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ABSTRACT Latent low-rank representation has been applied to multi-level image decomposition for the
fusion of infrared and visible images to obtain good results. However, when the original infrared and
visible images are of low quality, the visual effect of the fused images is still unsatisfactory. To combat
this challenge, this paper proposes an infrared and visible image fusion method based on multi-level latent
low-rank representation joint with image enhancement and multiple visual weight information. First, the
source images are decomposed into detail parts - including detail images and detail matrices - and the base
images respectively using multi-level latent low-rank representation. Then the nuclear norm based fusion
strategy is used to fuse the detail matrices and multi-visual weights determined by the clarity, local contrast
and edge-corner saliency is used to fuse the detail images. The aforementioned two fusion results are weight
averaged to obtain a fused detail image. The base images are fused by an averaging strategy after Retinex-
based enhancement. The final fused image is obtained by combining the fused detail image and the fused
base image. Compared with other state-of-the-art fusion methods, the proposed algorithm displays better
fusion performance in both subjective and objective evaluation.

INDEX TERMS Image fusion, latent low-rank representation, multiple visual weight, Retinex-based
enhancement, infrared image, visible image.

I. INTRODUCTION
Image fusion is an important branch of multi-sensor infor-
mation fusion. It aims to integrate the image information of
a certain moment under the same scene obtained by different
types of sensors, which aids in describing the characteristics
of the target scene more comprehensively [1]. The visible
images capture scene information based on reflection mech-
anism. Under well-lit conditions, the obtained image has a
high resolution, but it is difficult to capture all the information
in the scene at night or under low visibility conditions such
as fog and haze. The imaging of infrared images occurs by
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detecting the thermal radiation of the object itself, which
highlights the thermal target blocked by the object. This
technique reduces interference by environmental factors, but
its texture detail information is insufficient and the contrast is
low [2]. Infrared and visible image fusion can fully combine
the advantages of these two imaging technologies. The fused
image contains highly-detailed texture information and clear
infrared thermal radiation targets, which is conducive to
further target detection and other work [3], [4].

In recent years, with the development of fusion technology
and the demand of practical application, many infrared and
visible image fusion algorithms have been proposed. The
multi-scale transform method is the most widely used image
fusion method. The transform domain algorithms include the
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wavelet transform [4], [5], the shearlet transform [6], the
curvelet transform [7], and the non-subsampled contourlet
transform [8]. This type of method usually comprises
three steps. First, each source image is decomposed into
several levels. Then the decomposed layers are integrated by
appropriate fusion rules. Finally, the fused image is obtained
by the corresponding inverse transformation. In recent
years, the multi-scale transform based methods are often
combined with neural network to achieve better fusion
performance [9], [10]. However, it is still challenging
to select flexible basis functions that allow data driven
choice of the best representation of source images, and
the adaptive selection of decomposition levels still remains
to be solved [1]. Hence, researchers attempt to find other
methods to process source images without a transform, such
as deep learning-based method and representation learning-
based method.

Deep learning-based fusion methods specialized for
infrared and visible image fusion include the convolutional
neural network (CNN) [11], DenseFuse [12], the disentangled
representation fusion (DRF) [13] and so on. The main
drawback of deep learning-based methods is that it is difficult
to train when the training data is insufficient, especially in
infrared and visible image fusion tasks, and a very little
attention is paid to image decomposition in the deep learning
based methods [14].

Sparse representation is a commonly used method in the
domain of representation learning. The image fusion method
based on sparse representation does not need to transform
the image to a certain frequency domain. This kind of
method uses a sliding window to divide the source image into
blocks, reducing the impact of image misregistration [15].
For example, Zhang et al. used overlapping sub-blocks of
infrared and visible images for training to construct an
over-complete dictionary [16]. To increase the fusion effect,
sparse representation usually combines with other tools,
such as shearlet transform [17] and image cartoon-texture
decomposition [18].

Although sparse representation can overcome the defi-
ciency ofmulti-scale transformation and achieve better fusion
performance, it still suffers from the insufficient ability of
detail information extraction [14]. Latent low-rank represen-
tation (LatLRR) [19] can effectively extract local and global
structural information simultaneously. Li et al. used LatLRR
for infrared and visible image fusion [20]. However, the
LatLRR-based image decomposition method only extracts
incomplete high-frequency information, which will lead to
unsatisfied fusion results. To alleviate the issue, the basic
image decomposed by LatLRR was further decomposed
into high-frequency and low-frequency components via the
non-subsampled shearlet transform in [21]. Li et al. further
proposed a LatLRR based multi-level decomposition method
(MDLatLRR) [14], which performs multi-level LatLRR
decomposition, and can extract more details from the source
image. This paper focuses on the fusionmethod of multi-level
LatLRR decomposition.

MDLatLRR first decomposed the images by multi-level
LatLRR and then averaged the low-rank images. The
significance coefficient matrix was fused block by block by
a weighted fusion method based on nuclear norm. Multi-
level LatLRR decomposition of images can remove image
noise, but it cannot effectively solve the clarity and contrast
problems of blurred visible and infrared images. This results
in an unsatisfactory visual effect. Based on Retinex theory,
the reflection can be extracted by removing illumination to
enhance the image details [22]. Recently, Retinex theory
has been widely used in the enhancement of low-quality
visible [23]–[25] and infrared images [26]. Although the
quality of image is improved by implementing Retinex
enhancement, some targets are still not clear or invisible
in the enhanced image because these targets could not be
captured in the source image due to occlusion or low visibility
conditions. Image fusion can combine the advantages of
thermal radiation information in infrared images and detailed
texture information in visible images to make the missing
targets to be observed or to make some vague targets clearer.
The combination of image fusion and image enhancement
can make full use of the advantages of the two methods
to improve the fusion effect [27]. We will consider the
enhancement before fusion.

In general, a good fusion algorithm depends on the image
decomposition method on the one hand, and the fusion
strategy on the other hand [28]. In MDLatLRR, the fusion
strategy of detail parts is based on nuclear-norm, which
calculates the sum of single value of each input patch to
preserve 2D information from the source images. It is usually
not sufficient to retain the detail information and saliency
target in full measure onlywith nuclear norm. The importance
of other visual salient features in detail image fusion has
also been verified in [28]–[31]. We will further consider
other visual salient features for the fusion of the detail
parts.

In summary, this paper focuses on the problem of fusion
for blurred visible and infrared images by proposing an
infrared and visible image fusion method based on latent
low-rank representation combined with image enhancement
and multiple visual weights. After the multi-level LatLRR
decomposition of the image, the Retinex enhancement and
the image visual fusion weight calculation are combined. The
innovations of the method in this paper are as follows:

(1) A novel visible and infrared image fusion framework
based on multi-level latent low-rank decomposition joint
with image enhancement, multi-visual information, and
nuclear-norm is proposed to be suitable for the fusion of
low-quality visible and infrared images.

(2) Retinex enhancement was performed on the base
image, which is decomposed by MDLatLRR to improve the
clarity of the final fused images.

(3) To enhance the saliency of the fused image, the fused
detail image was obtained by weight summarizing the result
of multi-visual fusion and nuclear norm fusion. The weights
of multi-visual fusion are constructed by combining three
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FIGURE 1. One level LatLRR decomposition of images.

types of visual information, which are marginal significance,
local contrast, and clarity.

The rest of the paper is organized as follows. In Section II,
we introduce preliminaries, including image decomposi-
tion based on LatLRR and Retinex-based image enhance-
ment. In Section III, two strategies for the combination
of MDLatLRR decomposition and image enhancement are
discussed. In Section IV, the proposed image fusion method
is presented in detail. The experimental result and analysis
are shown in Section V. Finally, in Section VI we draw our
conclusions.

II. PRELIMINARIES
A. IMAGE DECOMPOSITION BASED ON LATENT
LOW-RANK REPRESENTATION
The main idea of the LatLRR [19] is to express the
original data matrix as the sum of low-rank components
(global structure), significant components (local structure),
and sparse noise. The mathematical model of LatLRR can
be expressed as

min
Z ,L,E

‖Z‖∗ + ‖L‖∗ + λ‖E‖1

s.t. X = XZ + LX + E (1)

where ‖ · ‖∗ denotes the nuclear norm which is the sum of
the singular values of the matrix, ‖ · ‖1 is l1-norm, and λ >
0 is a balance coefficient. X ∈ RN×M denotes the observed
data matrix, Z ∈ RM×M is a low-rank matrix to separate data
and noise, L ∈ RN×N is the salient coefficients matrix and
E ∈ RN×M is a sparse noisy matrix. Eq.1 can be regarded as
a convex optimization problem with a nuclear norm that can
be solved by the inexact Augmented Lagrangian Multiplier
(ALM) [19] algorithm.

When the LatLRR is used for image decomposition, the
image data must be preprocessed first to obtain the observed
data matrix where each column of the matrix corresponds to
an image patch. Fig.1 shows the process of the single-level
LatLRR decomposition of images, where P(·) denotes a
two-stage preprocessing operator which divides the input
image I into many image patches by a sliding window of size
n×nwith an overlap stride s. Afterwards, these image patches
are reshuffled into the observed data matrix. Stride s means
that the window is moved by s pixels in the x and y direction
at a time.

As Fig.1 shows, once the projection matrix L is learned by
LatLRR, the image I is decomposed into a detail image Id
and a base image Ib by Eq.2 [14].

Vd = L × P(I ), Ib = I − Id
s.t. Id = R (Vd ) (2)

where R(·) signifies the operator which reconstructs the detail
image from the detail part. When restoring Vd , the averaging
strategy is used to process the overlapping pixel.

Convenient for subsequent description, the operation of the
dashed box in Fig.1 is denoted as DLatLRR. The framework
of the multi-level version of DLatLRR (MDLatLRR) can be
modified as Fig.2 since it is easy to verify that P (Ib) =
P(I ) − Vd . In order to distinguish the MDLatLRR in [14],
the procedure of image multi-level LatLRR of images shown
by Fig.2 is named as IMDLatLRR. As can be seen from Fig.2,
image I is decomposed by r-level LatLRR, and output r base
images I kb , r detail images I kd and r detailed matrices V k

d ,
k = 1, 2, · · · , r .

B. RETINEX-BASED IMAGE ENHANCEMENT
The basic assumption of Retinex theory is that the original
image I (x, y) can be decomposed into the product of the
illuminance component and the reflection component as
follows:

I (x, y) = L(x, y)× R(x, y) (3)

where L(x, y) is the illuminance component, which deter-
mines the dynamic range of image gray scale transformation
and R(x, y) is the reflection component which represents
intrinsic features in real-world scenarios.

The purpose of Retinex-based image enhancement is
to eliminate the influence of uneven illumination and to
represent intrinsic features of the image. According to single-
scale Retinex, the reflection component can be obtained as
follows:

logR(x, y) = log I (x, y)− logL(x, y)

L(x, y) = G(x, y) ∗ I (x, y) (4)

where ∗ is the convolution operation and G(x, y) is a filtering
function.

III. IMAGE ENHANCEMENT AND DECOMPOSITION
Image enhancement can improve the clarity and contrast of
images, thus improving the visual effect of fusion results.
After an image is decomposed by IMDLatLRR, the detail
image is usually clearer and image blurriness caused by
low illumination is mainly focused on the base image.
In this sense, image enhancement can be conducted on the
base image after IMDLatLRR. This means there are two
strategies to combine IMDLatLRR decomposition and image
enhancement: (1) Enhance the source image and decompose
the enhanced image by IMDLatLRR; (2) Decompose the
source image by IMDLatLRR and enhance the base image
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FIGURE 2. Multi-level LatLRR decomposition of images (IMDLatLRR).

FIGURE 3. Result of image reconstruction after different processing.
(a) Visible image (b) Reconstructed visible image 1 (c) Reconstructed
visible image 2 (d) Infrared image (e) Reconstructed infrared image 1
(f) Reconstructed infrared image 2.

after decomposition. Fig.3 shows the result of image recon-
struction after different processes, where Fig.3(b) is recon-
structed after Retinex-based image enhancement and then
IMDLatLRR, Fig.3(c) is reconstructed after IMDLatLRR
and then base image enhancement. By inspecting the results
in Fig.3, it is clear that the process order of IMDLatLRR
and Retinex-based image enhancement has little effect on the
results of image reconstruction. We also did an experiment
to compare the fusion result using these two preprocessing
methods and the results show that the second strategy is
slightly superior. For lack of space, this article focuses on the
second strategy.

IV. PROPOSED FUSION METHOD
A. THE FRAMEWORK OF THE FUSION METHOD
The framework of our fusion algorithm is presented in Fig.4.
Input infrared image IIR and visible image IVIS , IMDLatLRR
is first carried out for IIR and IVIS respectively to output detail

matrices V 1:r
dIR and V

1:r
dVIS , detail images I1:rdIR and I

1:r
dVIS , and two

base image I rbIR and I rbVIS .
In our fusion method, I rbIR and I rbVIS are Retinex enhanced

respectively and a weighted average strategy is utilized for
the enhanced images Î rbIR and Î rbVIS to obtain the fused base
image Ibf .
For each pair of detail matrices, the nuclear-norm based

fusion strategy [14] is used to fuse these matrices column by
column and reconstructed to obtain the fused detail image
Idf1. Summarize r detail images I1:rdIR to obtain one detail
image I rdIR, and summarize r detail images I1:rdVIS to obtain one
detail image I rdVIS . Both I

r
dIR and I rdVIS contain more obvious

structure and features. Then weights based on multiple visual
salient features were performed on I rdIR and I rdVIS to obtain
the fused detail image Idf2. The final fused detail image is
obtained by Idf = wIdf1 + (1−w)Idf2, where w is a constant.
Once the fused detail image and base image are obtained,

the fused image is obtained by If = Ibf + Idf . In the
next subsections, the details of the fusion strategies will be
presented.

B. FUSION OF BASE IMAGES BASED ON RETINEX
ENHANCEMENT
Given the two base images I rbIR and I

r
bVIS , firstly calculate the

Gaussian mask G, then, according to Eq.(4), the enhanced
base images Î rbIR and Î rbVIS are obtained by

log Î rbVIS = log I rbVIS − log
(
G ∗ I rbVIS

)
log Î rbIR = log I rbIR − log

(
G ∗ I rbIR

)
(5)

Because the base image mainly contains the background
information of the source image, the simple weighted average
fusion is usually used to achieve a better fusion effect. The
fused base image is obtained by

Ibf = wbIR Î rbIR + wbVIS Î
r
bVIS (6)
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FIGURE 4. The framework of the proposed fusion method.

where wbIR and wbVIS denote the corresponding weights of
the two enhanced base images.

C. FUSION OF DETAIL PARTS BASED ON NUCLEAR-NORM
AND MULTI-VISUAL WEIGHT INFORMATION
The detail image contains more visual salient features than
the base image. The nuclear-norm based fusion strategy
for the detail images has been verified effective in [14].
Furthermore, the importance of visual salient features in the
detail image fusion has also been verified in [28]–[31]. Better
fusion effects can be obtained by simultaneously considering
nuclear-norm and multiple visual salient features. Three key
indicators that reflect the visual effects of structures, namely
clarity, contrast and edge-corners saliency of images, are used
to construct multiple visual fusion weights.

1) Image clarity
The human eye is more sensitive to image clarity. Several

focus measures were studied in [32] as the measures of image

clarity, and the improved Laplace energy sum was verified to
show better performance. It can be formulated as

∇
2
MLI (x, y) = |2I (x, y)− I (x − 1, y)− I (x + 1, y)|

+ |2I (x, y)− I (x, y− 1)− I (x, y+ 1)| (7)

For the sake of convenience, denote Ixy as I (x, y) in the
following. The clarity of images is defined as

AF
(
Ixy
)
=

M1∑
m=−M1

N1∑
n=−N1

∇
2
MLI (x + m, y+ n) (8)

where N1 and M1 are positive integers.
2) Local contrast of image
Compared with the changes of a single pixel, it is easier for

human eyes to detect the changes of local pixels. Both local
image gradient and local image contrast are key values that
assess the spatial details of an image, therefore, themagnitude
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of local image gradients with the local image contrast are
combined to calculate local contrast LC as follows:

LC
(
Ixy
)
= β

(
max

Ipq∈ℵ(Ixy)
Ipq − min

Ipq∈ℵ(Ixy)
Ipq

)

+ (1− β)

(
max

Ipq∈ℵ(Ixy)

∥∥∇Ipq∥∥) (9)

where ℵ
(
Ixy
)
is an s ∗ s neighborhood around Ixy, ∇Ipq is the

spatial gradient of Ipq, and β is a constant.
3)The edge-corner saliency of the image
The structure tensor can reflect the structure and spatial

information of the image. Thus, the smooth region, the
edge region, and the corner region of the image can be
distinguished by using the structure tensor [33].

The linear structure tensor matrix of each position in the
image is defined as:

Jhxy =
[
Gxy Fxy
Fxy Hxy

]
(10)

where Gxy = Kh ∗
(
∂I
∂x

)2
, Fxy = Kh ∗

(
∂I
∂x
∂I
∂y

)
, Hxy = Kh ∗(

∂I
∂y

)2
, Kh is the Gaussian kernel with standard deviation h,

and ∗ denotes convolution operation.
Matrix Jhxy has two non-negative eigenvalues used to

represent spatial information. The calculation formula is as
follows:

λxy1 =
Gxy + Hxy +

√(
Gxy − Hxy

)2
+ 4F2

xy

2

λxy2 =
Gxy + Hxy −

√(
Gxy − Hxy

)2
+ 4F2

xy

2
(11)

Construct the edge saliency matrix M and the corner
saliency matrix N , where

Mxy =
∣∣λxy1 − λxy2∣∣

Nxy =
∣∣λxy1 + λxy2∣∣ (12)

Normalize the matrix M and N to obtain M̂ and N̂
respectively. Then the saliency of the edge-corner is obtained
by combining M̂ and N̂ linear as follows:

EA(I ) = kM̂ + (1− k)N̂ (13)

where k ∈ [0, 1] is a constant.
4) Multi-visual fusion weight
The fusion weight plays a key role in the image fusion

effect. Define the single weight model as follows:

N r
AFIRxy = AF

(
Ĭ rdIRxy

)
/
(
AF

(
Ĭ rdIRxy

)
+ AF

(
Ĭ rdVISxy

))
N r
EAIRxy = EA

(
Ĭ rdIRxy

)
/
(
EA

(
Ĭ rdIRxy

)
+ EA

(
Ĭ rdVISxy

))
N r
LCIRxy = LC

(
Ĭ rdIRxy

)
/
(
LC

(
Ĭ rdIRxy

)
+ LC

(
Ĭ rdVISxy

))
(14)

FIGURE 5. Four pairs of source images. The top row contains visible
images, and the second row contains infrared images.

Finally, the fusion weights constructed by AF, EA, and LC
are defined as:

wrdIRxy =
1
3

(
N r
AFIRxy + N

r
EAIRxy + N

r
LCIRxy

)
wrdVISxy = 1− wrdIRxy (15)

5) Fusion and reconstruction
The final fused detail image is obtained by

Idf = wIdf 1 + (1− w)Idf 2 (16)

where w ∈ [0, 1] is a constant, Idf 1 is the result of fusion
and reconstruction for the detail matrices as referred to
MDLatLRR [14], and the value of Idf 2 in position (x, y) is

Idf2 xy = wrdVIS (x, y)Ĭ
r
dVISxy + w

r
dIR(x, y)Ĭ

r
dIRxy (17)

V. EXPERIMENT RESULT AND ANALYSIS
A. EXPERIMENTAL SETTING
To verify the advantages of the proposed fusion algorithm,
we adopted the dataset from [34]. The test dataset contains
21 aligned infrared and visible image pairs. A sample of these
infrared and visible images is shown in Fig.5. The selected
four groups of source images have different resolution and
the infrared and visible images of the same scene have
the same resolution. The scene features of each group of
images are different. Among them, the group ‘‘Street’’ is
the road scene at night, including vehicles, street lamps,
pedestrians, etc. Compared with other groups, the group
‘‘Forest’’ has a lower resolution and relatively singular
scene information. The illumination of the ‘‘Man’’ images
is uneven and the edge illumination is weak. The visible
images of the ‘‘Soldier’’ group have poor visibility due to the
smoke.

All the parameters needed in IMDLatLRR are the same as
those used in [14]. Namely, a sliding window of size 16 ∗
16 with stride equal to 1 is used to divide the source images
into image patches, the decomposition level varies between
1 and 4 (meaning r = 1, 2, 3, 4), the nuclear norm is used
in the fusion of detail matrices, and wbIR = wbVIS = 0.5.
According to [35], the value of k in Eq.13 is set as 0.5 in
our experiment. There are other parameters in the proposed
algorithm. A group of experiments are conducted to evaluate
the robustness of the parameters used in the algorithm.

In addition, ablation experiment is conducted to ana-
lyze the effectiveness and contributions of the Retinex
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FIGURE 6. The fusion performance of different projection σ .

enhancement of base images and the multi-visual fusion of
detail images. Furthermore, 9 recent and classical fusion
methods are chosen to conduct the same experiment for
comparison purposes. They include the nonsubsampled
contourlet transform method (NSCT) [8], the convolutional
neural networks based method (CNN) [11], disentangled
representation (DRF) [13], MDLatLRR [14], the visual
saliency map and weighted least square optimization method
(VSM-WLS) [29], convolutional sparse representation
method (CSR) [36], the curvelet transform method
(CVT) [37], the parameter-adaptive pulse coupled neural
network in nonsubsampled shearlet transform (NSST-
PAPCNN) [38], and the gradient transfer fusion method
(GTF) [39].

For the purpose of a quantitative comparison between
our method and the other selected comparison meth-
ods, 7 quality metrics are utilized. These metrics are
entropy(En) [40], structural similarity (SSIM) [41], standard
deviation (SD) [42], space frequency(SF) [43], correlation

FIGURE 7. The fusion performance of different projection s.

coefficient(CC) [44], average gradient(AG) [45], and visual
information fidelity (VIF) [46]. The fusion result is better
with the increasing magnitude of these metric values.

All the experiments are implemented inMATLABR2017b
on 3.6 GHz Intel(R) Core(TM) i7-7700 CPU with 16 GB
RAM.

B. VERIFY THE PARAMETER ROBUSTNESS OF THE
ALGORITHM
The Gaussian filtering approach is used in Retinex-based
enhancement. In addition, there are four parameters that may
affect the algorithm’s performance, including the scale σ used
in the Retinex-based enhancement of the base image, the size
of neighborhood (denoted as s) used to calculate the LC, the
size of the Gaussian filter window (denoted as h) used to
calculate EA, and the fusion weight (w) in Eq.16.

Four group experiments are conducted to evaluate the
robustness of the four parameters of the algorithm. In the first
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FIGURE 8. The fusion performance of different projection h.

experiment, the parameters are fixed as w = 0.5, h = 5,
s = 5, and σ is set as [5, 10, 20, 50, 80, 100, 150, 200, 300].
In the second experiment, w = 0.5, σ = 80, s = 5, and h
is set as [3:2:21]. In the third experiment, w = 0.5, σ = 80,
h = 5, and s is set as [3:2:29]. In the fourth experiment, h = 5,
s = 5, σ = 80, and w is set as [0:0.1:1]. The four pairs of
source images shown in Fig.5 are used in these experiments
and the average values of each metric are shown in Figs. 6-9,
respectively.

By examining the results in Fig.6, each quality metric is
almost a line for all four levels. In fact, the variance for each of
the quality metrics of each level is less than 0.001. The results
indicate that the influence caused by the value of the Gaussian
filter parameter in base image enhancement to fusion results
can be almost ignored.

By inspecting the results in Fig.7, except for CC, SSIM,
and VIF, other metrics slightly decrease with the increase
of s, especially for AG and SF when the decomposition

FIGURE 9. The fusion performance of different projection w .

level equals 3 or 4. According to Fig.7, the suitable size of
neighborhood used to calculate the LC is 3 ∗ 3 or 5 ∗ 5.
The results in Fig.8 also show that, with the exceptions

of CC, SSIM, and VIF, other metrics slightly decrease with
the increase of h, especially for AG and SF when the
decomposition level equals 3 or 4. This is because with
the increase of h, the role of the filter will be weakened.
According to Fig.8, the most suitable size of the Gaussian
filter window used to calculate EA is 3 or 5.

As shown in Fig.9, with the increase of w, SSIM and
SD increased and reached the optimal value when w = 1,
while SF and AG decreased and reached the optimal value
when w = 0, and the other three indicators are very slightly
increased. It shows that w = 0.5 is the most appropriate by
considering all the indicators comprehensively.

As noted in Figs.6-9, with the exceptions of SSIM and
CC, the other metrics increased with the growing number of
decomposition levels. This is because the detail information
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TABLE 1. The result of ablation experiment.

is not fully extracted by IMDLatLRR with the shallow
decomposition level (i.e. level 1), while the base parts
contain more source image information, and the simple
average weight of the base image ensures that more structural
information of the source image is preserved. When the
decomposition level increases, the detail parts will contain
more base information (e.g. luminance, contour). The fusion
strategy of the detail image will cause the change of image
structure information. The relation between the variation
trend of SSIM and the decomposition order is consistent with
the results found in [14].

C. ABLATION EXPERIMENT
We conduct ablation experiments to explore the effectiveness
of the two main components (basic image enhancement and
multi-visual weighted fusion) in the proposed method. Then,
the proposed method is implemented in two stages. In first
stage, only the basic image enhancement is combined with
MDLatLRR (MDLatLRR + Retinex), and the multi-visual
weighted fusion is then considered in the second stage.
In Tab. 1, compared with MDLatLRR at the same level,
only SSIM is slightly reduced and all other metrics are
obviously improved both in MDLatLRR + Retinex and the
proposed method. This indicates that combining the Retinex
enhancement of base image and multi-visual fusion of detail
images can improve the fusion image contrast, highlight
the image features and more according to human vision
on the basis of retaining the structure of the source image.
Furthermore, compared with MDLatLRR + Retinex, in the
proposed method, some metrics are almost no change or
very little improved when decomposition level is 1 or 2, and
most metrics are improved when level is 3, while all metrics
are slightly improved when decomposition level is 4. This
indicates that with the increasing number of decomposition
levels (between 1 to 4), more contributions are made by
the multi-visual fusion of detail images because the detail
becomes clearer and the salient features are better enhanced.

D. ALGORITHM COMPARISON EXPERIMENT
The parameters used in this experiment are set as follows:
σ = 80, h = 5, s = 5, w = 0.5.
1) Subjective evaluation

The fused results of four pairs of low-quality source
images, which are illuminated poorly or with unclear thermal
targets, are shown in Figs.10-13. These results are obtained
by 9 existing fusion methods and our algorithm. The
MDLatLRR uses L16, nuclear norm, and the decomposition
level is 4. For the sliding window technique, the stride is set
to 1 and 4.

Fig.10 shows the fusion results of the source image pair of
‘‘Street’’.With the exception ofMDLatLRR and the proposed
method, the letters on the lamp signs are not clear enough in
other fusion results.

Fig.11 shows the fusion results of the source image pair
of ‘‘Forest’’. As we can see, it is obvious that the proposed
method obtained the best result. When focusing on the man
in the fusion images, it is obvious that GTF get the worst
results, the result of VSM-WLS is not clear enough, and
there are serious artifacts in the fusion result of algorithm
NSST-PAPCNN.

Fig.12 shows the fusion results of the source image pair of
‘‘man’’. Object man are clear in the results of all methods,
however, the grass in the red boxes are only clear in the
result of MDLatLRR and the proposed method. Focusing
on the grass, the three deep learning-based methods, namely
CNN, NSST-PAPCNN and DRF, are all failed to obtain
clear results, although their results are significant for man
areas.

Fig.13 shows the fusion results of the source image pair
of ‘‘Soldier’’. From Fig.13 we can see that the three deep
learning-based methods (CNN, NSST-PAPCNN and DRF)
fail to remove haze from visible images well, and the people
lying down could hardly be seen. Moreover, the fusion
results of GTF and VSM-WLS are also not clear enough.
Focusing on the tree trunk (red boxes), the proposed method
is obviously the clearest.

On the other hand, it can be seen from Figs.10-13 that
the fused images obtained by MDLatLRR and the proposed
method capture more salient features, and for the same
method, the results of stride = 1 and stride = 4 are almost
indistinguishable. Furthermore, compared with MDLatLRR,
the visual quality of the fused images captured by the
proposed method is slightly better.

2) Evaluation metrics
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FIGURE 10. Fusion results of ‘‘Street.’’

FIGURE 11. Fusion results of ‘‘Forest.’’

In order to quantitatively evaluate the performance of
fusion results, 7 criteria are used to compare 9 existing

fusion method with the proposed method. Tab. 2 summarizes
averaged values of the 7 criteria resulting from the set of test
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FIGURE 12. Fusion results of ‘‘Forest.’’

FIGURE 13. Fusion results of ‘‘Forest.’’

images. The optimal and suboptimal values are marked in
bold red and bold blue font with underline, respectively.

In Tab. 2, the proposed method achieves the best results
in 3 criteria (En, SD, and VIF) and second-best values in SF

and AGwhen stride= 1. For stride= 4, the proposed method
achieves the best results in SF and AG and second-best values
in EN and VIF. Although in CC, our method does not achieve
the best value, it obtains a comparable result. The quantitative
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TABLE 2. The average values of seven metrics for all source images.

TABLE 3. Computational time comparison of various methods. (Unit: second).

results show that the proposed fusion method delivers better
fusion performance than the compared methods. Tab. 2 also
shows that there is very little difference in the results of
MDLatLRR under stride = 1 and stride = 4.
3) Computational cost
Tab. 3 depicts the average running time of four image with

different size for different methods in this paper. As can be
seen from Tab. 3, the GTF, CVT, NSCT and VSM-WLS
methods have short running time, but their performances
are quite ordinary. The CNN, NSST-PAPCNN and DRF
algorithms are based on deep learning models without
training. The corresponding testing phase does not require
much time, the running time of the algorithm is relatively
short, and the image fusion effect is limited. Compared with
MDLatLRR, the proposed method takes more time because
it has two more steps, namely, base image enhancement and
the calculation of multi-visual weights.

Both MDLatLRR and the proposed method are image
decomposition methods based on representation learning.
When stride = 1, the running time of the proposed method
is similar to that of the sparse representation algorithm CSR.
Compared with other methods, the proposed method did
not yield good performance in running time, but its fusion
performance is the best. For scenarioswhere time is preferred,
stride = 4 can be considered in the application, and the
fusion performance is slightly inferior to that with stride= 1.
Therefore, compared with other methods, the running time of
the proposed algorithm is still competitive. The running time

of the proposed method may be reduced to some extent by
using efficient programming languages like Python and C.

VI. CONCLUSION
In this paper, we developed a new MDLatLRR-based
fusion framework for fusing infrared and visible images
by jointing Retinex-based enhancement and multi visual
weights. Firstly, the infrared and visible images were
decomposed by multi-level LatLRR to extract detail parts
and base parts of the input images at several representation
levels. The clarity, local contrast and edge and corner
significance of the image were calculated to construct the
visual weights for deal parts fusion, the final fusion results
of the detail images are weighted averaged by nuclear norm
fusion and multiple visual weights fusion. Retinex-based
enhancements were conducted on the base parts before fusion
the base image using the averaging strategy. The proposed
method was evaluated both subjectively and objectively
in a number of experiments. The experimental results
demonstrate that compared to MDLatLRR, the effectiveness
of image enhancement of base image is obvious, and with the
increasing number of decomposition levels, the multi-visual
fusion of detail images contributes more to the improvement
of the fusion performance. The performance of the proposed
method is superior to that of the comparedmethods. However,
the proposed method also has its limitations, such as the
difficulty of determining the combination of multi-visual
weight coefficients and the insufficient investigation of the
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selection of Retinex enhancement filters. In the future,
we will conduct further research on the following aspects:
1) Try to use other metrics of multi-visual information for
image fusion, such as edge information using fractional
order differentiation based fusion metrics [47]. 2) Try to
use optimized methods to determine the combination of
different multi-visual weight coefficients. 3) To investigate
the effect to the fusion result caused by different filters in
the Retinex enhancement algorithm. 4) Develop fast fusion
scheme for color images fusion based on MDLatLRR and
Retinex enhancement.
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