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ABSTRACT Microbursts in the datacenter network (DCN) last for an extremely short time in switches and
are difficult to discover from a coarse-grained perspective. Most prior works are dedicated to in-network
detection of microbursts and have not yet attempted to mitigate them in real time. Therefore, a realtime
microburst mitigator, called RIMM, is proposed in this work and mainly applies orderly detours with
flowlet intervals for preventing packet loss and packet retransmission in the network. RIMMmainly consists
of three key components: (1) detour launcher, (2) packet sequencer, and (3) post-detour handler, and can
entirely work in-network on a programmable switch. Experimental results demonstrate that RIMM is capable
of preventing packet loss, allowing the reduction of packet retransmissions, while effectively reducing
microbursts, resulting in an enhanced data-center network performance.

INDEX TERMS Microburst mitigation, P4, programmable switch, in-network.

I. INTRODUCTION
With the rapid development of network technologies, various
services and applications are migrated to the cloud environ-
ment. In addition to the network bandwidth, the network
delay is also a key factor to user experience. For example,
delays in real-time video streaming often cause intermittent
connection. Even if the memory buffering [1] alleviates band-
width problems, a time gap between the viewed screen and
the actual media source still remains. Another example is
financial trading [2] where network delays significantly influ-
ence the fairness of transactions, further inducing potential
economic losses.

The network delay can be attributed to various factors,
including transmission mediums, transmission distances, and
computing capabilities of network equipment (e.g., switches
or routers) Among all, the dominating factor is the queuing
time in the network equipment. For a switch, such queuing
delay is often caused by network congestion (i.e., packets
from multiple ingress ports forwarded to one egress port).
As network congestion occurs, the queue of the egress port
starts to be piled up. For a newly incoming packet, the longer
queue refers to the longer queuing delay.More seriously, once
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the queue is longer than the pre-allocated size, packets are
dropped (i.e., overflow). It causes retransmissions and a long
delay in flow completion.

In particular, if the network congestion only lasts for an
extremely short time (e.g., <100 microseconds reported by
Cisco [3] or 1∼100 milliseconds reported by Huawei [4]),
it is termed a microburst. As a matter of fact, microbursts
are not a new type of traffic patterns [5] in the datacenter
network (DCN) and have been discovered during financial
trading [2], [6]. However, microbursts cannot be observed
by traditional network management tools due to insuffi-
cient resolutions. Although a variety of congestion-control
mechanisms (including loss-based, ECN (Explicit Conges-
tion Notification)-based and RTT (Round Trip Time)-based
approaches [7]–[11]) work effectively for traditional net-
works, their responses are not quick enough for handling
microbursts.

For dealing with microbursts, micro-burst-aware transport
control protocol (MATCP) [12] is proposed to consider the
slope of the evolution of the queue length for adjusting slid-
ing windows to throttle the sending rate from the sender.
Another work, flow-aware adaptive pacing [13], dynami-
cally adjusts the time interval of adjacent packets according
to the flow concurrency from the sender and can jointly
work with an existing congestion-control mechanism to
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lower the probability of microbursts from occurrences. These
congestion-control-based solutions first need to modify the
sender’s TCP protocol stack and thus are only applicable to
TCP flows. Moreover, they are not precise enough to detect
the microbursts, which only last for <100 microseconds.

Along with the evolution of switching technologies
[14]–[16], the emergence of P4 (Programming Protocol-
Independent Packet Processor) switches [17]–[19], offers
potential for real-time detecting and mitigating microbursts
in switches. P4 enables the customization on header fields
and processing pipeline of packets in switches, as well
as the support of in-band network telemetry (INT). With
INT, a P4 switch (e.g., TofinoTM based Edgecore Wedge
100BF-32X switch [19]) can retrieve internal information of
switches (e.g., switch ID, timestamp of packet ingress/egress,
queue depth) and furthermore embed such information into
the headers of packets on the nanosecond scale. Therefore,
a P4 switch provides sufficient resolution for dealing with
microbursts in real time.

Two recent works [20], [21] have been developed on P4
switches for microburst detection. However, these works only
aim at detecting microbursts, but have not yet addressed
the mitigation of the instantaneous latency caused by
microbursts. For alleviating network congestion, two prior
works [6], [10] applied the ECNmarkingwith TCP to observe
the characteristics of network traffic under different appli-
cations. They predict the upcoming queue overflows and,
in advance, slow down the senders to prevent possible future
congestion. However, the response time of such ECN-based
methods works in milliseconds, which is not precise enough
for microbursts. Thus a new, real-time solution for microburst
mitigation needs to be developed.

In this work, a real-time in-network microburst mitigator
named RIMM is proposed and mainly consists of three
components: (1) detour launcher, (2) packet sequencer, and
(3) post-detour handler. Detour launcher is responsible for
detecting amicroburst through the observation on the depth of
the egress queue on the P4 switch. Once a microburst starts,
detour launcher promptly detours packets to an alternative
port for another neighboring switch to prevent congestion.
Before a detoured packet is sent out, packet sequencermarks
a sequence number in the header of such packet to prevent the
disorder of packets in the future. Last, as the microburst ends,
the packet detouring is deactivated and post-detour handler
takes over to make use of the idle time between two bursts
(i.e., flowlet in TCP), for releasing detoured packets in order.
As a result, RIMM successfully mitigates microbursts in the
network and effectively prevents packet loss as well as packet
retransmission without the intervention of the SDN controller
or modification on sender’s TCP protocol stack.

The proposed real-time in-network microburst mitiga-
tor (RIMM) was implemented on a TofinoTM based Edgecore
Wedge 100BF-32X P4 switch in a leaf-spine network as
a proof of concept. The evaluations were conducted for
comparing the network performance of the basic forward-
ing [22] and RIMM. As a result, 20 events of microbursts that

occurred in the basic forwarding were mitigated by RIMM
and the averagely 31 packet losses in each event also were
also successfully prevented. Meanwhile, in contrast to 30 to
150 retransmissions per event due to the disorder of packets
in the basic forwarding, RIMM caused only 1 to 3 retransmis-
sions per event. Moreover, for the bursty flows in 20 events,
RIMM also reduced the flow-completion time (FCT) of the
basic forwarding from 423.05 ms to 290.07 ms on average.
The jitter time of the basic forwarding was also improved
from 7.89 ms to 2.15 ms by RIMM.

The rest of the paper is organized as follows. Section II
provides the background information and related works of
microburst detection, packet detouring and TCP flowlet.
In Section III, the architecture of the real-time in-network
microburst mitigator (RIMM) is detailed, as well as its design
details. In Section IV, the experiments compare the basic
forwarding [22] with RIMM from different perspectives of
network performance on a Tofino-based P4 switch in a leaf-
spine network. Last, extended discussions and conclusions
are drawn in Section V and Section VI, respectively.

II. RELATED WORKS
Before introducing the proposed real-time in-network
microburst mitigator (RIMM), we shall review related
research, including: (1) microburst detection, (2) packet
detouring and (3) TCP flowlet.

A. DETECTING MICROBURSTS
For detecting microbursts in P4 switches, two prior works
are proposed. The first work, BurstRadar [21], checks the
queue depth and sees if it is greater than a threshold value.
If yes, the network packet will be mirrored and copied to
an external server for microburst analysis. The second work,
Snappy [20], developed by Chen et al. is a round-robin
snapshot-based approach and catches culprit flows that cause
microbursts in a switch by registers. In general, Snappy is
a trade-off between memory space and prediction accuracy.
In contrast to BurstRadar, Snappy provides a shorter response
time for detecting a microburst in a switch.

However, both works [20], [21] are only responsible for
microburst detection and do not address how to mitigate
microbursts. Considering the extremely short life span of
a microburst, detecting and mitigating them in switches is
better than dealing with them on an external server. As a
result, the proposed in-networkmicroburst mitigator (RIMM)
is designed to detect a microburst in a switch and to mitigate
it with the aid of one neighboring switch. Once a microburst
occurs, RIMM needs no external servers and can prevent
packet loss/retransmission in real time.

B. DETOURING PACKETS
Most detour-based solutions are inspired by two prior works,
DIBS [23] and PABO [24]. In DIBS, packets destined to the
congested port are detoured to a random neighboring port
when the network congestion occurs. For simplicity, nothing
needs to be tuned in DIBS, making it easy to be installed
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FIGURE 1. Three key components in RIMM: (1) Detour Launcher, (2) Packet Sequencer
and (3) Post-detour Handler.

in a datacenter switch. However, the randomness from the
selection of the detouring port may be an issue. DIBS cannot
guarantee that the detour will not affect the selected neigh-
boring port, especially when such port is also busy. Later,
PABO enhances DIBSwhere the packet will only be detoured
to the upstream ports, reducing the impact on throughput
from other irrelevant flows. On the other hand, in PABO,
the congestion status can eventually be sent back to the
source host and the host can adjust the congestion windows,
accordingly. However, PABO requires modification on both
the end hosts and switches. And the probabilistic process of
decision making in PABO used to decide whether to forward
or to bounce a packet takes high computational effort and thus
is difficult to be implemented on a physical switch.

Even if both works can effectively mitigate congestion and
reduce packet loss, they have not yet minimize the disorder
of packets caused by detouring. DIBS presents a strategy to
provide a trade-off between packet retransmission and packet
loss while PABO aims at reducing packet loss with tunable
parameters through simulation. However, as mentioned ear-
lier, packet retransmission caused by disorder of packets is
also another serious problem as packet loss and may worsen
the overall network performance. Therefore, the proposed
RIMMalso incorporates a correspondingmechanism for cop-
ing with packet reordering properly.

C. TCP FLOWLET
In general, the TCP protocol typically contains a flowlet as
a burst of packets from the same flow followed by an idle
interval, called a TCP flowlet. In RIMM, the TCP flowlet
plays an important role in reducing packet loss. The bursty
feature in the TCP protocol typically accompanies some
waste of link bandwidth. Instead, some prior works utilize
this feature in diverse applications. The concept of flowlet-
switching is first introduced in [25] and used in multi-path
routing. Because flowlet enables switching of the path for a
flow, several studies built on top of flowlet were proposed,
including load balancing [26]–[28] and flow scheduling [29].

Similarly, flowlet intervals in RIMM is used to batch release
of detoured packets and prevents packet retransmission with
the scheme of sequence numbers.

III. REAL-TIME IN-NETWORK MICROBURST MITIGATOR
(RIMM)
In amodern high-speed programmable switch (e.g., TofinoTM

based Edgecore Wedge 100BF-32X P4 switch), the switch
can monitor the queue depth of the outgoing port for every
packet. Detecting amicroburst bymonitoring the queue depth
in a switch can be done on a nanosecond scale. With the aid
of packet detouring, real-time detection and mitigation can
be realized on a modern high-speed programmable switch.
Besides, the switch can embed more information into the
pre-defined headers of packets, such as the sequence number
of packets, for guaranteeing the order of packets. RIMM is
mainly inspired by combining the flexibility of self-defined
headers and the technique of packet detouring to achieve real-
time detection and mitigation of microbursts. Figure 1 shows
the three key components of RIMM: (A) Detour Launcher,
(B) Packet Sequencer and (C) Post-detour Handler.

A. DETOUR LAUNCHER
Microburst mitigation in RIMM mainly relies on packet
detouring. Detouring packets is applied to postpone the
arrival of packets by using vacant queue buffers of the neigh-
boring switch(s), so the original queue would have more time
to digest the remaining packets. Otherwise, the packets are
dropped if they arrive simultaneously and cause an over-
flow on the buffer. More specifically, Detour Launcher is
composed of (1) microburst detector and (2) detouring-port
selector, elaborated as follows.

1) MICROBURST DETECTOR
Several metrics (e.g., queue depth, network latency and
packet loss) can be applied to indicate a microburst. Consid-
ering that RIMM aims at eliminating microbursts to achieve
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FIGURE 2. Change of detouring path According to QDM Table.

zero packet loss, the queue depth is chosen because it is
the most straightforward and light-weighted metric that can
promptly respond to microbursts among all as mentioned
in [21] and [24]. Once a packet arrives at the programmable
switch, the traffic rules are checked first. After a series of
match-action processes, the egress port will be looked up.
Later, the switch checks the corresponding queue depth for
the egress port. A threshold is pre-defined for the queue
depth for triggering the alert of a microburst. In Figure 1,
Microburst Detector plays a critical role in determining if
a microburst is about to start.

Based on the status of the queue depth, only one of three
actions will be taken in Microburst Detector: (1) if the queue
depth is less than the threshold during regular transmission,
the packet is forwarded to the egress directly; (2) if the
queue depth is greater than the threshold during transmission,
suggesting the occurrence of a microburst, the packet is for-
warded to Port Selector and packet detouring will be activated
accordingly; (3) if the detouring mechanism is activated but
the queue depth is less than the threshold, the packet is for-
warded to Post-detourHandler (more details will be described
later).

As mentioned above, Microburst Detector is responsible
for signaling an alert once the queue depth of the target port
exceeds the threshold value. Later, the switch starts to detour
packets by modifying the egress port. However, in a modern
switch design (either software or hardware), the information
related to the queue status can only be accessible in the egress
pipeline. That is, the action of modifying the output port
needs to be done in the ingress pipeline [18]. Considering
this dilemma, Microburst Detector proposes an idea to fully
utilize the data plane for communication between the ingress
and egress ports. As a packet arrives in the egress pipeline,
the switch clones the packet header, augments the queue
depth into header and sends out this message packet (to a
neighboring switch). As a result, the packet is guaranteed

to return the current switch because of carrying the same
destination in the packet header. Once the message packet
returns, the ingress pipeline can digest the queue status
of the egress port. Note that the message packet does not
contain the payload and carries only necessary information
(e.g., the packet header and the queue status of the target
egress port) to reduce communication overhead. Moreover,
RIMM takes the short two-way link delay between the current
and neighboring switches to respond to a microburst, whereas
prior congestion-control solutions (e.g., [12], [13]) may take
a long round-trip time (RTT) between two hosts to adjust the
TCP sender’s window size.

Additionally, if every packet is cloned and forwarded, the
link bandwidth between two switches can be highly occu-
pied by these message packets, leading to degradation of the
network performance. In this regard, instead of cloning all
packets and digesting the messages carried by them in the
ingress, RIMM evaluates the alert condition of a microburst
only at the egress before forwarding packets to the alternative
port. In the egress pipeline, the latest queue depth of each
port is recorded. Before cloning packets, the current switch
filters the message packets first. All message packets will
be dropped except those carrying the change on the queue
depth of the target egress port. For instance, for a packet
in the egress, if the previously recorded queue depth is less
or greater than the threshold, opposite to the current queue
depth, then such packet carrying meaningful message will
be cloned and forwarded. As a result, these message packets
effectively deliver the queue depth of the target egress port
but have a negligible impact to the overall network.

2) DETOURING-PORT SELECTOR
After detecting the occurrence of a microburst on the target
egress port, RIMM can restrain the rapid increase on the
queue buffer because the later packets of the same flow
are detoured Cuntil the queue stops to pile up. This works
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FIGURE 3. Disorder of packets after packet detouring in RIMM.

effectively for the scenario of one background flow and
one bursty flow where the detouring packets only consume
negligible bandwidth. Nevertheless, in a real datacenter net-
work (DCN), most switches are busy and links are highly
utilized. Concurrent flows always share the network band-
width. In addition, under different network applications, it
is also possible that the queue in the next switch can also
be congested as the current switch intends to detour packets
backward. In this case, packet loss may not be resolved and
merely moved from the current switch to the next one, called
congestion propagation [30].
To avoid congestion propagation, unlike detouring packets

farther as in [24], RIMM adopts a different strategy and
finds the least congested port from all neighboring switches
for detouring packets. As mentioned in [24], [30], detouring
packets to other switches, not on the original routing path of
such flow, is risky and may propagate congestion to other
switches. Therefore, RIMM incorporates a Queue-Depth
Monitor (QDM), which recognizes theminimum queue depth
of the egress port among all neighboring switches to prevent
congestion propagation.

Different fromMicroburst Detector to monitor the queue
depth of the egress port on the current switch, QDM keeps
storing the queue depths of egress ports from all neighboring
switches using in-band telemetry (INT) supported by P4
switches. On each switch, the queue depth of one egress port
is embedded by an extra header field of the original packets
and then sent to the neighboring switch. Note that such queue
depth for QDM travels through one link to the neighboring
switch and is different from that in Microburst Detector, only
existing in one switch. Each switch maintains a QDM table
by using registers to store queue depths of all neighboring
switches. As a result, the size of the QDM table is equal to the
number of ports, and the port number is its index to the QDM
table. If one port of the switch is connected to a neighboring
switch, the QDM value of the port is set to the queue depth
received from the neighboring switch. Otherwise, the QDM
value is set to NULL. Once microburst occurs in the switch,

Detouring-Port Selector uses the minimal one as the detour-
ing port. Note that, since the values in QDM are dynamically
changing during packet detouring, RIMM may change the
detouring port to the one with the minimum queue depth in
QDM.

Figure 2 shows an example of the QDM table with the
queue-depth values of neighboring switches. Switch S5 con-
nects to 4 neighboring switches (S1, S2, S3 and S4) and
1 host (VM3), and stores 5 values into its QDM table. The
QDM values (QDs1 to QDs4) for port 1 to port 4 represent
the queue depths received from S1 to S4. The QDM value for
port 5 is set to NULL because the port connects to host VM3.
As VM1 and VM2 are sending traffic to VM3 simultaneously
and trigger a microburst by Microburst Detector, S5 will first
choose port 3 as the detouring port. After detouring packets
from S5 to S3, QDs3 increases due to the detoured packets
piled up in S3. After the QDM Table updates, S5 changes the
detouring port from port 3 to port 4. As one can see, detoured
packets sent to different neighboring switches may further
cause the disorder of packets. Therefore, RIMM implements
Packet Sequencer, which assigns a unique sequence number
for each detouring packet to guarantee the correctness of the
packet order.

B. PACKET SEQUENCER
One of the most controversial points of packet detouring is
the disruption of packet orders. Whether to detour a packet or
not is determined by the queue depth of the port, so packets of
one flow may be detoured to different neighboring switches.
Because we cannot guarantee that the packets traveling along
different routing paths arrive in order, packet reordering is
inevitable. Since the packet-detouring port in RIMM is the
egress port of one neighboring switch, both old and new
packets will be mixed together after packet detouring starts,
leading to the even worse disorder of packets. Figure 3 shows
an example where the number marked on a packet represents
the order of each packet in a flow: the smaller, the earlier.
As one can see, packet detouring causes the disorder of

2450 VOLUME 10, 2022



Y.-J. Lin et al.: Real-Time In-Network Microburst Mitigation on Programmable Switch

FIGURE 4. Sequence numbers before and after a microburst occurs.

packets. New and old packets can be mix up during packet
detouring. Therefore, RIMM replies on Packet Sequencer to
augment an additional sequence number in the packet header
to maintain the order of packets. Packet Sequencer has two
following types of operations:

• queue depth qlen ≥ threshold α
To maintain the correct order of detoured packets, the
switch prepares a pair of sequence numbers1 for each
flow: (1) next attached sequence number Sa and (2) last
freed sequence number Sf . As shown in Figure 4(a),
these two sequence numbers are 32-bit long and are
set to 0 by default. Once packet detouring is activated,
an additional 32-bit header is inserted into the detoured
packet. If not yet assigned, the only field in the header
copies the current value of Sa, representing its order
among all detoured packets, and then Sa increments
by one. If the arrival packet is already assigned with a
sequence number and packet detouring is still activated,
then it is detoured again without inserting the 32-bit
header and copying Sa.

• queue depth qlen ≤ threshold α
Under this circumstance, the switch starts to release
packets in order because the target queue is no longer
congested. Note that not every packet received by the
switch can be released immediately; they must follow
the order based on the embedded Sa values. Figure 4(b)
shows an example where the switch first extracts the
sequence number Sa of the processing packet, compares
this Sa with current Sf maintained in the switch and frees
such packet if Sa equals Sf . Then, Sf increments by one.
Those packets with larger sequence numbers of the same

1In a P4 switch, stateful objects such as registers can be used to keep track
of sequence numbers for packets. Since each flow needs a pair of sequence
numbers, a five-tuple packet header is used for identification.

flowwill be detoured again. After the match-and-release
process in Packet Sequencer, all the detoured packets
will be released in the correct order.

Moreover, tens of thousands of flows may concurrently
exist in a datacenter network (DCN). A physical switch with
limited resources can hardly be equipped with sufficient
memory for storing the status of each flow. However, the
hashing technique has been widely used in recent years for
the memory blow-up problem and one well-known example
is SilkRoad [31]. Likewise, hashing is also applied to flows
in RIMM for maintaining sequence numbers. That is, the
programmable switch hashes the five-tuple value (104 bits)
of a flow into a 12-bit index2 to accommodate sequence
numbers of a flow in a switch. Even if two flows happen to
have the same index, it can still work as long as all detoured
packets are released in the correct order by the sequence
numbers.

However, if the congestion (not a microburst) lasts for a
long time and makes a lot of packets which may exhaust all
the 232 sequence numbers, then the switch will not be able
to distinguish old packets from new packets with the same
sequence number. Under this circumstance, the correctness
of the packet order cannot be guaranteed. However, it is rare
for microbursts and requires the total data size of more than
1TB to be transmitted in less than 1 millisecond (i.e., 1 Pbps).
Packet detouring will be deactivated after a period of time
(typically 1 ms) if a microburst turns into congestion which
must resort on other control solutions [7]–[11].

C. POST-DETOUR HANDLER
Once a microburst occurs, Detour Launcher and Packet
Sequencer activate the packet detouring on the programmable

2The index could be even shorter, depending upon the pre-defined total
number of flows.
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FIGURE 5. Flowlet interval to release detoured packets.

switch in real time and effectively prevents packet loss from
the overflow on the queue buffer of an egress port. However,
if the switch stops detouring packets as the queue depth
decreases and is less than the threshold, not all detoured
packets can be released immediately. There may be a number
of packets still queued in neighboring switches and their
sequence numbers have not yet been checked. Meanwhile,
some new packets of the same flow are sent to the switch.
Under these circumstances, new and old packets are mixed
together, leading to the severe disorder of packets. As a result,
the destination host needs to request TCP retransmissions for
reordering packets, inducing degradation on network perfor-
mance like packet loss.

Once the alert to the microburst turns off, there always
exist some detoured packets that have not yet returned in the
neighboring switch, mixing with the new packets of the same
flow. This situation makes even worse disorder of packets.
However, in the TCP protocol, the packets of a TCP flow are
divided into multiple flowlets sent in a bursty way. Several
prior works take advantage of the feature of flowlets to per-
form path switching safely. Similarly, RIMM uses the idle
time (also called interval) between two bursts right after the
alert to the microburst turns off for releasing all detoured
packets before the new packets of the same flow in the next
flowlet arrive. To cope with the mix of new and old packets
in a flow after the alert turns off, the programmable switch
records timestamps of newly coming packets for each flow
to identify the start time of the next flowlet. Similar to the
situation in Packet Sequencer, if a timestamp needs to be
maintained per flow, the memory can be exhausted. As a
result, hashing is applied again. The hash functions only need
to be calculated once for packets of one flow and the hashing
fields are the same as those used in Packet Sequencer.

Figure 5 illustrates the scheme of releasing detoured pack-
ets during the flowlet interval in TCP. Once a microburst is
about to start, the alert is turned on (alert on) and packet
detouring starts to perform (detour start). After the egress
queue stops piling up and drops below the threshold, the alert
to such microburst turns off (alert off). The programmable
switch will continuously examine the time difference (tdiff =
t2 − t1) between two consecutive newly coming packets (the
boxes in grey in Figure 5). If tdiff is less than a pre-defined
value χ , the latest packet is thought of belonging to the
same flowlet as the old packets and keeps being detoured.

FIGURE 6. Topology for evaluation.

If tdiff is greater than or equal to χ , packet detouring will be
deactivated (detour stop). All detoured packets are assumed
to be entirely released during the last flowlet interval. Note
that the flowlet interval may not be sufficient for long-lasting
congestion. The value (χ ) is pre-defined and long enough
to serve as the threshold of the flowlet interval for stopping
packet detouring. These flowlet intervals that last for mil-
liseconds are typically sufficiently long to digest all detoured
packets in microseconds.

IV. PROOF-OF-CONCEPT (POC) IMPLEMENTATION AND
EVALUATION ON P4 SWITCH
For validating the proposed RIMM, a proof-of-concept
(POC) prototype is demonstrated onto TofinoTM based
Edgecore Wedge 100BF-32X P4 switches. All components
(i.e., detour launcher, packet sequencer and post-detour han-
dler) of RIMM are implemented through operations on
match-action tables of the multi-stage TCAM (Ternary Con-
tent Addressable Memory) [32] in the forwarding pipeline
of the P4 switch. Therefore, with a fixed number of TCAM
accesses, RIMM takes only the constant time complexity
(O(1)) for each incoming packet.
In our experiments, the testbed consists of two Edgecore

Wedge 100BF-32X P4 Switches and 7 VM hosts. As shown
in Figure 6, these two physical P4 switches are reconfigured
as five logically independent P4 switches by connecting two
ports on the same switch (i.e., a loop) to form a logically
two-tier leaf-spine topology. The link speed of each port
on P4 switches is 40 Gbps. Each link between switches is
connected by a 40 Gbps DAC cable, and each link between
switches and VMs is connected by 1× 40 Gbps (switch side)
to 4× 10 Gbps (VM side) breakout cable. In our implemen-
tation, RIMM consists of 1050 lines of code in P4.

To generate a microburst, we simultaneously send short
flows frommultiple source hosts to the same destination host.
However, how to synchronize the time of all hosts is a bigger
challenge in the experimental environment. Even if we can
start the transmission of these short flows simultaneously,
there is no way to guarantee that these flows can arrive at
the switch at the same time. In addition, using TCP flows, it
is also difficult to control the growth of the queue depth in
the switch due to the slow start in TCP. Hence, to effectively
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generate amicroburst, iPerf3 is used to generate a background
flow (about 9.42 Gbps from VM1 to VM7) and a bursty
flow (5 MB per flow from VM4 to VM7). In our experi-
ments, 5 MB is enough for setting a bursty flow and causes
the queue overflow that only lasts for tens of microseconds
(e.g., 59.1 microseconds for the measurable minimum dura-
tion) under the 9.42 Gbps background traffic.

As mentioned earlier, RIMM mainly aims at mitigating
microbursts in real time by detouring packets to one neigh-
boring switch which can both prevent packet loss and reduce
packet retransmission simultaneously. To evaluate the perfor-
mance of RIMM, three metrics are measured in our experi-
ments, including packet loss, packet retransmission, and flow
completion time (FCT)/Jitter. For other settings, the queue-
length threshold is defined as 20000 segments (since the total
size of the queue is 24000) and 20 microburst events are
generated in each experiment.

A. PACKET LOSS
In amicroburst event, the bursty flow causes a queue overflow
at switch S2-3 for few microseconds. As a result, switch
S2-3 which only applies the basic forwarding induces about
31 dropped packets on average during each microburst event.
On the other hand, after running RIMM on the P4 switch,
no packet loss is observed for all 20 microburst events. The
result shows that RIMM can effectively avoid the occurrence
of packet loss by detouring packets to neighboring switches
before the queue overflow.

B. PACKET RETRANSMISSION
As discussed earlier, a detour-based approach may cause the
disorder of packets. It can be resolved by packet retransmis-
sion when the TCP protocol is used for packet loss. In this
experiment, we observe the number of packet retransmis-
sion caused by the disorder of packets after applying dif-
ferent strategies. Table 1 compares the numbers of packet
retransmissions for three different strategies, including (1) the
basic forwarding, (2) the detour-based forwarding and (3) the
proposed RIMM, in 20 microburst events. 30 to 150 packet
retransmissions can be observed under the basic forward-
ing. Even worse, for the detour-based forwarding, more than
1000 packet retransmissions occur due to the worse disorder
of packets after detouring packets to neighboring switches.
However, in RIMM, the number of packet retransmission
is significantly reduced to 1 to 3. However, this number
may not be zero because partial detoured packets have not
yet returned from the neighboring switch until the flowlet
interval finishes. One possible way to completely prevent
packet retransmission is to reserve more registers for storing
new incoming packets until all detoured packets are correctly
released.

C. FLOW COMPLETION TIME AND NETWORK JITTERS
Flow completion time (FCT) and jitters are also used to eval-
uate the overall network performance of RIMM. To observe
FCT and Jitters of the background flow and the bursty flow

TABLE 1. Packet retransmissions measured.

FIGURE 7. FCT comparison for basic forwarding and RIMM.

simultaneously, the duration for each microburst event is set
as 1 second, in which the FCTs and jitters of the background
flow and the bursty flow are recorded, respectively. Figure 7
and Figure 8 show the cumulative distribution function (CDF)
of FCTs and jitters for 20 microburst events, respectively.
In Figure 7, for either the bursty flow or the background flow,
after applying RIMM, FCT becomes shorter even if many
packets are detoured. In particular, for the bursty flow, RIMM
reduces FCT from 423.05 ms to 290.07 ms on average.
In Figure 8, for all 20 events on the bursty flow, RIMM also
reduces jitters from 7.89ms to 2.15ms on average, comparing
to the basic forwarding, whereas there is no much difference
for the background flow. The result indicates that RIMM
also effectively improves the overall network performance in
FCTs and jitters.

V. EXTENDED DISCUSSION
According to the evaluation from hardware proof-of-concept
(POC), several issues on the experimental settings can be
extended for discussion:
• Comparison with Recent Prior Works
At present, there are several congestion control-based
works such as [6], [12], [13] which are able to sup-
pressing microbursts efficiently. However, congestion
control based solutions need to modify the protocol
stack of OS at the sender and/or the receiver, and only
operate on TCP connections. Table 2 shows the com-
parison between RIMM and three recent congestion
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TABLE 2. Comparison with recent prior works.

FIGURE 8. Jitter comparison for basic forwarding and RIMM.

control-based works [6], [12], [13]. RIMM provides
a major advantage in the detection of microbursts by
observing the depth of the egress queue on the P4 switch
without any modification of the protocol stack and with-
out assistance from a host or controller. As opposed to
host-to-host communication used in congestion control-
based works, RIMMallows for a faster response time for
microburst mitigation and only takes the time of a round-
trip to its neighboring switch. Due to these facts, RIMM
is more easily and more efficiently deployed in the net-
work than these congestion control-based approaches.

• Computational Complexity of RIMM
In RIMM, the P4 switch normally forwards packets to
the destination port according to the forwarding table.
Nevertheless, if a microburst occurs, Detouring-Port
Selector consults QDM Table first and then related
packets are detoured to a neighboring switch. In the
meantime, these detoured packets will be tagged with
appropriate sequence numbers to avoid packet reorder-
ing. Given a n-port switch with m entries in the for-
warding table, the look-up operation is linear and has
with the time complexity of O( m). More specifically,
each block of Figure 1 in the packet-processing pipeline
of the switch has its computational complexity analyzed
separately.

1) Fwd Rules: The time complexity of executing a
look-up in Forwarding Table with m entries is
O(m).

2) Microburst Detector: The P4 switch will check
whether packet detouring is activated or not, and
compare qlen against the threshold value, leading
to a computational complexity of O(1).

3) Port Selector: As packet detouring is activated, the
look-up operation in QDM Table selects the corre-
sponding port for detouring the incoming packets
with a computational complexity of O( n).

4) Packet Sequencer: After a hash (5-tuple) oper-
ation (with the complexity of O(1)) retrieves the
recorded sequence number Sa, Sa value that incre-
ment with a computational complexity of O(1).

5) Post-detour Handler: Similarly, another hash
(5-tuple) operation (with a complexity of O(1))
retrieves the recorded sequence number Sf , and
then Sf will increment once the sequence number
attached in the current packet is equal to Sf . The
computational complexity of this action is O(1).

As Figure 1 shows, the longest packet-processing time
occurs when the switch needs to perform Microburst
Detector, Port Selector, and Packet Sequencer on the
packet during a microburst. As a result, the total com-
plexity will be O(m) + O(1) + O(n) + O(1) =
O(m+ n). Due to the fact that the look-up operations
(with O(m) and O( n)) in two tables are implemented
by TCAM in RIMM, the final processing time of each
packet in the P4 switch can be considered constant.

• Size of Memory Usage
In the POC, each queue depth and the sequence number
have the lengths of 2 Bytes and 4 Bytes, respectively. For
an n-port switch, RIMMmaintains two queue-depth val-
ues (2 Bytes) for one port and its connecting switch (in
the QMD Table). Meanwhile, for the maximum number
of 4K detouring flows, two sequence numbers (4 Bytes)
are also required. In summary, RIMM consumes the
total size of memory usage as n∗(2 ∗ 2 Bytes)+4K∗
(2 ∗ 4 Bytes) = 4 ∗ n + 32K Bytes. All of these val-
ues are stored onto the TCAM-based register arrays in
the TofinoTM-based P4 switch and can be accessed in
constant time.

• Change of Queue Depth
In RIMM, the queue depth of the egress port is sent back
to the ingress pipeline by a message packet through a
neighboring switch. Once the queue depth exceeds the
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TABLE 3. Monitoring queue depth of egress port.

user-defined threshold until the ingress pipeline starts to
detour packets, there remain multiple incoming packets
sending to the egress queue. Therefore, the exceeded
number queue depth can be regarded as the response
time of Detour Launcher. In our experiment, the thresh-
old that Microburst Detector shall signal an alert to
Detour Launcher is set as 20000 segments (as the total
size of the queue is 24000). Microbursts are gener-
ated and measured by the queue depth in a P4 switch
20 times. Table 3 shows that, during 20 microburst
events, the queue depth stops increasing right after
exceeding the threshold. The average excess of queue
depth is about 1.3% of the threshold and the maxi-
mum excess is 3.4%. The standard deviation is 1.01%.
The results indicate that RIMM can effectively mitigate
microbursts in microseconds.

• Length of Flowlet Interval
RIMMcannot guarantee that an arbitrary flowlet interval
is long enough for releasing all detoured packets. As a
matter of fact, a more reliable way is to check if Sa
equals Sf on the current switch. Since there are always
enough flowlet intervals between TCP bursts to release
detoured packets, the current switch only needs to deter-
mine the time (i.e., Sa equals Sf ) for deactivating packet
detouring. However, simultaneous access to the same
register twice for managing Sa and Sf is not allowed
in the Tofino-based Edgecore Wedge 100BF-32X P4
switch. As a result, a long-enough value (χ ) is pre-
defined to serve as the threshold of the flowlet interval
for stopping packet detouring. However, for microbursts
that last for < 1 millisecond, these flowlet intervals that
span a few milliseconds are sufficient for releasing all
detoured packets.

• Impact of Hash Collision
Any work that applies the hashing technique needs to
cope with collision. However, in our application, col-
lision scarcely occurs because Packet Sequencer only
works if an alert to a microburst is signaled. Therefore,
in normal circumstances, the switch need not main-
tain sequence numbers. Even if a collision occurs in
RIMM and causes multiple flows to share the same pair
of sequence numbers, the respective order of detoured
packets for each flow remains intact. Accordingly, the
correctness of the packet order can be guaranteed on
each flow. Therefore, hashing is effective in preventing
the problem of memory blowup in RIMM, and its poten-
tial collision has no impact on the packet order.

• Possibility of Microburst Diffusion
In RIMM, the programmable switch chooses one egress
port for packet detouring. During detouring packets,

packets may disperse to multiple, not only one, neigh-
boring switches.Whenever a packet comes in the switch,
the QDM table keeps updating the stored values. Since
RIMMalways chooses the detouring port with the small-
est value in the QDM table for detouring packets, the
queue depth of the corresponding neighboring switch
increases. Once the increasing value in the QDM table
is no longer the smallest one, RIMM chooses another
egress port for packet detouring. Considering that the
lifespan of a microburst is about a fewmicroseconds and
packets take turns to be detoured to different neighboring
switches, unlike congestion propagation [30], it is diffi-
cult for RIMM to diffuse a microburst to another neigh-
boring switch. Note that RIMM is designed for prevent-
ing packet loss and retransmission from microbursts.
If packet detouring lasts longer than a user-defined
period of time, it refers to the occurrence of network con-
gestion. RIMM will automatically release all detoured
packets and then terminate. Other congestion control
should be activated, accordingly.

VI. CONCLUSION
Microbursts that last in microseconds have captured much
attention in the research of datacenter networks (DCN). How-
ever, prior congestion-control works are too coarse-grained
and thus cannot be used for microbursts in real time. As a
result, in this paper, a real-time microburst mitigator, called
RIMM, is proposed and mainly applies packet detouring as
well as flowlet intervals to reduce packet loss and packet
retransmission in the network without any intervention of
the SDN controller or any modification on sendsers’ TCP
protocol stack. RIMM consists of three core components:
(1) detour launcher detects a microburst in real time by
monitoring the queue depth for the egress port and launches
packet detouring promptly to avoid queue overflows;
(2) packet sequencer facilitates the switch to release
detoured packets in the correct order with a pair of sequence
numbers; (3) post-detour handler releases new packets
interleaved with old ones of the target flow in order after such
microburst is mitigated. Furthermore, RIMM is implemented
onto TofinoTM -based programmable switches with P4/INT
and entirely works in the network. The experiment results
show that, during 20microburst events, RIMMcan all achieve
zero packet loss with only 1 to 3 retransmissions per event.
Moreover, RIMM also reduces the flow completion time
(FCT) of the basic forwarding from 423.05 ms to 290.07 ms
on average. The jitter time of the basic forwarding was also
improved from 7.89 ms to 2.15 ms by RIMM. To the best of
our knowledge, RIMM is the first in-network solution, capa-
ble of mitigating microbursts in real time for the datacenter
network (DCN).
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