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ABSTRACT In this contribution, the Jacobian analysis of a four-legged six-degrees-of-freedom decoupled
parallel manipulator is carried out through the screw theory. As an intermediate step, for the sake of
completeness the inverse/forward displacement analysis as well as the computation of the workspace of the
robot are achieved by taking advantage of the decoupled orientation and position of the moving platform.
Afterward, the input/output equation of velocity of the parallel robot is obtained by harnessing of the
properties of reciprocal screw systems. Once the Jacobian matrices are identified and investigated, the
analysis of singularities for the robot manipulator emerges as a natural application of the Jacobian analysis.
Numerical examples are included with the purpose to show the practicality and versatility of the method
of kinematic analysis. Furthermore, the numerical results obtained by means of the theory of screws are
successfully verified with the aid of commercially available software like ADAMS.

INDEX TERMS Kinematics, parallel robot, screw theory, singular posture, uncoupled kinematics.

I. INTRODUCTION
The Jacobian matrices of parallel manipulators has been
extensively investigated covering mainly subjects like perfor-
mance and singularity analysis [1]–[10]. In that regard, screw
theory has been successfully employed in the Jacobian anal-
ysis of parallel manipulators. Consider for instance that Tsai
[11] reviewed the role of reciprocal screws in the Jacobian
analysis of non-redundant parallel manipulators concerned
with the singularity analysis. By resorting to reciprocal-
screw theory, Joshi and Tsai [12] derived full rank Jacobian
matrices with the purpose to approach the singularity anal-
ysis of limited-dof parallel manipulators. Huang et al. [13]
introduced a unified mathematical framework based on the
theory of screws and the principle of virtual work avail-
able for the first order kinematic and static modeling of
limited-dof parallel manipulators. In Choi and Ryu [14] the
analysis of a expanded full rank Jacobian matrix reveals some
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singular configurations in a Schonflies parallel manipulator
that are not detected when usual defective Jacobian matrices
are employed. Dong et al. [15] presented a novel docking
mechanism for the aircraft industry where its kinematic per-
formance is evaluated through the analysis of a dimensional
homogeneous Jacobianmatrix which is obtained applying the
theory of screws. Hoevenaars et al. [16], [17] realized the
Jacobian analysis of a parallel manipulator equipped with a
reconfigurable platform comprising two end-effectors based
on screw theory. Ye et al. [18] applied reciprocal-screw theory
in the design process of a reconfigurable parallel manipu-
lator performing the Jacobian analysis introducing a unified
Jacobian model. Zhang et al. [19] introduced a novel parallel
manipulator for needle insertion where, based on the theory
of screws, the robot brings a workspace free of singularities.

In this work, the Jacobian analysis of a decoupled spatial
parallel manipulator with topology 3-RPRRC+RRPRU [20]
is approached by means of the theory of screws. The rest
of the contribution is organized as follows. In the next
section, the architecture and geometry of the decoupled robot
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FIGURE 1. Sketch of the parallel manipulator.

FIGURE 2. Kinematic diagram of the 3-RPRRC+RRPRU manipulator.

manipulator, including the notation used in this contribution,
is described. Then, the inverse-forward displacement analysis
of the parallel manipulator is performed. The inclusion of two
unit vectors allows to formulate six quadratic equations in
the unknown components of such vectors which are solved
using homotopy continuation method. This strategy does not
require the computation of the rotation matrix. In section
‘‘Jacobian matrices of the parallel manipulator’’ the Jaco-
bians are systematically obtained through the formulation of
the velocity analysis of the parallel manipulator by means of
screw theory. In this regard, the Klein form plays a central
role. After, in the later section, the singular postures of the
robot are determined by investigating the determinant of the
Jacobians. In a further section, numerical examples covering
most of the points treated in the work are depicted. Finally,
some conclusions are given at the end of the contribution.

II. TOPOLOGY OF THE UNCOUPLED PARALLEL
MANIPULATOR
As is shown in Fig. 1, the robot under study consists of two
platforms, one fixed and one mobile, linked each other by one
internal and three external kinematic chains.

The internal limb is a RRPRU-type kinematic chain, where
R, U and P denote, respectively, revolute, universal and pris-
matic joints. The first revolute is assembled with the base in
such a way that its axis is normal to the plane of this platform.
In addition, the axis of the second revolute pair is coplanar
with the base. A prismatic joint controls the length of the
limb, which is connected at its end to the moving platform
through a revolute pair, such that the axes of both joints are
collinear; finally, an universal joint connects the limb to the
moving platform. Note that the assembly of the third revolute
and the universal joints is equivalent to a spherical joint with
the advantage of alleviating frictional forces. On the other
hand, the external limbs are RPRRC-type kinematic chains,
where the axis of the revolute joint connecting the limb to
the base is in the plane of this platform. Then, the prismatic
joint and the second revolute joint of each external kinematic
chain are connected in that way that they shares a common
axis. Moreover, the external limb is linked to the moving
platform by means of a compound joint formed with the
third revolute pair and a cylindrical joint (C) whose axes are
perpendicular to each other. One more time, the topology
of the manipulator conveniently avoids the use of spherical
joints. Finally, the nominal positions of the external revolute
pairs form an equilateral triangle, whose center is shared
with the position of the first revolute of the internal limb.
In this way, the nominal positions of these four revolutes lie
in the plane of the base. Moreover, the axes of the three outer
revolutes intersect at the center of such triangle, as is shown
if Fig. 1.

The geometry of the parallel manipulator is detailed in
the following. From Fig. 2, let O_XYZ be a reference frame
whose origin, denoted by O, is the center of the fixed plat-
form, and its base unit vectors are ijk. The nominal position
of the first revolute joints for the i-th external limb are denoted
by points Ai, and located by vectors ai. Thereafter, i =
1, 2, 3 unless otherwise stated. As described in the previous
paragraph, these points are the vertices of a circle an equilat-
eral triangle inscribed in a circle with center atO and radius a.
In addition, the axes of these revolute pairs are characterized
by concurrent unit vectors ui, that are directed from pointO to
the corresponding pointAi. On the other hand, pointBi, which
is located by vector bi, denotes the nominal position of the ith
(R+C) compound kinematic pair, and the direction of its axis
is defined by a unit vector ni that points from the nominal
position of the universal joint of the central limb, point C ,
to Bi. Please note thatC also denotes the center of the moving
platform and its position vector is c. Furthermore, vectors ni
are located on the plane of the moving platform. With the
purpose to generate screws reciprocal to the screw systems of
the outer limbs, let us consider that Di is a point, for which
the position vector is d i, that results of the intersection of the
line generated by points O and Ai and a line passing through
point Bi that is normal to the line defined by points C and Bi.
On the other hand, the actuators of the parallel manipulator
are notated as generalized coordinates qi(i = 1, 2, 3, . . . , 6),
where qi(i = 1, 2, 3) stand for linear actuators associated to

4514 VOLUME 10, 2022



J. Gallardo-Alvarado et al.: Forward Kinematics and Singularity Analyses of Uncoupled Parallel Manipulator

FIGURE 3. The workspace of the manipulator for the orientation defined
by the conventional roll-pitch-yaw angles (6◦, 3◦, 10◦).

the prismatic joints of the outer limbs. Meanwhile, qi(i =
4, 5, 6) are generalized coordinates employed to control the
position of themoving platform through the central kinematic
chain, e.g., q4 is used to control the orientation of the lower
central revolute pair, which is measured from the X−axis.
After, the vertical orientation of the central limb is controlled
by the generalized coordinate q5 which is associated to the
second revolute joint. Finally, the position of the moving
platform is fully specified taking into account q6 is associated
to the extendible length of the central limb. In other words,
q6 is the signed distance between points O and C .

The workspace for the manipulator under study can be
obtained by following the procedure described in [21], [22].
An example is depicted in Fig 3.

III. DISPLACEMENT ANALYSIS
For the sake of completeness of the contribution, this section
presents the forward and inverse position analyses of the
parallel manipulator.

The forward displacement analysis consists of finding the
pose of the moving platform with respect to the base when
a set of generalized coordinates are given. In other words,
it is required to compute the coordinates of C and Bi. With
reference to Fig. 2, the position vector c, owing the decoupled
motion of the moving platform, can be written in a straight-
forwardway in terms of the variables q4, q5 and q6, associated
to the central limb, through the next closure equation

c = q6λ,

λ = cos q4 cos q5i+ sin q4 cos q5j + sin q5k (1)

where λ = λX i+λY j+λZk is a unit vector pointed fromO to
C . Moreover, owing the assemble of the external limb to the
base platform through concurrent revolute joints, it follows
that for each outer kinematic chain we have necessarily that

(bi − ai) · ui = 0 (2)

where the position vector bi may be expressed as follows

bi = c+ eini (3)

Hence, with the substitution of (3) into (2) it follows that

bi = (a− c · ui)/ni · ui (4)

Furthermore, owing the symmetry of the moving platform it
is evident that

n1 + n2 + n3 = 0 (5)

where ni · ni = 1. Within this framework, the forward
displacement analysis is focused on the following closure
equations

bi · bi = a2 + q2i (6)

where qi is the signed distance between Ai and Bi. After a
few computations, a system of six quadratic equations in six
unknowns, e.g., the components of n1 and n2. In the contri-
bution, this system is solved by using a homotopy continua-
tion method [23]. Once the coordinates of Bi are calculated,
see (3), the coordinates of points Di may be computed taking
into account that

(d i − bi) · ni = 0 (7)

where the component of d i along the Z -axis vanishes. Addi-
tionally, with the purpose of determining the orientation
angles of the moving platform consider that the rotation
matrix R may be computed as follows

R =
[
n1 (n1 × n2)× n1 n1 × n2

]
(8)

Also, R may be expressed considering conventional roll (γ ),
pitch (β) and yaw (α) angles as follows [24]

R =

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ−cαsγ
−sβ cβsγ cβcγ

 (9)

where R is calculated following the order of rotations roll,
pitch and then yaw.

Finally, the inverse displacement analysis of the robot
manipulator is straightforward. In fact, given the pose of
the moving platform, e.g. given the vectors c and ni, first
the position vectors bi are obtained directly from (3). After,
the generalized coordinates qi are calculated, based on (6),
as follows

qi =
√
bi · bi − a2 (10)

Meanwhile, the generalized coordinates q4, q5 and q6 are
computed directly upon (1). Indeed, given vector c it is evi-
dent that

q6 =
√
c · c,
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FIGURE 4. Screws of the parallel manipulator.

q5 = atan2
(
c · k,

√
(c · i)2 + (c · j)2

)
,

q4 = atan2 (c · j, c · i) (11)

Finally, it is worth to note how easy is to formulate the dis-
placement analysis of the parallel manipulator at hand when
compared with the classical Gough-Stewart platform [25],
[26].

IV. JACOBIAN MATRICES OF THE PARALLEL
MANIPULATOR
With the purpose to obtain the Jacobian matrices of the
parallel manipulator, in this section the velocity analysis of it
is addressed by resorting to the screws theory [27]. Velocity
modeling requires to formulate a specific linear map between
two vector spaces at a given configuration, i.e., velocity
modeling involves the linear map between the velocity state,
or twist about a screw, and the actuator rates [28]. In this
contribution, the Jacobians of the parallel manipulator emerge
combining the theory of screws and the formalities of linear
algebra, without doubt an elegant union.

Figure 4 shows the infinitesimal screws of the parallel
manipulator where pointC is selected as the pole of reference
of the screw systems. In what follows a brief explanation of
the screws is provided. The screws of the central kinematic
chain are determined as follows:
0$14 = [k, k×c] denotes the screw of constant orientation that
models the lower revolute pair;
1$24 = [sin q4i − cos q4j, (sin q4i − cos q4j) × c ] represents
the screw of the revolute joint whose primal part remains
permanently in the XY−plane;
2$34 = [0,λ] is the screw dealing with the actuated prismatic
joint;
3$44 = [λ,0] is the screw attending the revolute joint along
the central leg;
4$54 = [n1,0] and 5$64 = [(n1 × n2) × n1,0] are the screws
simulating the universal joint.

Meanwhile, the screws for the ith external limb are obtained
as

0$1i = [ui,ui × (c − ai)] is the screw associated to the first
revolute joint;
1$2i = [0,wi] is the screw dealing with the actuated prismatic
joint;
2$3i = [wi,wi×(c−bi)] is the screw dealing with the revolute
joint along the ith leg;
3$4i = [ni × wi, (ni × wi)× (c− bi)] is the screw concerned
with the upper revolute joint;
4$5i = [ni,0] and 5$6i = [0,ni] are the screws simulating the
cylindrical joint, rotation and translation respectively;

where wi = (bi − ai)/ | bi − ai | is a unit vector along the ith
leg.

The velocity state, or twist about a screw, of the rigid
body and its representation through linear combinations of
infinitesimal screws is one of the major contributions of the
theory of screws [27]. In that regard, for more than four
decades the theory of screws has been used successfully in
the study of the instantaneous kinematics of parallel manipu-
lators.

Let us consider that ω is the angular velocity vector of
the moving platform as observed from the fixed platform.
Furthermore, let be vC the linear velocity vector of the center
C of the moving platform. Then, the velocity state of the
moving platform as observed from the fixed platform taking
point C as the reference pole, the six-dimensional vector
V =

[
ω, vC

]
∈ <

6×1, can be written in screw form through
the limbs of the parallel manipulator as follows:

V = 0ω
i
1
0$1i + 1ω

i
2
1$2i + 2ω

i
3
2$3i + 3ω

i
4
3$4i

+4ω
i
5
4$5i + 5ω

i
6
5$6i i = 1, 2, 3, 4 (12)

where the actuated kinematic joints of the parallel manipu-
lator are 1ω

i
2 = q̇i(i = 1, 2, 3), 0ω4

1 = q̇4, 1ω4
2 = q̇5 and

2ω
4
3 = q̇6.
In what follows the input-output equation of velocity of the

parallel manipulator is obtained by resorting to reciprocal-
screw theory, an elegant strategy that allows to cancel the
passive joint rates of the parallel manipulator through the
application of the Klein form. Let $1 = [s1, sO1] and
$2 = [s2, sO2] be to elements of the Lie algebra se(3)
of the Euclidean group SE(3). The Klein form, {∗; ∗}, is a
symmetric bilinear form of se(3) defined as [27]

{$1; $2} ≡ {[s1, sO1]; [s2, sO2]}

= s1 · sO2 + s2 · sO1 (13)

Additionally, it is well known that two screws $1 and $2 are
reciprocal screws if {$1; $2} = 0, e.g. when the primal
parts of $1 and $2 intersect at a common point we have
{$1; $2} = 0. Similarly, assume that $2 = [0; s2]. Said
otherwise, $2 denotes a prismatic joint. If s1 and s2 are
perpendicular then it follows that {$1; $2} = 0. By the way,
if s1 = s2 then {$1; $2} = 1.
With the aim of performing the velocity analysis, the screw

systems of the outer limbs are first considered. The introduc-
tion of the screw reciprocal to the screws representing passive
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joint rates in the same leg plays a central role. Let

Si =
[

(d i − bi)/ | d i − bi |
(d i − bi)× (c− bi)/ | d i − bi |

]
(14)

be a line in Plücker coordinates directed from point Bi to
point Di. Note that Si is reciprocal to all the screws of the i-th
limb excluding the screw associated to the active prismatic
pair. Thus, by applying the Klein form between Si and both
sides of (12) with the reduction of terms, i.e. {Si; 0$1i } =
{Si; 2$3i } = {Si;

3$4i } = {Si;
4$5i } = {Si;

5$6i } = 0, it is
possible to write

{Si;V} = q̇i{Si; 1$2i } (15)

On the other hand, for the central limb, labelled as the
fourth kinematic chain, it is evident that 3$44,

4$54 and 5$64
are reciprocal to the screws associated to the passive joints
of this chain. Hence, after applying the Klein form between
these screws and both sides of (12) with the reduction of terms
yields

{$i;V} = q̇4{$i; 0$14} + q̇5{$i;
1$24} + q̇6{$i;

2$34},

$i ∈ {3$44,
4$54,

5$64} (16)

Rearranging (15) and (16) into a matrix-vector form, the
input–output equation of velocity of the parallel manipulator
is

JTv 1 V = Jq Q̇ (17)

where

Jv =
[
S1 S2 S3 3$44

4$54
5$64
]

(18)

is the forward Jacobian matrix of the parallel manipulator.
Meanwhile

Jq =


{S1; 1$21} 0 0

0 {S2; 1$22} 0
0 0 {S3; 1$23}
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

{
3$44;

0$14} {
3$44;

1$24} {
3$44;

2$34}
{
4$54;

0$14} {
4$54;

1$24} {
4$54;

2$34}
{
5$64;

0$14} {
5$64;

1$24} {
5$64;

2$34}

 (19)

is the inverse Jacobian matrix of the parallel manipula-
tor [29]. Moreover,

1 =

[
O I
I O

]
(20)

is an operator of polarity, where I is a 3 × 3 identity matrix
and O is the zero matrix. Furthermore,

Q̇ =
[
q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

]T (21)

is the first-order driver vector of the parallel manipulator.

V. SINGULARITY ANALYSIS
In this section the inverse and forward Jacobian matrices are
studied to determine the singular poses of the robot. In that
regard as noted by Coppola et al. [30], an advantage of the
theory of screws over conventional methods based on the
time derivative of vector loop equations is that screw theory
avoids tedious parametrization errors and allows precise and
complete description of singularity types.
Commonly, in parallel manipulators it is possible to detect

three types of singular configurations: i) inverse singular-
ity, ii) forward singularity and iii) combined singularity.
An inverse singular posture for the parallel manipulator under
study emerges when det(Jq) = 0, in other words matrix Jq is
singular, and Jv is non-singular. That is, the inverse velocity
analysis is not available. It is interesting to note that in order to
elucidate the inverse singularity analysis, as a consequence of
the uncoupled motion of the moving platform matrix Jq may
be conveniently rewritten as follows

Jq =
[
J̃q O
O J̄q

]
(22)

where

J̃q = diag
[
{S1; 1$21} {S3; 1$23} {S3; 1$23}

]
(23)

is a submatrix of Jq dealing with the orientation of themoving
platform. Meanwhile

J̄q =

{3$44; 0$14} {
3$44;

1$24} {
3$44;

2$34}
{
4$54;

0$14} {
4$54;

1$24} {
4$54;

2$34}
{
5$64;

0$14} {
5$64;

1$24} {
5$64;

2$34}

 (24)

is a submatrix of Jq concerned with the position of the center
of the moving platform. Hence, by analysing J̄q and J̃q it is
possible to approach the inverse singularity analysis. If any
of the elements of the diagonal of matrix J̃q vanishes then
we obtain det(J̃q) = 0. This condition occurs only when the
primal part of Si is orthogonal to the dual part of 1$2i in the
same leg. A condition that must be disregarded from the anal-
ysis owing the architecture of the outer limbs and therefore an
inverse singularity must be credited only to matrix J̄q. In that
concern, taking into account that {3$44;

0$14} = {
3$44;

1$24} =
0 and {3$44;

2$34} = 1, by setting det(J̄q) = 0, the condition of
inverse singularity leads to

{
4$54;

0$14}{
5$64;

1$24} = {
5$64;

0$14}{
4$54;

1$24} (25)

For example, when the central limb is vertical we have
{
4$54;

0$14} = {
5$64;

0$14} = 0 yielding det(J̄q) = 0. Finally,
according to (25), the general condition of inverse singularity
of the parallel manipulator results in

[n1 · (k× c)] [(n1 × n2)× n1 · (λX i+ λY j)× c]

− [(n1 × n2)× n1 · (k× c)] [n1 · (λX i+ λY j)× c] = 0

(26)

A direct singularity occurs when the forward velocity anal-
ysis of the robot is not available, i.e., when Jv is singular and
matrix Jq is non-singular. In this case the moving platform
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TABLE 1. Forward displacement analysis: coordinates of points Bi (in meters).

is able to move infinitesimally without changing the value
of the inputs. Said otherwise, some degrees of freedom of
the parallel manipulator become uncontrollable. Following
the trend of the inverse singularity analysis, with the purpose
to simplify the forward singularity analysis, it is advisable
to consider the uncoupled motion of the moving platform.
In fact, the Jacobian matrix Jv may be conveniently rewritten
as follows

Jv =
[
J̃v J̄v

]
(27)

where J̃v =
[
S1 S2 S3

]
while J̄v =

[
3$44

4$54
5$64
]
. Thus,

a direct singularity emerges either when det(J̄Tv J̄v) = 0 or
det(J̃Tv J̃v) = 0. The first possibility is easy to elucidate.
In fact, note that the screws 3$44,

4$54 and 5$64 models a
spherical pair. Thus, taking into account that point C is the
reference pole, the screws would be established as 3$44 =
(i,0), 4$54 = (j,0) and 5$64 = (k,0). Then it follows that
det(J̄Tv J̄v) = 1, which indicates that the central limb is not
responsible for causing a direct singularity. In contrast to the
simplicity of the computation of det(J̄Tv J̄v), the complexity
of the computation of det(J̃Tv J̃v) is evident due the lack of a
closed-form solution for the forward displacement analysis.
The derivation of an algebraic expression to accomplish this
end is out of scope in this paper, and therefore only evi-
dent direct singularities are investigated based on the linear
dependency of the elements of matrix J̃v. If the lines Si are
coplanar then their dual parts are collinear causing a linear
dependency between them and the parallel manipulator is
at a singular configuration. Furthermore if the lines Si are
parallel then their primal parts are the same causing again a
linear dependency between them and the parallel manipulator
is also at a singular configuration. On the other hand, if the
lines Si are concurrent to a point, e.g. point O, then if such
point is selected as the reference point the dual parts of the
lines Si vanish producing a direct singularity. The geometry
conditions imposed to compute points Di make this last pos-
sibility impossible due to the architecture of the outer limbs
and therefore this case must be disregarded from the analysis.

Finally, a combined singularity emerges when both matri-
ces Jv and Jq are singular, e.g., when the four limbs of the
parallel manipulator are parallel.

VI. NUMERICAL APPLICATION
In order to show the application of the method, in this section
numerical examples comprising most of the topics treated
in the contribution are provided. Furthermore, with the aim
to verify the numerical results of the examples, computer

simulations are obtained with the aid of commercially avail-
able software like ADAMS˙. To this end consider that the
parameters of the parallel robot are a = 1m, u1 = i,
u2 = −0.5i + 0.866j and u3 = −0.5i − 0.866j. Thus,
the coordinates of points Ai are given by A1 = (1, 0, 0)m,
A2 = (−0.5, 0.866, 0.0)m and A3 = (−0.5,−0.866, 0.0)m.
The first part of the exercise is devoted to solve the inverse

displacement analysis. Assume that the actual pose of the
moving platform is characterized by the position point C =
(0.25, 0.2, 1.0)m and the orientation angles α = 6o, β = 3o

and γ = 10o. Thus, we obtain immediately, according to
Eq. (1), that the generalized coordinates associated to the
central kinematic chain are given by q4 = 38.657o, q5 =
72.247o and q6 = 1.05m. Later on, the variable distances
ei are computed as e1 = 0.755m, e2 = 0.972m and e3 =
1.313m. Finally, length of the external limbs result in q1 =
1m, q2 = 1.191m and q3 = 0.869m.
The next part of the exercise deals with the solution of

the forward displacement analysis. To this aim, consider the
generalized coordinates obtained in the first part. From (1),
the coordinates of the center of the moving platform result
as C = (0.25, 0.2, 1.0)m. Meanwhile, excluding reflected
solutions, the application of the method introduced in the
third section of this contribution conduct to 4 real solutions.
The corresponding coordinates of points Bi are described in
Table 1.
The final part of the numerical example is devoted to

solve the velocity analyis for the parallel robot. To this aim,
consider solution 2 of Table 1 as the reference configuration
of the manipulator. Two examples are considered here.
Example 1: In this case of study, the generalized coordi-

nates are defined by periodical functions as follows:

q1 = 1+ 0.25 sin(t) cos(t)

q2 = 1.191+ 0.3 sin(t) cos(t)

q3 = 0.869+ 0.2 sin(t) cos(t)

q4 = 0.6747+
π

18
sin(t)

q5 = 1.2609−
π

9
sin2(t)

q6 = 1.05+ 0.25 sin(t) cos(t)

where the time t is confined in the interval 0 ≤ t ≤ 2π (s).
The resulting temporal behavior of the center of the moving
platform, by using the screw theory and the results obtained
from the model in ADAMS, are summarized in the plots of
Fig. 5 and Fig. 6.
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FIGURE 5. Example 1. Position (left) and orientation (right) of the moving platform.

FIGURE 6. Example 1. Time history of the forward kinematics of the center of the moving platform, using the screw theory (left graphics) and
using ADAMS˙ (right graphics).

FIGURE 7. Example 2. Position and orientation of the moving platform.

Example 2: Upon the reference configuration of the paral-
lel manipulator, i.e.C = (0.25, 0.2, 1.0), α = 6o, β = 3o and
γ = 10o, the moving platform must reach the pose charac-
terized by the position C = (0.2, 0.1, 1.5) and the orientation
angles α = 10o, β = 5o and γ = 12o. Furthermore, consider
that at the beginning of the analysis the robot is motionless
and is required to move it in a smooth manner in a way that
allows to the manipulator reaching the indicated posture after
5 seconds. Quintic polynomial expression of the form qi(t) =

µi,0+µi,3t3+µi,4t4+µi,5t5 are appropriated to achieve this
task. The coefficients of these polynomial functions are given
in Table 2.
Finally, the temporal behavior of the kinematics of the cen-

ter of the moving platform by applying the theory of screws
of the second example is reported in Fig. 7 and Fig. 8. The left
side of Fig. 8 shows the results obtained from simulations in
ADAMS in order to compare them with those obtained with
the presented method.
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FIGURE 8. Example 2. Time history of the forward kinematics of the center of the moving platform, using the screw theory (left graphics) and
using ADAMS˙ (right graphics).

TABLE 2. Coefficients of the functions for the generalized coordinates
qi (t) for Example 2.

VII. CONCLUSION
Simpler kinematics and improved maneuverability are some
advantages of parallel manipulators with uncoupled kine-
matics over traditional parallel manipulators with coupled
kinematics like the Gough-Stewart platform. In this work,
the Jacobian analysis of the 3-RPRRC+RRPRU decoupled
parallel manipulator is solved by using of the screw theory.
The parallel robot studied is composed of a central RRPRU-
type kinematic chain whose role is to conduct the center of the
moving platform and three external RPRRC-type kinematic
chains whose function is to control the orientation of the
moving platform.

The displacement analysis is conveniently subdivided into
two problems where the pose of the moving platform, as mea-
sured from the base, are themain factors to be considered. The
inverse-forward position analysis is obtained in closed-form
solution owing the decoupled performance of two rotary actu-
ators defining the orientation of the central kinematic chain
and one linear actuator representing the extendible length of
it. On the other hand, once the position of themoving platform
is fixed according to the coordinates of its geometric center,
the inverse-forward displacement analysis is completed for-

mulating closure equations based on three unit vectors that
are related with the orientation of the moving platform which
lead us six quadratic equations instead of the typical seven
quadratic equations generated for the forward displacement
analysis of the Gough-Stewart manipulator. Afterwards, the
input-output equation of velocity of the robot is obtained
systematically by taking advantage of the properties of recip-
rocal screws. This strategy allows to avoid the computation
of the passive joint rates of the parallel manipulator owing
the properties of the Klein form. Thereafter, the forward
and inverse Jacobian matrices associated to the input-output
equation of velocity of the robot are employed to determine
the singular postures of the parallel manipulator. The sin-
gularities are explained using concise vector expressions.
However, the singularity analysis in loci form beyond the
scope of the contribution due to the lack of closed-form
solutions for the forward displacement analysis credited to
the external limbs. Numerical examples are included with the
aim of showing the versatility and usefulness of the presented
methodology.

Finally, some relevant characteristics of the parallel manip-
ulator here considered are listed next: architecture free of
spherical and compound joints, uncoupled motion of the
moving platform, available decomposed Jacobian matrices,
semi-closed form solutions available for the forward dis-
placement analysis and less quadratic equations when com-
pared with the Gough-Stewart platform concerned with the
forward displacement analysis.
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