6]. Considering the memory space
limitation of storage nodes and the cost limitation, such a
huge amount of fingerprint indexes cannot be stored in the
memory of storage nodes, so most of them are stored on disk,
and the needed fingerprint indexes are read into the memory
only when deduplication is performed. However, too many
disk accesses will cause disk bottleneck problems and lead
to lower system throughput. At the same time, in the cluster
deduplication system is often only the data stored in the node
itself for deduplication, which will lead to a reduction in the
overall deduplication rate of the entire system, and also lead
to a large number of duplicate data routed to a few nodes
resulting in load imbalance. Hence, the main problems facing
cloud deduplication are query performance, deduplication
rate, and load balancing.

With the development of cloud computing, cloud com-
puting services not only unify the deployment and manage-
ment of data resources but also optimize the utilization of
resources. In contrast, cloud storage is a cloud computing ser-
vice with data storage and management as the core. Applying
deduplication technology to cloud storage systems and using
the computing and storage capabilities of nodes in cloud
storage can improve the performance of the entire storage
system. However, managing a large number of storage nodes
in the cloud storage system and ensuring node load balancing
while avoiding a significant drop in deduplication rate are
two key issues that need to be addressed. The main role of
the data routing policy is to send the data from the client to
the storage nodes. It needs to send as many duplicate data
to the same node as possible. However, after a certain time,
it will cause the state that some nodes store a large amount
of data of the system while other nodes are idle, so how
to balance these two problems is the key point to consider
in the data routing policy. The routing strategy proposed in
this paper, using the data similarity principle and relevant
information such as storage node capacity, achieves a balance
between the redundancy rate and load balancing, avoiding
a significant drop in the redundancy rate while achieving a
balanced distribution of data in the storage nodes.

Il. RELATED WORK

Cloud deduplication systems are widely used in data centers
nowadays. To achieve a cluster deduplication system with
high throughput and high storage space, an effective and rea-
sonable routing algorithm is essential, and routing data to the
corresponding nodes in the cluster at a more reasonable data
granularity is also an effective measure to improve the system
performance. Cluster deduplication system has the advantage
on improving storage space utilization and decreasing the
reduplication rate, so the overall deduplication rate would
decrease with the number of nodes in the cluster increases.
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An effective solution is to send duplicate data to the same
node as much as possible to ensure the deduplication rate of
the system. Another important issue in clustered systems is
that sending a large amount of duplicate data to the same
node can cause load imbalance among nodes, which seri-
ously affects the system throughput rate and further limits the
system performance. Therefore, the routing algorithm need
to ensure the load balance of the system while keeping the
deduplication rate.

The main consideration in cluster deduplication is how to
send data to the storage nodes. NEC’s HYDRAstor system
uses a 64KB data block granularity [8] and uses distributed
hash tables (DHTSs) to determine the routing nodes for the
data. Although this strategy is effective in reducing the com-
munication overhead, but taking use of larger data block
granularity reduces the data deduplication rate, and it need
to update the hash table when the data changes in the cluster.
The hash table stores the fingerprints of data blocks, and each
block fingerprint occupies only a small amount of storage
space. However, the hash table becomes very large when the
stored data is huge. It is difficult for the node memory to
maintain such a huge hash table, which needs to be transferred
to disk storage, and bring about the disk bottleneck problem.

EMCstateful and EMCstateless are stateful and state-
less routing policies proposed by EMC, respectively [9].
To ensure the performance of the deduplication system, both
policies use superchunk as basic routing unit. Superchunk is a
colleetion of data chunks, which its size is from 1M-16M and
vary depending on the system. The stateless routing strategy
selects the representative fingerprint ID of the Superchunk
to select the routing node, usually using a hash algorithm to
get the corresponding routing node, and a hash table is used
within the node to maintain the data information inside the
node. This strategy has a good load balancing effect in small-
scale clusters, but the shortcoming is low deduplication rate
and poor scalability, and it is difficult to guarantee the load
balancing effect when the cluster is too large. Stateful routing
is mainly used in large-scale clusters, where the fingerprint
of the superblock needs to be sent to all storage nodes before
sending the superblock to the storage nodes, which maintain
the BloomFilter of the data block of the current node. Then
the optimal storage node is calculated by querying the number
of hits of the fingerprint in the superblock and the load of
the storage nodes. The objective is to route as many dupli-
cate data as possible to the same node while ensuring load
balancing. This strategy ensures a good deduplication rate
in a clustered environment. However, the system throughput
overhead caused by the broadcast data query method and the
BloomFilter with many fingerprints maintained within the
query node greatly affect the system performance.

Extreme Binning is a stateless data routing strategy based
on file similarity [5]. This policy is based on Broder’s the-
orem, which selects the smallest block fingerprint of a file
as the representative fingerprint ID of the whole file. If the
smallest block fingerprints of two files are the same, then the
two files have high similarity. In the same way, a two-level
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structure is used for data maintenance inside the storage node.
The primary index in the memory of the storage node stores
the representative fingerprint ID of the file, and one bin (box)
is used to store the data in the disk. Each time deduplication is
performed, the corresponding bins are read into the memory
for deduplication to avoid bottleneck problem. This strategy
has a high deduplication rate, but the stateless-like routing
approach and the uneven file size lead to the same load
imbalance problem as the stateless routing strategy.

Boafft is a routing policy that uses Broder’s theorem and
partial sampling of the Superchunk to select the represen-
tative ID of the Superchunk [10]. This strategy divides the
Superchunk into several same size regions, selecting the
smallest block ID in each region, and then sending these rep-
resentative IDs to all storage nodes, maintaining the metadata
information of the data blocks in the memory of the storage
nodes. and also uses the structure of container in the disk to
save the data blocks, reducing the disk I/O by this method.
While using Jaccard distance [11], the similarity of each node
is calculated, and then the optimal routing node is obtained by
the corresponding calculation. This strategy selects the Super-
chunk representative ID by sampling the Superchunk, which
greatly improves the similarity determination of the Super-
chunk. In addition, this strategy also utilizes the broadcast
type of query, which causes excessive system communication
overhead.

> -Dedupe is a stateful routing policy based on Super-
chunks [12], which is different from EMC'’s stateful routing
policy in that in the memory of the storage node, this policy
uses a similarity index table to keep the representative fin-
gerprint IDs of all Superchunks stored in that node, similar
to the primary index of Extreme Binning, where each repre-
sentative fingerprint ID corresponds to an Instead of sending
fingerprints to all storage nodes to select the best node as
the routing node, the strategy selects the k smallest block
fingerprints of the superblock, uses these k fingerprints to
model the number of nodes to select k alternative storage
nodes, then sends k fingerprints to all alternative nodes, calcu-
lates the similarity using Jaccard distance, and then uses the
capacity of the storage nodes The matching values of each
node are calculated to select the optimal node. This strategy
achieves global load balancing by implementing local load
balancing by selecting a small number of representative IDs
to send to a small number of storage nodes, which reduces the
communication overhead within the system.

Big data refers to the large scale of the data set’s
capacity, which is difficult to store, analyze and pro-
cess by the traditional technical methods. Big data has
brought new challenges to the existing storage systems on
capacity, maintainability, throughput performance, scalabil-
ity, and reliability. For the great demand on the storage
space for big data, it is necessary to eliminate redundancy
on which saving data and optimizing storage space can
effectively alleviate the pressure on storage capacity. The
existing technologies to eliminate redundant data mainly
include data compression [3], [36], [39], [40]-[45] and data
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deduplication [4], [37], [38], [46]. In the above two tech-
nologies, data compression refers to a technology that uses
fewer bits of storage to express the original data by using
encoding methods. However, although the data compression
algorithms can effectively reduce data size, it has relatively
strict space limitations. Using data compression for two files
with the same content will still get two identical compressed
encoded files, and then complete the reduction of stored
data. Data deduplication technology is a technology that
discovers and eliminates duplicate content in the data stream
to improve data storage efficiency and reduce data storage
costs [32], [47]-[49]. This technology reduces the data stor-
age occupancy of the system by eliminating duplicate data in
the data stream and only retaining the data that appears for
the first time.

In enterprises, it is necessary to adopt some traditional
backup technologies to improve the security of the system,
such as periodic backup and snapshot technologies. These
technologies increase the data redundancy in the storage
space and make the amount of duplicate data in the storage
system reaching more than 90% [5], [50]. These duplicate
data increase the cost of data storage and processing. The
disk-based backup system with the deduplication function
can first delete the duplicate data to achieve data compression,
thereby greatly reducing the cost of data storage. Therefore,
research on data deduplication technology is very important
for optimized storage of big data.

Ill. DISTRIBUTED BLOOMFILTER-BASED DATA ROUTING
STRATEGY

This section designs a distributed BloomFilter-based data
routing strategy that enables fast data routing queries using
BloomFitler and a few superblock representative fingerprint
IDs. Unlike EMC’s stateful routing strategy, this routing strat-
egy uses BloomFilter to maintain the superblock representa-
tive fingerprint IDs in the memory of the storage node without
all the fingerprint indexes stored in that storage node. Only a
few superblock representative fingerprint IDs are sent. A few
routing nodes are queried during the query process to achieve
global load balancing using local load balancing.

A. SIMILARITY OF SUPER BLOCK

In cluster data deduplication, to ensure system throughput,
normally the routing units is a super block. Before sending
data, the destination node of these superblocks needs to be
determined. It is necessary to determine which storage node
stores the most duplicate data in the super block. To reduce
the communication overhead of the system, it is impossible
to send the data block to all storage nodes for one-by-one
comparison. Methods such as MDS5 or SHA-1 are often used
to calculate the fingerprint information of the data block, send
the data fingerprint information to the storage node, and then
use the relevant data. The similarity algorithm determines
the similarity of the data. This paper uses BloomFilter to
judge the similarity of superblock data. It uses BloomFilter
to query the advantages of high efficiency and low storage
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FIGURE 1. Similarity matching diagram.

occupancy while avoiding the influence of misjudgment rate
on data judgment. In addition, to ensure load balance in a
cluster storage system, it is not only necessary to send as
much duplicate data as possible to the same storage node,
but also to combine the storage load of the storage node and
comprehensively select the storage node as the destination
node for data routing. As shown in Figure 1, suppose that
the number of k representative fingerprint IDs is 8, and the
number of storage nodes in the cluster deduplication system is
4. As shown in the figure, for Node0, 2 of the 8 representative
fingerprint IDs have BloomFilter in the storage node, and
the storage capacity of the storage node is 0.5. For Nodel,
4 fingerprints already exist, 2 in Node2, and 4 in Node3.
Intuitively speaking, the superblock should be sent to Nodel
or Node3, but from the figure 1, It shows that a large amount
of data has been stored in these two nodes. Continue sending
data to the two storage nodes will lead to no more storage
capacity to receive incoming data on those two storage nodes
for a short while. Therefore, the method of selecting nodes in
this article uses Ci/Vi (Ci represents the number of data block
fingerprints that have been stored in BloomFilter in storage
node i, and Vi represents the data block capacity of the storage
node has been stored) to calculate the optimal node for data
routing. It can be seen from the figure that the value of the
calculation result of the Node2 node is the largest, so Node2
is selected as the final node of the data routing.

Node?2 node only has two data block fingerprints matching
successfully, and sending the super block to this node is not
the optimal choice in terms of deduplication rate. In actual
application, the system starts from the data routing of the first
super block and considers the optimal storage node; instead
of considering the deduplication rate first, the data based
on load balancing starts after the entire system has stored a
certain number of data blocks. Routing strategy. Therefore,
afterload balancing is adopted in the entire deduplication
system, the storage capacity of all storage nodes is increased
simultaneously. There will be no storage capacity of some
storage nodes that is much larger than the storage capacity
of other nodes. Therefore, when the similarity matching of
the super block is used, the storage capacity of the storage
node is relatively balanced, and the situation shown in the
figure will not occur. Some storage nodes still have free space
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FIGURE 2. Cloud deduplication system architecture diagram.

even it stores a large amount of data. Therefore, practical
applications, when the storage node stores more balanced
data, the main factor determining the routing node of the
superblock is the number of matching fingerprint IDs. Only
using max (Ci/Vi) may not be a good choice, so using the
set threshold or the average storage capacity of the system to
select the optimal storage node strategy are proposed. Use the
set threshold or use the average storage capacity of the system
to select the optimal storage node strategy. Literature [9] sets
a threshold, which specifies the minimum value of Ci. When
the value is lower than this value, the storage node will not
be considered. This can solve certain problems. In addition,
the storage capacity of the node exceeds the system. The
percentage of the average capacity of all storage nodes and the
product of Ci/Vi is used as the judgment basis for selecting the
optimal routing node. These methods have achieved certain
results.

B. SYSTEM DESIGN

The routing algorithm proposed in this section is based on
the cluster deduplication system architecture as in Figure 2.
It is not possible to send all the data of the superblock to the
storage node for querying to determine the routing node when
data routing is performed. If the storage node uses indexed
tables to store the data block fingerprints, then the storage
node does not have such a large memory space to keep all
the fingerprint data. It is also possible to maintain in memory
only a representative fingerprint ID index of the superblock.
This approach can reduce a large amount of memory space,
but the sequential query mode of the index table increases the
communication overhead of the system. BloomFilter is used
to manage fingerprint indexes in memory, and stateful routing
policies use this approach, but this causes a large amount of
system overhead.

This algorithm improves the query speed of fingerprints
by maintaining BloomFilter in the memory of storage nodes
representing fingerprint ID indexes, while selecting the k
smallest block of fingerprints, by querying the number of
fingerprints already maintained in BloomFilter for these k
fingerprint indexes and the capacity of storage nodes and
then using the corresponding calculation to get the optimal
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FIGURE 3. Backup metadata information.

storage node as the data routing node. Selecting the optimal
routing node among a small number of storage nodes leads
to a decrease in the overall deduplication rate of the system
compared to the globally optimal routing strategy because the
storage node is a locally optimal node rather than a globally
optimal node. Therefore, considering the storage capacity
and deduplication rate, this policy selects n (< k) minimum
block fingerprints to add to BloomFilter as the maintained
superblock fingerprint index. The role of each part in this
algorithm is analyzed below according to the cloud storage
system structure diagram in Figure 2.

1) CLIENT-SERVER

The main function of this part is to process the data
stream. In this algorithm, when the client-server receives the
uploaded data stream, it performs data chunking, calculates
the fingerprint of the data block, and the combination and
routing of the superblock.

Also, after determining the routing node of the data,
the metadata information of the data needs to be sent to
the metadata server for data recovery. When determining the
routing node, k minimum block fingerprints are sent to the
storage node for querying instead of sending the data blocks
to the storage node, which can reduce the communication
overhead of the system.

2) METADATA SERVER

The format of metadata backed up by the metadata server
is shown in Figure 3. There are multiple Superchunks rep-
resenting fingerprint information in the backup metadata
information, including the fingerprint ID of the Superchunk
and the specific address of the Superchunk in the stor-
age node. The multiple superblock representative fingerprint
information is because the data blocks may be assigned
to different superblocks. Hence, the data block information
after a superblock representative fingerprint ID is all data
blocks in the same superblock, and the data block finger-
print information includes the data block fingerprint and
the specific name of the data block. When data recovery
is performed, the superblock representative fingerprint and
data block fingerprint are sent to the corresponding storage
node. The superblock representative fingerprint is used to
determine the container in the disk where the data block
fingerprint is located without searching the whole disk. Then
the data recovery algorithm is used to recover the required
data.
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FIGURE 4. Fingerprint data block correspondence table.

3) STORAGE NODE

BloomFilter is used in the storage node to maintain the n
representative fingerprint IDs of all the superblocks stored
in the node, that is, the n minimum block fingerprints of the
superblocks, instead of maintaining all the data block index
information, because storing all the fingerprint information
requires considerable storage space, in addition to the query
operation also requires much time. The data is stored on disk
in containers one by one, and each container has the same
superblock representative ID. Container stores the fingerprint
information, including real data blocks and all data blocks,
and the correspondence between fingerprint and data blocks.
As shown in Figure 4, the table is stored in the container
and needs to be utilized for de-duplication within the node.
ChunkID indicates the fingerprint of the data block, and
ChunkName indicates the name of the corresponding data
block.

To improve the efficiency of deduplicated data queries and
reduce memory occupation and disk I/O, the structure shown
in Figure 5 is used for optimization at the storage node.
As shown in the figure, the BloomFilter, including the node
and the fingerprint cache, are stored in the memory of the
storage node. The structure of the fingerprint cache includes
the ID of the container and the fingerprint of the data block
saved in the container. The fingerprint information of the
data block and the ChunkName are saved to the index table
maintained in the container only when the non-duplicate data
is written to disk. After the superblock is sent to this node,
the method of Min(ID) mod N (Min(ID) indicates the min-
imum chunk fingerprint of the superblock, and N indicates
the number of containers in the disk) is used to select the
container corresponding to the superblock. If the container
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FIGURE 5. Logical structure of storage node.

exists in the cache, the duplicate data is directly deleted. Then
the non-duplicate data is written to the cache and container,
if the container is not in the cache, the container is read for
deduplication, and the cache is updated using LRU. Since
using only the minimum block, fingerprint ID may lead to
a low deduplication rate, the wWrR method [33] can be used
to read the container and perform deduplication.

C. ALGORITHM DESCRIPTION

BloomFilter has faster query speed and lower memory con-
sumption than the traditional indexing method of hash table
and similar index table, so it can further reduce disk 1I/O
by applying a larger cache structure. Although BloomFil-
ter has the problem of false-positive rate, the distributed
BloomFilter-based data routing strategy proposed in this
chapter does not utilize The BloomFilter-based data routing
strategy proposed in this chapter does not utilize BloomFilter
for deduplication, thus avoiding the impact of misclassifica-
tion rate on deduplication. The in-memory index structure of
the storage nodes is designed to achieve fast query and data
deduplication while ensuring load balancing of the storage
nodes.

The minimum k block fingerprints of the superblock are
selected based on Broder’s minimum independent replace-
ment theorem. These k fingerprints determine p (p < k,
because the same node number may be obtained) storage
nodes. The optimal node is selected as the data routing node
after calculating these p nodes using the corresponding algo-
rithm. Finally, the n (n < k) minimum block fingerprints are
added to the BloomFilter, achieving global load balancing
through local load balancing. Also, Broder’s theorem it does
not significantly reduce the deduplication rate compared to
the stateful routing strategy but also reduces the query time
and decreases the memory usage.

To reduce disk I/O, the data is stored in each container
(container), and each container stores the superblock with the
same value after the representative fingerprint ID is calculated
by hash. When deduplication is performed, the container
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number is obtained by hash calculation, and the correspond-
ing container is read into memory for deduplication. The
new data is stored in the container and then written to disk.
The fingerprint cache is the fingerprints in the recently used
containers in memory to reduce the disk I/0O. The specific
flow chart is shown in Figure 6.

1) The client-server divides the data into blocks and com-
bines them into superblocks.

2) Choose k minimum block fingerprints (Cy, C,...Cy),
and determine p nodes (p < k) through C;%N (N is the
number of nodes).

3) Send k fingerprints to the corresponding p nodes, and
query the BloomFilter in the memory to obtain the matching
number of each node (Hy, Ha...Hp).

4) If the values of Hy, Hj...Hp is all 0, the node with the
smallest storage capacity is randomly selected as the routing
node.

5) If the values of Hj, Hp...Hp is not all 0, divide the
number of matches by the node capacity Hi/Vi, and select
Max (Hi/Vi) as the data routing node.

6) Send the superblock to the storage node, add the n min-
imum block fingerprints of the super block to BloomFilter,
use the minimum block fingerprint ID of the super block to
select the corresponding container (or use the wWrR method,
which can increase a certain deduplication rate but increase
the disk I/O).

7) If the container is already in the cache, the deduplication
will be performed directly; if it is not in the cache, the
container will be read into the memory.

8) If the container is not read, after deduplication, the non-
duplicated data is directly added to the cache and then written
to the disk. If the container is read, the LRU updates the cache
after deduplication, and the data is written to the disk.

The meaning of distributed BloomFilter is that each storage
node maintains a BloomFilter in its memory, where only n
representative fingerprint IDs of each superblock are stored.
This results in a high redaction rate and, at the same time,
causes too much communication overhead in the system

VOLUME 10, 2022
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FIGURE 6. Flowchart of distributed BloomFilter-based routing policy.

because the system needs to send the fingerprint information
to all nodes for the query. In contrast, this method does not
need to use a broadcast-like approach to send the data to
all nodes, but only to some nodes, and also ensures load
balancing of the entire storage node and does not cause a
significant decrease in the deduplication rate. The overall
system architecture of the algorithm is shown in Figures 7.
As shown in Figure 7, the algorithm uses the logical
structure shown in Figure 5 at each storage node. Bloom-
Filter maintains the n minimum block fingerprints of all the
superblocks at that storage node, which is then representative
fingerprint ID of the superblock. This avoids the problem of
false positive rate caused by Bloom Filter, because we only
use Bloom Filter to determine whether the super block is sent
to the storage node, while deduplication within the node is
still performed using the fingerprint index table stored in the
disk in Figure 4. Because the algorithm uses a sampling of
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the superblock to select a representative fingerprint, the worst
that can happen when matching the BloomFilter (although the
probability of this is extremely low) is that a storage node will
have one or two more matches, but this may not be the final
basis for routing the superblock to that node. The BloomFilter
is also designed to match the maximum storage capacity of
the storage node to minimize the misclassification rate and
the impact of the misclassification rate.

Since there are multiple data blocks in the superblock,
reading the container by the minimum block fingerprint of the
superblock will cause a certain decrease in the deduplication
rate. So that the wWrR method can improve the deduplication
rate, but it will cause an increase in disk I/O, so in practice,
it can choose a specific algorithm according to the specific
needs. Extreme Binning takes the file as the unit, the data
block signatures of all files with the same minimum block
fingerprint are stored in a box, and the box is indexed by
the minimum data block fingerprint of this box. These boxes
contain the same minimum block fingerprint. So that these
boxes may contain many of the same data blocks. When
processing a new file, Extreme Binning selects a box by its
minimal block fingerprint and updates it. wWrR is an exten-
sion and generalization of Extreme Binning, which we selects
r minimal block fingerprints of superblocks. It then uses these
r minimal block fingerprints to determine r containers, and
after deduplication to write non-duplicated. In this paper,
by selecting the superblock r minimum block fingerprint and
then using this r minimum block fingerprint to determine the r
containers, after performing deduplication the non-duplicated
data is written to the w containers, which are determined by
the w minimum block fingerprint. w < r in practice. Extreme
Binning reads a box and then updates this box (a total of
two I/O operations are required). In contrast, wWrR requires
w + 1 I/O operations.

D. ALGORITHM SCALABILITY
Due to the gradual increase in storage demand, data centers
need to increase the storage capacity of the system according
to the storage situation, while one of the advantages of clus-
tered storage architecture is to expand the storage capacity of
the system by adding storage nodes according to the needs
of users. Therefore, whatever the system can continue to
meet the load balancing requirements when the storage nodes
are increased is a situation that must be considered in a
data routing strategy. In the case of increased storage nodes,
some of the data stored in the storage nodes may need to be
transferred to the newly added storage nodes, and this is an
important research point for cluster deduplication. However,
this aspect is not in the scope of this paper. Therefore, the
definition of scalability in this paper refers to whether the data
routing policy still adapts well to the deduplication system
when both the storage size and the storage node size increase
accordingly. There is still a good system deduplication rate,
a good load balancing situation, and a low load.

The distributed BloomFilter-based data routing policy
simply selects the k smallest block fingerprints as the
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representative fingerprints of the superblock to determine p
routing nodes. It then selects the optimal node among these
p as the final routing node, whether the method implemented
can achieve load balancing. The following theorem can be
obtained here [34].

Theorem 1: If the k representative fingerprints in the
superblock obtain the local load balancing achieved by k
storage nodes under the modal operation, all storage nodes
under the whole clustered system can approach the global
load balancing.

It is proved by using the converse method. Suppose
there are N storage nodes in the cluster when N is much
larger than k. If the original proposition is false, then there
exist two load cases for storage nodes, high-load nodes
{Hi...., H;} and low-load nodes {Ly,..., L;}, where there are
i + j = N. For any superblock representative fingerprints,
either map to high-load nodes or mapped to low-load nodes.
If the representative fingerprints of superblock A are mapped
to high load, and the fingerprints of superblock B are mapped
to low load, then a superblock C is constructed with half
from superblock A and a half from superblock B, so half
are mapped to high load, and half are mapped to low load.
Therefore, superblock C is neither high load nor low load,
forming a paradox, so the original proposition is true. We can
obtain global load balancing by implementing local load
balancing.

Although the distributed BloomFilter-based data routing
strategy can achieve better load balancing as the system
scales, there are certain drawbacks. If the k smallest block
fingerprints are chosen to remain the same, then the number
of p storage nodes determined by these k smallest block
fingerprints also remains the same. Then the probability of
the optimal routing node of the system being selected for
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the superblock will decrease, and the probability decreases
as the system grows larger. Although the deduplication rate
decreases gradually, the system performance also increases
with the increase of system nodes, compared with the broad-
cast query. Therefore, in practice, this data routing strategy is
suitable for deduplication systems with high system perfor-
mance requirements. If the system has a high deduplication
rate requirement, it is necessary to use the relevant strategy to
improve it.

This section proposes a data routing strategy based on
distributed BloomFilter, which uses deduplication at storage
nodes, selects a small number of data block fingerprints
according to Broder’s theorem, and uses these fingerprints to
determine a small number of storage nodes, which is imple-
mented through partial load balancing Global load balanc-
ing, this strategy can effectively reduce the communication
overhead of the system, and is suitable for large-scale cluster
environments.

IV. EXPERIMENTAL EVALUATION
A. DATA SET AND EXPERIMENTAL ENVIRONMENT
In order to verify the distributed BloomFilter-based data
routing strategy, a total of 124.3G of kernel file data from
Linux 3.0.1 to Linux 4.6 was selected. Meanwhile, this exper-
iment is based on the simulation experimental environment,
using a single machine to simulate the cluster environment.
All data files are divided into data blocks according to the
size of 4KB by using the fixed-length chunking method. The
fingerprints of all data blocks are calculated using MDS5, and
then all data block fingerprints are processed. The experimen-
tal test environment is shown in Table 1.

Due to the performance limitations of the stand-alone envi-
ronment and the need to simulate clusters, this experiment

VOLUME 10, 2022



Q. He et al.: Research on Data Routing Strategy of Deduplication in Cloud Environment

IEEE Access

TABLE 1. Test host configuration.

Software and hardware Configuration information

environment

CPU Inter® Core™ i7-10700K CPU
@3.60GHz

RAM 16GB

Disk 2TB HDD+500GB SSD

operating system Winl0

Operating environment JDK1.8

uses a simulation cluster for experimental testing, using a
new folder in the disk as the storage node for simulation,
each storage node stores a txt file with fingerprint data, each
txt file represents the container stored in the disk, each time
the deduplication type will read the txt file into memory
After data processing, the non-duplicate data is written to
the txt file. Then the number of fingerprints in the txt file is
calculated with the original number of fingerprints to obtain
the deduplication rate of the system.

B. EXPERIMENTAL RESULTS AND ANALYSIS

In this experiment, the Superchunk is used as the basic
unit of data routing. The distributed BloomFilter-based data
routing strategy select the k smallest block fingerprints in
the Superchunk as the representative fingerprint ID of the
Superchunk and how to determine the value of k is also an
important condition that affects the deduplication rate of the
system, and in the literature [30] by, In addition, the size
of the superblock also has an impact on the deduplication
rate and system overhead, the stateful data routing strategy
uses a 1MB size superblock. In contrast, the literature [30]
uses a 16MB superblock size. 16MB superblock size, due to
the simulation-based experimental validation approach used
in this experiment, a 4MB size superblock is used as the
basic unit of data routing by balancing the deduplication rate
and system performance. In addition, due to the distributed
BloomFilter-based, as the system nodes, increase there will
be a lower probability of the global optimal storage node
being selected, the storage nodes need to maintain more rep-
resentative fingerprints, while considering the storage occu-
pancy and performance aspects, this paper selects the four
smallest block fingerprints in the superblock to add to the
BloomFilter maintained by the storage nodes.

Firstly, we test the comparison of the deduplication rate of
the algorithms proposed in this paper under different storage
nodes. As shown in Figure 8, Stateful denotes the stateful data
routing policy, DRMF [19] algorithms and X-Dedupe [12]
algorithms, Stateless denotes the stateless data routing pol-
icy proposed in this paper, and DBF denotes the global
BloomFilter-based data routing policy proposed in this paper.
In the experiments, five storage nodes, 8 nodes, 16 nodes,
32 nodes, 64 nodes, 128 nodes, 256 nodes, and 512 nodes,
are selected to verify the number of nodes.

From Figure 8, we can see that as the storage nodes
increase, the stateful routing policy selects the optimal
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FIGURE 8. Deduplication rate of routing strategy.

storage node based on all the data blocks in the superblock,
so the overall deduplication rate of the system does not
decrease significantly as the nodes increase and still main-
tains a very high deduplication rate. However, the state-
less data routing strategy decreases quite severely with the
increase of nodes. The deduplication rate decreases to about
20% in the case of 128 nodes, mainly because the stateless
routing selects the first 64 bits of the first data block finger-
print in the superblock as the representative fingerprint ID
of the superblock. Because DRMF uses data characteristics
for routing, the effect is slightly lower than the strategy in
this article by 3%. This strategy cannot be used to determine
the similarity of the superblocks essentially. Mainstream data
routing strategies are mainly used to improve the dedupli-
cation rate of the system and exploit the principle of data
similarity and locality. The distributed BloomFilter-based
data routing policy proposed in this paper has a correspond-
ingly higher deduplication rate than the stateless data routing
policy, which is lower than X-Dedupe. With the change of
the number of nodes, the performance improvement of the
algorithm in this paper relative to X-Dedupe can reach up
to 10%. However, this routing strategy achieves the idea
of global load balancing through the local load balancing
strategy. only a few optimal nodes are selected among the
nodes, which mean that the selected nodes could be local
optimal nodes instead of global optimal nodes.

which means that it is likely that the optimal nodes in the
global are not in these selected storage nodes. The probability
of being able to obtain the global optimal storage nodes
decreases as the number of nodes in the system increases.
Only local merit selection is possible, so as the storage nodes,
Therefore, as the number of storage nodes increases, the
deduplication rate decreases to a certain extent.

The distributed BloomFilter-based data routing strategy
only keeps the fingerprint index of the n smallest blocks of the
superblock in the BloomFilter in the memory of the storage
node In order to minimize the memory occupation, it can be
seen from Figure 8 that only the n smallest block fingerprint
index is maintained In the case of constant data volume, the
deduplication rate of the system decreases with the increase
of storage nodes, which This is mainly because the distributed
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BloomFilter-based data routing strategy selects only p storage
nodes using k minimum block fingerprints in order to save
the communication overhead of the system, and selects the
optimal storage node from these p storage nodes as the node
for data routing, so the optimal node of these p storage nodes
is not necessarily the global optimal storage node, so with
the increase of storage nodes, the global The probability
of the optimal node being selected further decreases as the
number of storage nodes increases, so the deduplication rate
decreases somewhat with the increase of storage nodes in
the system, but still improves to a large extent compared
to the stateless data routing strategy. Therefore, when design-
ing the experimental system, the number of storage nodes
needs to be designed according to the stored data to balance
the performance and deduplication rate issues as much as
possible.

In order to verify the load balancing of the two data routing
strategies proposed in this paper, we use the number of data
blocks after deduplication of storage nodes as the basis for
judgment. The fluctuation of the number of connected lines
of all storage nodes storing is data blocks can indicate the
load balancing of storage nodes because the stateless data
routing strategy has been The stateless data routing policy
has been shown to create load imbalance in case of too many
system nodes [9] and the data routing policy does not consider
load balancing, so it is not compared with the stateless data
routing policy in this experiment. This experiment tests the
load balancing of the three policies in 16 storage nodes and
64 storage nodes, which are two sizes of storage nodes,
to verify the load balancing of the two policies at different
sizes of storage nodes.

First, we tested the load balancing of the system stor-
age nodes based on the distributed BloomFilter data routing
policy at 16 storage nodes and 64 storage nodes, and the
experimental results are shown in Figures 9 and Figure 10.
Here, the load balancing of the system is verified by using the
number of non-duplicated data remaining in the storage nodes
after deduplication, and the load balancing of the storage
nodes is reflected by the connection of the storage situation of
these nodes. The vertical coordinate in the figure indicates the
number of remaining non-duplicate data in the storage nodes.
We can judge the load balance of the system storage nodes by
the fluctuation of the data volume in the nodes. The smaller
the fluctuation, the better the load balancing of the storage
nodes, and the larger the fluctuation, the greater the load bal-
ancing of the storage nodes. In the figure, ulb means unload
balance. As shown in the figure, without considering load
balancing, the data volume of each storage node fluctuates
greatly, and this phenomenon will become more obvious with
the increase of storage nodes and data volume. However, it is
necessary to adopt a load balancing strategy.

As shown in Figure 9, Figure 10, the figures indicate the
remaining non-duplicated data blocks in the storage nodes
under the capacity of 16 storage nodes and 64 storage nodes
with the distributed BloomFilter-based data routing policy
with and without considering load balancing. The number of
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non-duplicated data blocks remaining in the storage nodes
in both cases with and without load balancing. The load
balancing of the system can be known by the connected
situation. From the figure, it can be seen that the number
of non-duplicate data blocks in the storage nodes without
considering load balancing is unevenly distributed, and the
gap between their extremely and extreme small values is
large. After using the load balancing policy, the number of
non-duplicated data blocks stored in the storage nodes fluc-
tuates within a certain range. There is no large difference
between the maximum and minimum values. If there is a
large difference between the extreme values, then it means
that some storage nodes in the system store a large amount
of data, and some storage nodes store a small amount. When
the number of nodes is small, the clustering phenomenon of
users becomes more obvious. When calculating the weighted
similarity, the similarity difference between the superblock
and each node is much higher than the load difference. At this
time, the weighted similarity effect is not obvious. However,
as the number of nodes increases, the physical load balance
of the algorithm is more reasonable than X-Dedupe.

In addition, in the case of two sizes of storage nodes,
the overall deletion rate of the system with the added load
balancing constraint decreases by less than 1% compared
to that without the load balancing constraint. However, the
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load on the storage nodes is well balanced. Compared to the
decrease in the deduplication rate of the system, the gap in the
amount of data stored in the storage nodes will become larger
as the amount of data in the system increases without the load
balancing strategy. Then those storage nodes that store a large
amount of data will become high-frequency access nodes of
the whole system, which will seriously limit the performance
of the whole deduplication system, so for the deduplication
system, load balancing is very necessary, the reduction of the
deduplication rate is inevitable. The communication cost of
the strategy in this paper is second only to Stateful. Although
3 -Dedupe uses fingerprints to avoid broadcast routing, it also
uses a smaller super block and belongs to a stateful routing
algorithm. Therefore, compared with the stateless routing
algorithm, its communication The overhead is still large.
However, palmprint technology makes the communication
overhead of X-Dedupe no longer increase with the increase
of storage nodes, so when there are multiple storage nodes,
its routing overhead is far less than Stateful.

Another important factor of the deduplication system is
the communication overhead of the system. This experiment
tests the query time of data routing with 8,16,32,64,128 and
512 storage nodes. This experiment uses data block fin-
gerprints for simulation experiments, so the whole running
experiment starts from combining superblocks until all data
fingerprints are sent. Since both the stateful data routing
strategy and the distributed BloomFilter-based data routing
strategy proposed in this paper require querying to the storage
nodes, this experiment first tests the query time from the
completion of the combination of superblocks to the deter-
mination of storage nodes for both the stateful data routing
and the distributed BloomFilter-based data routing strategies,
so the time for this data routing policy is shown as a dashed
line, and the results are shown in Figure 11.

From the Figure, we can see that the query time of the
stateful data routing policy increases rapidly with the increase
of storage nodes. In contrast, the routing query time of
the distributed BloomFilter-based data routing policy pro-
posed in this paper is always maintained in a stable and
low state. Therefore, it can be concluded that the distributed
BloomFilter-based data routing strategy proposed in this
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paper can greatly reduce the communication overhead of
data routing, which is a great improvement over the stateful
data routing strategy. In addition, experiments tested the time
required to send the actual data in the network, the communi-
cation time to send the entire superblock of 1024 fingerprints
to a single storage node for querying averaged 300ms, while
the communication time to a single storage node required to
select the 8 smallest block fingerprints averaged 15ms, while
the distributed BloomFilter-based data routing strategy only
sends to a few storage nodes. Thus It can save the system
communication overhead significantly.

Through previous experiments, we conclude that the data
routing strategy based on the distributed BloomFilter has a
faster decrease in the deduplication rate compared to the other
two data routing strategies, mainly because the data routing
strategy based on the distributed BloomFilter only stores
the n minimum block fingerprint IDs of the superblocks in
the BloomFilter maintained by the storage nodes. There are
multiple data in the superblocks of data blocks, so the rep-
resentation of fewer superblock minimum block fingerprint
IDs is insufficient, and in addition, as the number of storage
nodes increases, the use of k minimum block fingerprint IDs
to determine p storage nodes makes the probability of the
globally optimal node being selected decreasing, leading to
the problem of decreasing deduplication rate. Therefore, this
experiment further tests the addition of all 8 representative
fingerprint IDs of the superblock to the BloomFilter main-
tained by the storage nodes. In addition, to ensure further
improvement of the deduplication rate of the system, the
strategy of using wWTrR to select the container is also tested,
and the experimental results are shown in Figure 12. In the
figure, DBF indicates that the BloomFilter of the storage
node maintains the 4 smallest block fingerprint IDs of the
superblock, DBF-¢e indicates that the BloomFilter of the stor-
age node maintains the 8 smallest block fingerprint IDs in the
superblock. DBF-w indicates that the container is selected
using the wWrR data routing policy, and since the wWrR
policy is to select the r smallest block fingerprints by and then
update the w containers, with the increase of w and r the corre-
sponding disk I/O will also increase, so this experiment only
uses the IW2R method for deduplication testing, DBF-we
indicates that the deduplication rate is calculated by using the
combination of wWrR and the 8 smallest block fingerprints
at the same time.

From Figure 12, it show that experiment tests the com-
parison of the deduplication rates of the four methods with
128 storage nodes. DBF-e will achieve better deduplication
rates after increasing the number of representative finger-
prints maintained compared to maintaining 4 minimal block
fingerprint IDs, but maintaining more fingerprint indexes
requires more storage space. According to Section 3, main-
taining all representative fingerprint IDs, i.e., 8 minimal block
fingerprint IDs, requires an increase in memory space. How-
ever, the cost is still acceptable compared to maintaining
all fingerprint indexes. By increasing the number of finger-
prints maintained and using wWrR for deduplication, the
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deduplication rate can be increased more than the method of
increasing representative fingerprints. However, this method
will increase disk I/O. In general, only two I/O operations
are needed to read the container and write the data to the
container, while using wWrR requires w + r times. The
number of disk I/Os is (w + r)/2 times higher than the normal
case. Still, with 128, 256 and 512 storage nodes overall
compared to using a simple distributed BloomFilter-based
data routing strategy, the deduplication rate can be improved
by about 3%. The process is carried out in the storage nodes,
which does not affect system performance, so the price paid
is worth it. In practical use, this data routing strategy needs to
ensure a balance between storage nodes and data volume to
prevent the use of too many storage nodes with fewer data
resulting in poor deduplication. In contrast, the minimum
number of block fingerprints in the BloomFilter maintained
by storage nodes needs to be selected reasonably based on the
performance of the system storage nodes.

V. CONCLUSION

In order to reduce the communication overhead of the clus-
tered deduplication system, this paper proposes a distributed
BloomFilter-based data routing strategy, which takes the
superblock as the basic data routing unit, selects the k smallest
block fingerprints of the superblock as the representative fin-
gerprint IDs of the superblock, determines p storage nodes by
these fingerprint IDs, and then uses BloomFilter to determine
these The number of occurrences of these k smallest block
fingerprint IDs in the corresponding nodes is then determined
using BloomFilter. The optimal node is calculated as the
final data routing node using the number of matches and
the capacity of the storage node. This strategy can obtain
a better deduplication rate and load balancing with lower
communication overhead.

At present, the research on cluster deduplication routing
strategy mainly focuses on two aspects of deduplication rate
and load balancing, and many research results have been
obtained. However, there are still many problems that have
not been solved or have become the main research points. The
following aspects deserve more attention and research in the
future:
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(1) The deletion and addition of storage nodes in the cluster
deduplication system. The storage nodes in the cluster dedu-
plication system may stop working due to some problems,
or the storage capacity cannot meet the data growth. At this
time, storage nodes need to be added. However, Ruhe will
transfer the data to the new storage node and how to recover
the lost data. Although the current consistency hash and
erasure code-based strategies can have certain effects, they
can still be better.

(2) Selection of the representative fingerprint ID of the
super block. At present, the Border theorem is mainly used
select the representative fingerprint ID of the super block.
The effect of the data routing strategy for the data routing
unit is not obvious. Therefore, the selection of a good data
routing unit or the selection of a representative fingerprint ID
can effectively improve the deduplication rate of the system.
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