
Received December 2, 2021, accepted December 22, 2021, date of publication December 30, 2021, date of current version January 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3139435

Black-Box Impedance Prediction of Grid-Tied
VSCs Under Variable Operating Conditions
QI QIU 1,2,3, YIFAN HUANG1,2, RUI MA 1,2, JÜRGEN KURTHS 4,5,6,
AND MENG ZHAN 1,2, (Member, IEEE)
1School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
3State Grid Nanchang Electric Power Supply Company, Nanchang 330000, China
4Department Complexity Science, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
5Institute of Physics, Humboldt University of Berlin, 10099 Berlin, Germany
6Institute of Information Technology, Lobachevsky University of Nizhny Novgorod, 603950 Nizhnij Novgorod, Russia

Corresponding author: Meng Zhan (zhanmeng@hust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 12075091, in part by the
International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China [Research on
Inter-Organizational Cooperation: NSFC-Deutsche Forschungsgemeinschaft (DFG)] under Grant 11861131011, and in part by the Russian
Ministry of Science and Education under Grant 075-15-2020-808.

ABSTRACT Impedance/admittance models (IM/AMs) have been widely used to analyze the small-signal
stability of grid-tied power electronic devices, such as the voltage source converter (VSC). They can be either
derived from theoretical analysis under white-box conditions, where all parameters and control structures
are fully known, or measured based on experiments under black-box conditions, where the topology and
parameters of the controllers are completely unknown. As the IM/AMs depend on specific operating
conditions, it is highly desirable to develop fast algorithms for IM/AM prediction (or estimation) under the
black-box and variable-operating-point conditions. This article extends the nearly-decoupled AMmethod for
sequence AMs proposed recently by Liu et al to fit any unknown control structure, including not only grid-
following VSC, but also grid-forming VSC. It is, therefore, referred to as the fully-decoupled IM (FDIM)
method. Furthermore, a curve fitting method for the transfer function is proposed to expedite the algorithm,
based on the information of a few disturbance frequencies only. Finally, the algorithm is verified by wide
simulations and experiments under different situations, including the direct-drive wind turbine generator.
The whole approach is expected to be broadly applicable to the stability analysis of power-electronic-based
power systems under variable operating conditions.

INDEX TERMS Impedance/admittance prediction, black-box systems, variable operating points, voltage
source converter, small-signal stability.

NOMENCLATURE
s Superscript, the variable in the system

dq frame.
c Superscript, the variable in the controller

dq frame.
θ Phase of the synchronization control part.
1θ Angle mismatch between the controller

and system dq frames.
Vdc Voltage of direct-current bus.
P, Pin Output active power and input active

power.
id,q d- and q-axis components current.

The associate editor coordinating the review of this manuscript and

approving it for publication was Inam Nutkani .

ed,q d- and q-axis components internal
potential.

Id,q Steady values of the d- and q-axis
components current.

Vd , q Steady values of the d- and q-axis
components voltage.

Lf , R The filter inductance and resistance
of the VSC.

eabc The potential of the VSC.
Vtabc, iabc The three-phase voltages and currents at

the point of common coupling.
Vt , et The voltage amplitude of Vtabc and eabc.
T1θ Coordinate transformation matrix in (1).
fd,qin, fd,qid The intermediate variables in (7).
fd,qvn, fd,qvd The intermediate variables in (7).
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fi, fv The intermediate variables in (8).
fd,qθ The intermediate variables in (8).
gi, gv The intermediate variables in (9).
Z The impedance matrix, including

Zdd , Zdq, Zqd , Zqq.
1gv The intermediate variables in (12).
akn, bkn The all coefficients in (13).
x The operating point vector in (15).
ak , bk The system parameters in (15).
A0, Aij The intermediate variables in (16).
61−4 The intermediate variables in (20).
m1,2, ρ1,2 The intermediate variables in (23).
M1 The intermediate variables in (27).
pn, qn The intermediate variables in (29).
p, q, k , h The intermediate variables in (30).
K1,2, H1,2 The intermediate variables in (32).
R,Rr The intermediate variables in (33)

and its real part.
C The DC capacitance of VSC.
r The number of operaing points.
Q Output reactive power.
ω0 Fundamental frequency of the system.
kp,ip Proportional and integral coefficients

of PI controller in the power flow control.
Kp,q Gain coefficients of the basic droop control.
kp,iv Proportional and integral coefficient of PI

controller in the basic droop control.
Dp,q, J Gain coefficient of the virtual synchronous

generator control.
Nf The number of disturbance frequencies

in Equ. (36).
ZFSIM The Impedance calculated by

frequency-scan impedanc model in (36).
ZFDIM The Impedance calculated by

fully-decoupled impedanc model in (36).
ε The relative error of ZFSIM and ZFDIM .
α, β, ηi The intermediate variables in (43).
ki The constants in (43).
Ej The intermediate variables in (44).

I. INTRODUCTION
Due to increasing pressure of environmental protection and
energy resource, a great quantity of solar and wind powers
with the form of distributed sources have been connected to
grid recently [1], and meanwhile the traditional power system
has being gradually transformed into a semiconducting power
system (also called power-electronic-based power system)
[2]–[5]. As one of most common devices, the voltage source
converter (VSC) has been widely used in photovoltaic invert-
ers, wind farms, and high voltage dc transmission system so
on. Recently we have been faced with various types of serious
stability and oscillation problems in system level caused by
power electronic devices, and hence accurate mathematical
modeling and analysis of VSC is highly desirable [6]–[8].

Until now there are two major methods for the
small-signal stability analysis of power-electronic-based
power systems, including the state-space model and
the impedance/admittance model (IM/AM) [9]–[11]. The
state-space model is a time-domain analytic method based
on the system state equation. The state equation is usually
established according to the circuit configuration and then
linearized on the steady-state operating points. Further the
stability of the system can be studied by analyzing the asso-
ciated Jacobian matrix. But the state-space model is workable
only under white-box conditions, in which the system struc-
ture and parameters should be fully known. In contrast, gener-
ally the IM/AM can be divided into two types. The first is the
IM/AM based on theoretical modeling. The transfer function
is established according to the system topology to obtain the
theoretical IM/AM. Unfortunately, it is also only applicable
under white-box conditions. The second is the IM/AM based
on measurement. There the IM/AM can be obtained through
experiments by frequency sweeping measurement via either
series voltage or shunt current injection, under black/gray-
box conditions [12]–[15], where usually we cannot get all
the structure and parameters of devices for the sake of
commercial secrecy. Based on these IM/AM results from
either theoretical modeling or measurement, the small-signal
stability analysis can be further studied based on the gener-
alized Nyquist stability criterion [16]–[19]. As the black-box
or gray-box is more realistic, the IM/AM measurement has
been widely used under various practical conditions and has
become a dominant method in electric power engineering.
In addition, the method of amplitude-phase motion equations
has been proposed [20], and the equivalence and relation of all
these important methods have been investigated very recently
[21], [22].

It is well known that the small-signal stability relies on a
linearization around the sufficiently small neighboring of a
certain operating point, and the IM/AM of devices should
depend on a specific operating point. Even if there is no
any change within the power electronic device, any external
change would also change the operating point and further
the IM/AM result of the device. This makes the IM/AM
measurement quite time-consuming under variable operating
conditions, especially whenwewant to exhaustively study the
system’s stability boundary or fault-set searching for various
working conditions. Therefore, it becomes a great challeng-
ing to develop proper, fast algorithms for IM/AM prediction
(or IM/AM estimation) under both black-box and variable-
operating-point conditions.

So far, there is not any work on the IM/AM predic-
tion under fully black-box conditions, to the best knowl-
edge of the authors. Relevant to this target, recently Amin
and Molinas proposed a gray-box method to estimate con-
troller parameters based on the already-known control struc-
ture [23]. Zhang et al. and Gong et al. realized admittance
estimation based on neural network [24] and multidimen-
sional interpolation [25], respectively. Liu et al. proposed a
novel ‘‘nearly-decoupled AM’’ (NDAM) model, in which the
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sequence-domain AM of VSC by using the phase-locking
loop (PLL) synchronization can be obtained under variable
operating conditions [26]. The major limitation of the latter
method is that it is still a gray-box method, on the assump-
tion that the control structure of VSC should include PLL.
Recently, Liu et al. [27] further proposed a sequence-domain
frequency-coupled impedance model (FCIM) with the cor-
responding stability criterion, and well studied the problem
of subsynchronous oscillation caused by interaction between
power electronic equipment and weak AC grids.

This article will extend the NDAM in the sequence
domain [26] to the dq domain and make some great
improvements by applying it to a VSC under an arbi-
trary control structure and completely black-box conditions.
The whole prediction algorithm is, therefore, referred to
as fully-decoupled IM (FDIM). It is further improved by
a transfer-function curve fitting algorithm. All these are
expected to be helpful for system stability analysis and appli-
cable for various practical problems, in particular, when a
large number of repetitive IM measurements under variable
operating conditions are needed.

The following contents are organized as follows. Section II
introduces the detailed algorithm of the fully-decoupled IM.
In Section III, a curve fitting method of the transfer function
is proposed. In Section IV, the accuracy of our IM prediction
under different control strategies is verified by simulations
in MATLAB/SIMULINK. Section V is dedicated to validat-
ing the FDIM method through hardware-in-the-loop (HIL)
experiments of direct-drive wind turbine generators under
different operating conditions. Finally, Section VI is devoted
to conclusions.

II. FDIM FOR GRID-TIED VSC
A. TYPICAL STRUCTURE OF GRID-TIED VSC
Figure 1(a) schematically shows a grid-tied VSC with an
unknown control system under black-box conditions. The
symbols Lf and R represent the interfacing inductance and
resistance of the VSC, respectively, C denotes the capacitor
at the DC side, Pin is the input active power at the DC side,
eabc is the internal potential of the VSC, and Vtabc and iabc are
the three-phase voltages and currents at the point of common
coupling (PCC). We use Vt and et to represent the voltage
amplitude of Vtabc and eabc, respectively. The PWM is for
the pulse width modulation technique. The key objective
of the IM method is to study the terminal characteristics
of devices, i.e., the linearized relation between the terminal
voltages and currents at the PCC, which can be further used
for small-signal stability analysis.

The control methods denoted by ‘‘control system’’ in
Fig. 1(a) can be diverse. In particular, a typical control
structure of the VSC is shown in Fig. 1(b); it includes the
vector control based on the Park transformation of the phase-
locking loop, which is a typical synchronization technique in
renewable energy integration. The outer control loops include
the terminal voltage control (TVC) and the DC-link voltage

FIGURE 1. (a) Schematic show of general structure for the three-phase
grid-tied VSC with its unknown control system under the black-box
conditions. (b) Schematic show of typical controllers with the vector
control (including TVC and DVC for the outer control loops and ACC for the
two inner control loops) and the phase-locking loop for synchronization.

FIGURE 2. Schematic show for the system and controller d-q frames:
d s-qs and d c -qc , respectively. The angle mismatch between the two dq
frames in dynamical process is denoted by 1θ .

control (DVC). The inner control loop is the alternating cur-
rent control (ACC). θPLL is the phase output of the PLL.
Vtref and Vdcref are the voltage references, and kp1−4 and
ki1−4 represent the corresponding proportional and integral
coefficients of the four PI controllers in the DVC, TVC, ACC,
and PLL, respectively.

B. IM OF VSC IN THE DQ DOMAIN
Transformation of the three-phase variables into the dq refer-
ence frame, namely, from AC signals to DC ones, is an useful
technique for the control design of converters. Nomatter what
kind of control system the VSC contains in Fig. 1(a), the
inverter system usually has two dq frames: one is the system
dq frame (denoted by d s-qs), and the other is the controller
dq frame (denoted by dc-qc); their relation is illustrated in
Fig. 2, where the angle mismatch between the two dq frames
in dynamical process is denoted by1θ . In the steady state, the
two coordinates are identical, i.e., 1θ = 0. However, if an
external disturbance is applied, the two coordinate systems
will no longer coincide.
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The conversion of the voltage and current vectors in the
two coordinate systems is determined by the matrix T1θ ,

T1θ =
[

cos(1θ) sin(1θ)
− sin(1θ ) cos(1θ )

]
(1)

and [
V c
d

V c
q

]
= T1θ

[
V s
d

V s
q

]
,

[
I cd
I cq

]
= T1θ

[
I sd
I sq

]
(2)

where (V c
d , V

c
q , I

c
d , I

c
q ) and (V

s
d , V

s
q , I

s
d , I

s
q) are the steady-state

values of (Vd , Vq, Id , Iq) of the two coordinate systems,
respectively. Under the steady-state situation, 1θ = 0, V c

d =

V s
d = Vd , V c

q = V s
q = Vq, I cd = I sd = Id , and I cq = I sq = Iq,

namely, [
V c
d

V c
q

]
=

[
1 0

0 1

][
V s
d

V s
q

]
(3)

Considering a small perturbation 1θ (1θ � 1), we have[
V c
d +1V

c
d

V c
q +1V

c
q

]
≈

[
1 1θ

−1θ 1

][
V s
d +1V

s
d

V s
q +1V

s
q

]
(4)

or [
1V c

d

1V c
q

]
=

[
1V s

d

1V s
q

]
+1θ

[
Vq
−Vd

]
(5)

and, similarly[
1I cd
1I cq

]
=

[
1I sd
1I sq

]
+1θ

[
Iq
−Id

]
(6)

where the small perturbations of voltage and current at the
PCC within the system and the controller dq frames are
denoted by (1V s

d , 1V
s
q , 1I

s
d , 1I

s
q) and (1V c

d , 1V
c
q , 1I

c
d ,

1I cq ), respectively. Therefore, no matter what kind of control
system is used in the VSC, the conversion relation between
the small perturbations of the control dq frame and the system
dq frame is determined by (5) and (6). The steady-state vari-
ables Vd , Vq, Id and Iq at the PCC can be obtained directly by
measurements. Since the dq impedance model in this article
is established in the dq coordinate system with the angle
of the terminal voltage as the reference angle of the Park
transformation, in the steady state, Vd = Vt and Vq = 0.
Before developing our black-box impedance model, let us

take a closer look at some typical control schemes of the VSC,
which have been widely proposed in the literature. Generally
we can divide the control structure into two parts, namely the
synchronization control part and the other auxiliary control
part. Among them, the role of the synchronization control
is to generate a reference angle θ in the control system, and
the other part is to design a suitable control loop. Generally
there are two major divisions for synchronization, namely
the grid-following control and the grid-forming control [15],
[28]. The grid-following control is to follow the terminal
voltage phase angle through the phase-locking loop, as we
have seen in Fig. 1(b). In contrast, the grid-forming control
provides the phase information mainly based on the active

FIGURE 3. Four typical grid-forming control schemes, focusing on their
synchronization control parts: (a) PSC, (b) Basic droop control, (c) Droop
control with LPFs, and (d) VSG control.

power imbalance between P (active power) and Pref (ref-
erence value of active power). For example, four typical
control schemes are shown in Figs. 3(a)-(d), including the
power-synchronization control (PSC), basic droop control,
droop control with low-pass filters (LPFs), and virtual syn-
chronous generator (VSG) control, respectively [29]. We will
see that this universality in their control structures could help
us to perform IM prediction conveniently.

After performing small-signal derivations on the PLL in
Fig. 1(b) and the four different controllers in Fig. 3, we find
that 1θ can always be written in a unified form,

1θ =

[
fdin
fdid

fqin
fqid

][
1I sd
1I sq

]
+

[
fdvn
fdvd

fqvn
fqvd

]

×

[
1V s

d

1V s
q

]
(7)

These eight variables including fdin, fdid , fqin, fqid , fdvn, fdvd ,
fqvn, and fqvd are intermediate variables generated by lin-
earization. They are all implicit functions of the operating
points, that is, the implicit function formula does not change
with the change of the operating points. For the detailed
derivations, see Appendix A. As usuallyVd = Vt andVq = 0,
only three variables of the operating points: Vt , Id , and Iq are
needed.

We emphasize that only based on these general relations,
can we get deeply into the internal structure of impedance for
any black-box controlled VSC. Although we cannot exhaus-
tively study all existing different control schemes in the litera-
ture, the above relation is expected to be generally applicable.
It is also worth noting that although under the VSG control
in Fig. 3(d), the output angle θ is the internal voltage angle
of the VSC (et ) instead of the terminal voltage angle at the
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PCC (Vt ),1θ still represents the angle mismatch between the
system and the controller dq frames in the dynamical process,
and does not affect our impedance modeling.

For the PLL synchronization control, the theoretical
impedance expression of VSC in the dq domain has already
been deduced in Refs. [16] and [18]. After linearizing the
controllers, all the intermediate variables except 1θ are a
linear function of the operating points. Namely,[
fi1 fi2
fi3 fi4

][
−1I sd
−1I sq

]
=

[
fv1 fv2
fv3 fv4

][
1V s

d

1V s
q

]

+1θ

[
fdθ
fqθ

]
(8)

where all fi1−4, fv1−4, fdθ , and fqθ have a linear relation with
the operating points (Vt , Id , and Iq). Again this relation in (8)
is believed as workable for any general black-box VSC.

Substituting (7) into (8), we obtain[
gi1 gi2
gi3 gi4

][
−1I sd
−1I sq

]
=

[
gv1 gv2
gv3 gv4

][
1V s

d

1V s
q

]
(9)

where 

gi1 = (fi1fdid + fdθ fdin)fqid fdvd fqvd

gi2 = (fi2fqid + fdθ fqin)fdid fdvd fqvd

gi3 = (fi3fdid + fqθ fdin)fqid fdvd fqvd

gi4 = (fi4fqid + fqθ fqin)fdid fdvd fqvd

gv1 = (fv1fdvd + fdθ fdvn)fdid fqid fqvd

gv2 = (fv2fqvd + fdθ fqvn)fdid fqid fdvd

gv3 = (fv3fdvd + fqθ fdvn)fdid fqid fqvd

gv4 = (fv4fqvd + fqθ fqvn)fdid fqid fdvd

(10)

Based on these equations, one can find that all gi1−4 and gv1−4
have a polynomial, nonlinear relation with the operating
points.

Hence according to the impedance definition of the VSC,[
1V s

d

1V s
q

]
=

[
Zdd Zdq
Zqd Zqq

][
−1I sd
−1I sq

]
(11)

we can explicitly express each element of the impedance
matrix Z as 

Zdd = (gi1gv4 − gv2gi3)1−1gv

Zdq = (gi2gv4 − gv2gi4)1−1gv

Zqd = (gi3gv1 − gv3gi1)1−1gv

Zqq = (gi4gv1 − gv3gi2)1−1gv

(12)

where 1gv = gv1gv4 − gv2gv3.

C. DECOMPOSITION OF IM IN THE FDIM
Based on the above theoretical analysis, one can find that the
four elements of the IM in (12) are complicated nonlinear

functions of system parameters, operating points, and distur-
bance frequency ω (as s = jω). In contrast, all f ’s in (7)
and (8) are linear functions of the operating points, and all
gi1−4 and gv1−4 in (10) are their polynomial functions. Based
on these observations, as the first step, we like to reshape the
IM in (12) by decoupling the operating points.

As gi1−4 and gv1−4 can be written as polynomials of the
operating points (Id , Iq, and Vt ), including one constant term,
three first-order terms (Id , Iq, and Vt ), six second-order terms
(I2d , I

2
q , V

2
t , Id Iq, IdVt , and IqVt ), and many third-order terms

(I3d , I
3
q , V

3
t , I

2
d Iq, . . . ), etc, and importantly in the per-unit

system, Id ≤ 1, Iq ≤ 1, and Vt ≤ 1, which indicates that
the lower-order terms should have more contribution. Then
gi1−4 and gv1−4 can be written as{
gik=ak1 + ak2Id + ak3Iq+ak4Vt + ak5I2d + ak6I

2
q + · · ·

gvk=bk1 + bk2Id + bk3Iq+bk4Vt + bk5I2d + bk6I
2
q + · · ·

(13)

based on their different orders, where all coefficients akn and
bkn for k = 1, 2, 3, 4 and n = 1, 2, 3, 4, . . . depend on the
system parameters and disturbance frequency only, and they
are irrelevant with the operating-point information.

Equations (13) can be rewritten in the compact vector
forms: {

gik = aTk x

gvk = bTk x, k = 1, 2, 3, 4
(14)

and 
x =

[
1 Id Iq Vt I2d I2q Id Iq · · ·

]T
ak =

[
ak1 ak2 ak3 ak4 · · ·

]T
bk =

[
bk1 bk2 bk3 bk4 · · ·

]T (15)

where ak and bk denote the induced system parameters. They
contain the combined information of the system parame-
ters and disturbance frequency, and x represents the operat-
ing point vector separately. Clearly now the operating-point
information has been completely decoupled.

Further substituting (14) and (15) into (12) gives

Zdd = xTA11x(xTA0x)−1

Zdq = xTA12x(xTA0x)−1

Zqd = xTA21x(xTA0x)−1

Zqq = xTA22x(xTA0x)−1

(16)

with the matrices A0 and Aij (for i, j = 1, 2) expressed by
A0 = b1bT4−b2b

T
3

A11 = a1bT4−a3b
T
2 , A12 = a2bT4−a4b

T
2

A21 = a3bT1−a1b
T
3 , A22 = a4bT1−a2b

T
3

(17)

Hence the four IM elements (Zdd , Zdq, Zqd , and Zqq) in (16)
have been explicitly divided into the operating point vector
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x, and the matrices A0 and Aij (for i, j = 1, 2), which
depend on the induced device parameters a1−4 and b1−4 only.
Now the operating point in the IM prediction has been fully
decoupled, and this point is believed as a great improvement,
in comparison to the NDAM method in [26]. Based on (16),
we can get IM for any operating condition immediately,
under the condition that we have obtained all the induced
system parameters of the device, ak and bk , which should
be further achieved by parameter identification frommultiple
IM measurements.

D. IDENTIFICATION METHOD IN THE FDIM
For the aim of parameter identification of all induced sys-
tem parameters (ak and bk ), first we should obtain their
possible restriction conditions, based on the already-known
information of the operating point vector x and the IM from
several IMmeasurements. Inputting (14) into (9), we have the
following homogeneous equations{

gi11I sd + gi21I
s
q + gv11V

s
d + gv21V

s
q = 0

gi31I sd + gi41I
s
q + gv31V

s
d + gv41V

s
q = 0

(18)

According to the definition of the dq-domain impedance
in (11), we have{

1V s
d = −(Zdd1I

s
d + Zdq1I

s
q)

1V s
q = −(Zqd1I

s
d + Zqq1I

s
q)

(19)

Substituting (19) into (18) gives{
611I sd +621I sq = 0

631I sd +641I sq = 0
(20)

where 

61 = −Zddgv1 − Zqdgv2 + gi1

62 = −Zdqgv1 − Zqqgv2 + gi2

63 = −Zddgv3 − Zqdgv4 + gi3

64 = −Zdqgv3 − Zqqgv4 + gi4

(21)

Since both1I sd and1I
s
q represent external disturbances in

the small-signal perturbation tests, they should be indepen-
dent. Thus the relations in (20) hold true only if their coeffi-
cients 61−4 are all zero, i.e., 61−4 = 0. Then inputting (14)
into (21) gives

−ZddbT1 x − Zqdb
T
2 x + a

T
1 x = 0

−ZdqbT1 x − Zqqb
T
2 x + a

T
2 x = 0

−ZddbT3 x − Zqdb
T
4 x + a

T
3 x = 0

−ZdqbT3 x − Zqqb
T
4 x + a

T
4 x = 0

(22)

Now we have obtained the restricted relations between
the impedances (Zdd , Zdq, Zqd , and Zqq), the operating point
vectors x, and the system parameters (ak and bk ). These
equations in (22) would become the basis for the parameter
identification of ak and bk .

Before doing this, we like to express Eqs. (22) in a more
compact form. Taking the first and third ones in Eqs. (22) into
one group, and the second and forth ones into the other group,
we have {

mT1 ρ1 = 0

mT1 ρ2 = 0
(23)

and 
xT a2 = m2

T
[
bT1 bT2

]T
xT a4 = m2

T
[
bT3 bT4

]T (24)

respectively, where

m1 =

[
−ZddxT −ZqdxT xT

]T
ρ1 =

[
bT1 bT2 aT1

]T
ρ2 =

[
bT3 bT4 aT3

]T
m2 =

[
ZdqxT ZqqxT

]T
(25)

Observing Eqs. (23) and (25), one can see that ρ1 and ρ2
are the two solutions of the same linear equation mT1 ρ = 0.
After solving (23), we can obtain a1, a3, and b1−4. Similarly,
we can further solve (24) and obtain a2 and a4. Therefore,
in principle we can obtain all these necessary parameters a1−4
and b1−4, and accomplish the IM prediction in (16).

E. DETAILED ALGORITHM OF THE FDIM
The detailed algorithm of the FDIM is listed as follows.

i) Since the system control topology and system parameters
are all unknown, and the real combination of the operating
points (Id , Iq, Vt ) in x is undecided under the black-box con-
ditions, we first need to fix the form of x, which usually starts
from a constant term, first-order terms (Id , Iq, and Vt ), and
second-order terms (I2d , I

2
q , V

2
t , Id Iq, IdVt , and IqVt ), based on

the fact that lower-order terms usually have a stronger impact,
i.e.,

x =
[
1 Id Iq Vt I2d I2q V 2

t Id Iq IdVt IqVt
]T

(26)

clearly the size of x is 10 × 1, the same as that of a1−4 and
b1−4.

ii) Suppose that the dq-domain impedance elements (Zdd ,
Zdq, Zqd , and Zqq), the terminal currents (Id and Iq), and the
terminal voltage (Vt ) of different operating points have been
already obtained by N perturbation tests in the impedance
measurements. Substituting them into (23) and (24), we get
the following linear algebraic equations:

M1ρ = 0 (27)

and 
XT a2 = M2

T
[
bT1 bT2

]T
XT a4 = M2

T
[
bT3 bT4

]T (28)
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where M1 = [m11, m12, . . . ,m1N ]T and its size is N × 30;
X = [x1, x2, . . . , xN ]T and its size is N × 10; M2 =

[m21, m22, . . . ,m2N ]T and its size is N × 20; and the vector
ρ is the set of all the solutions of (27), representing either ρ1
or ρ2, and the size of the vector ρ is 30× 1.
iii) Next we solve the homogeneous linear equations (27).

Obviously, ρ1 and ρ2 are linearly independent, which means
that the dimension of the vector space of solutions of (27)
is at least 2. In view of this, the rank of M1 must be no
more than 28 (30 − 2 = 28). Furthermore, the vector space
of solutions of (27), i.e., ρ1 and ρ2 can be obtained only if
the rank of M1 reaches the maximum, and the total number
of perturbation experiments, N , should be large enough. For
convenience, we chooseN = 28 different groups of operating
points accompanying with their corresponding impedance
matrices from the IM measurement. Hence we obtain b1−4,
a1, and a3 from (27), and then substitute them into (28) to get
a2 and a4.

iv) Finally, based on these identified induced system
parameters of a1−4 and b1−4, we can easily calculate the IM
in (16), for any varying operating point.

It is worth noting that since the assumed composition of
x in (26) may be too sufficient, the addition of more terms
would add more new free variables to the solution vectors
ρ. Then the number of the basic solution set of (27) may be
more than two. In fact, under certain preconditions, any two
linearly independent solutions of (27) are equivalent to the
model parameter vectors ρ1 and ρ2 in calculating the FDIM.
For the detailed proof and precondition, see Appendix B.
If the precondition is not met, it means that the selection
of the operating points are inappropriate, and the known
operating points and their corresponding impedances need to
be increased. If the basic solution set of (27) is less than two,
it means that the assumed element of x is insufficient. Then
we need to increase the combination of operating points in x
in (26), such as the third-order terms (including I3d , I

3
q , V

3
t ,

I2d Iq, . . .). However, in all the studied cases in the paper, this
does not happen.

In addition, in order to ensure the accuracy of the FDIM,
any two sets of operating points used for the parameter iden-
tification should be significantly different from each other,
and the operating points near operating boundary should be
selected as possible as we can.

III. FURTHER IMPROVEMENT: CURVE-FITTING BASED
FDIM
Basically, we have already accomplished the IM prediction
by applying the above algorithm on any fixed disturbance
frequency and step by step on any frequency region which
we are interested in; this manner is similar to the impedance
measurement by frequency sweeping. Actually, we can also
realize this in a more efficient manner by using a transfer
function curve fitting technique. Namely we can estimate the
IMwithin the whole frequency region, once and for all, based
on several already-known IM data under certain frequencies

only, if we can predict the specific transfer function curve
form. For a comparison, we call the former method as point-
by-point FDIM, whereas the latter one as curve-fitting based
FDIM.

Below let us introduce the curve-fitting based FDIM in
detail. First, we assume that the highest power of s in the
numerator and denominator of the transfer function is n, and
write the transfer function as

f(s) =
p0 + p1s+ · · · + pnsn

q0 + q1s+ · · · + qnsn
(29)

where both pn 6= 0 and qn 6= 0 are not allowed.
Express (29) in the form of the homogeneous linear

equation:

kT p = hT q (30)

where 

p = [ p0 p1 · · · pn ]
T

q = [ q0 q1 · · · qn ]
T

k = [ 1 s · · · sn ]
T

h = [ f(s) f(s)s · · · f(s)sn ]
T

(31)

Then suppose that we have S group data of amplitude fre-
quency response under different disturbance frequency ω’s,
namely, s (s = jω) and f(s) in (30) are different for different
ω’s. Since there are 2n+ 2 unknown parameters: p0−n, q0−n
in (30), we may choose S = 2n+ 2 to have the square matrix
forms of K1, K2, H1, and H2, and obtain{

K1p = H1q

K2p = H2q
(32)

where the specific expressions of K1, K2, H1, and H2 are
presented in detail in Appendix C.

Since K1 is a Vandermonde matrix and the selected s’s in
K1 are independent, the determinant of K1 is not equal to
0 and hence K1 is invertible. Similarly, K2, H1, and H2 are
all invertible.

Rearranging (32), we have

Rq = q (33)

where

R = H−12 K2K
−1
1 H1 (34)

Here R is a complex matrix. Denote Rr as the real part and
Ri the imaginary part of R. As q is a real vector, we obtain

Rrq = q (35)

Therefore, q can be obtained by calculating the eigenvector
corresponding to Rr with an eigenvalue of 1. Furthermore,
p can be solved in any equation in (32), and hence the
parameters p and q in the transfer function in (29) can be fully
obtained. It should be noted that in the calculation, as we do
not know the specific form of the transfer function, we usually
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start from n = 1, increase n gradually, and stop the calculation
until the eigenvector corresponding to the eigenvalue 1 of Rr
in (35) is unique.

Wide numerical simulation results have shown that
the curve-fitting based FDIM can indeed greatly improve the
calculation efficiency, as it deals with the estimation of the
transfer function in a global manner. In contrast, the point-by-
point FDIM costs longer calculation time. Compared to the
classical frequency-domain transfer function curve fitting,
which is usually approximated by a rational function of fac-
torizing numerator and denominator; see, e.g., [30] and [31],
our curve-fitting based FDIM method is superb, when the
order of the transfer function is low.

IV. SIMULATION AND VERIFICATION
A. SYSTEM CONFIGURATION
Without losing generality, the system parameters in Fig. 1(a)
for a grid-tied VSC with an unknown control system are
chosen as follows: C = 98 mF , R = 0.1�, Lf = 75.77µF ,
and Udc = 1400V . The base values of the PCC bus voltage
and power are 690 V and 2 MVA, respectively.

To test the FDIM algorithm, we have studied several major
control forms, such as the PLL combined with ACC, DVC,
and TVC, the PLL combined with ACC and power flow
control, the droop control, the virtual synchronous generators
control, etc., as shown in Figs. 1 and 3. For the black-box
study, we do not know any information about the system
parameter and the control forms in advance. The whole sys-
tem is established and simulated in MATLAB/SIMULINK.
Totally 28 sets of operating points are necessary for the
parameter identification and the last operating point (set r =
29 in the bottom row) is used for verification; they are all
listed in Table 1. It is worth noting that in the simulations, the
information of any operating point of Vt , P (P= Vt Id ), andQ
(Q=−Vt Iq) is recorded instead of that of Id , Iq, and Vt , based
on the convention of electric power engineering. As Vd = Vt
and Vq = 0, only three variables are independent and both
(Vt , P, Q) and (Id , Iq, Vt ) can be used.

B. PREDICTION OF IM UNDER THE
ACC, DVC, TVC, AND PLL
The control strategies of the ACC, DVC, TVC, and PLL are
adopted, as shown in Fig. 1(b). Without losing generality, the
system parameters are chosen as: kp1 = 3.5, ki1 = 140, kp2 =
1, ki2 = 100, kp3 = 0.3, ki3 = 160, kp4 = 50, and ki4 = 2000.
First, the IM of theVSC under 28 sets of different operating

points are obtained by the frequency-scan perturbation tests,
the same as the usual IM measurement. These data serve
as our basis for the parameter identification of a1−4 and
b1−4. The perturbation frequencies fset are obtained by ran-
domly selecting from 1 Hz to 1000 Hz. Second, the induced
parameters, a1−4 and b1−4, at each disturbance frequency
are identified, as described in Section II. Then by using the
point-by-point FDIM, the impedance of each disturbance
frequency under the operating point of the 29th set (r = 29 in

TABLE 1. Operating points used to identification (r = 1− 28) and
verification (r = 29).

Table 1) is obtained. Finally, by using a faster curve-fitting
based FDIM, the IM under the operating point of the 29th
set can be predicted, as described in Section III. To clearly
exhibit the whole calculation process, a detailed flow chart of
the curve-fitting based FDIM prediction method is given in
Appendix D.

In simulations, we found that the running time of the FDIM
depends on the time consumed by impedance measurement.
If the test operating point is selected properly, for a single
frequency point, the running time of the FDIM is the time of
28 groups of impedance measurements.

As one typical example, the results of the frequency-scan
IM (FSIM) (solid line), point-by-point FDIM (cross points),
and curve-fitting based FDIM (dashed line) are compared
in Fig. 4, where clearly both estimations from the point-
by-point based FDIM and the curve-fitting based FDIM fit
with the FSIM from measurement almost perfectly. This
figure well verifies the accuracy of the FDIM. Note that
due to space constraints, only the result of Zdq is pre-
sented here and all other elements show similar excellent
results.

C. PREDICTION OF IM UNDER THE ACC, PFC, AND PLL
The control strategy is now changed to the ACC, PFC, and
PLL, as shown in Fig. 5.Without losing generality, the system
parameters are kpp = 0.0028, kip = 7, kp3 = 0.3, ki3 = 160,
kp4 = 50, and ki4 = 2000 [18].

The procedure to compute the FDIM is the same, and
the amplitude and phase response results by using the
frequency-scan IM, point-by-point FDIM, and curve-fitting
based FDIM are presented in Fig. 6. Again we see that
the IM prediction results match with the IM measurement
result well.
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FIGURE 4. Amplitude and phase responses of the impedance element
Zdq under the ACC, DVC, TVC, and PLL, for comparing the results of the IM
measurement (FSIM) and the IM predictions (point-by-point based FDIM
and curve-fitting based FDIM).

FIGURE 5. Control strategy of the ACC, PFC, and PLL.

FIGURE 6. Amplitude and phase responses of the impedance element
Zdq under the ACC, PFC, and PLL.

D. PREDICTION OF IM UNDER THE BASIC DROOP
CONTROL
In this section, the basic droop control is adopted, as shown in
Fig. 7. Since the small-signal output angle 1θ’s of the PSC,

FIGURE 7. Control strategy of the basic droop control.

FIGURE 8. Amplitude and phase responses of the impedance element
Zdq under the basic droop control.

the basic droop control, and the droop control with LPFs in
Figs. 3(a)-(c) are similar (see Appendix A), here we only
take the basic droop control as an example. Without losing
generality, we choose the following system parameters: kp =
0.02, kq = 0.1, kpv = 0.6, kiv = 700, kp3 = 0.4, ki3 = 15, and
ω0 = 2π × 50 [32], [33]. The amplitude and phase response
comparison results are presented in Fig. 8. Clearly although
there is a jump at around 500 Hz in its phase response curve,
their matching is still good.

E. PREDICTION OF IM UNDER THE VSG CONTROL
We have also tested our FDIM prediction algorithm by using
the virtual synchronous generator control [34], shown in
Fig. 9. VSG is a control scheme applied to inverters of
distributed power generation units by imitating the behavior
of a synchronous generator. Without losing generality, the
following system parameters are chosen: Dp = 10, Dq =
1/15, J = 0.5, and ω0 = 2π × 50 [35], [36]. The final
comparison results are shown in Fig. 10. Again they match
well.

V. EXPERIMENTAL RESULTS
A. TEST SYSTEM CONFIGURATION
In order to further verify the accuracy of the FDIM method,
we apply the algorithm to a larger power system consisting

VOLUME 10, 2022 1297



Q. Qiu et al.: Black-Box Impedance Prediction of Grid-Tied VSCs Under Variable Operating Conditions

FIGURE 9. Control strategy of the VSG control.

FIGURE 10. Amplitude and phase responses of the impedance element
Zdq under the VSG control.

of direct-drive wind turbine generators (WTGs). Different
with the previous tests in the article, here we consider the
case of non-constant active power on the DC-link capacitor,
which is more reasonable in practical scenarios. We carry
out hardware-in-the-loop (HIL) experiments based on the
RTLAB. The digital signal processing (DSP) used is a WTG
simulation produced by GoldWind company. In the experi-
ments, the RTLAB simulates the dynamics of power elec-
tronics and other electromagnetic components, and outputs
analog signal to the DSP control system to realize the control
algorithm and modulation, and then the DSP feedbacks the
PWM pulse signal to the RTLAB. In addition, because the
controller is an integrated dual-WTG controller, the operat-
ing point of the second WTG (WTG2) should be consistent
with that of the first WTG (WTG1) and the test is only
on the WTG1 to verify the accuracy of the fully decoupled
impedance model.

The whole experimental platform and the schematic dia-
gram are illustrated in Fig. 11. Without losing generality, the
system parameters are all listed in Table 2.

B. PREDICTION RESULTS OF THE FDIM
The procedure to compute the FDIM is completely consistent
with the above simulation. Due to the voltage amplitude and
power limitation in the experimental setup, again 28 sets
of operating points for identification were re-selected in the

TABLE 2. Parameters of the test system.

FIGURE 11. Photographs of the experimental setup (a) and its schematic
diagram (b).

experiment, as shown in Table 3. In order to verify the
accuracy of FDIM, three sets of operating points, shown in
Table 4, are arbitrarily chosen and used for the test. Since we
do not know the internal structure of the controller, we treat
it as a black box. Therefore, we like to verify whether the
predicted impedance at the given operating points is consis-
tent with the measured impedance. The normalized error ε is
defined as

ε =
1

4Nf

∑
Nf

2∑
i,j=1

|Zij,FDIM − Zij,FSIM |
|Zij,FSIM |

(36)
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TABLE 3. Operating points used to identification in the experiment.

TABLE 4. Operating points for verification.

FIGURE 12. Comparison of the amplitude and phase responses of the
four impedance elements of the WTG1 for set 1 in Table 4.

where Nf is the number of disturbance frequencies and the
final ε values are given in Table 4. We find that the error
between the predicted FDIM and the measured FSIM is
small; ε < 5%.

The detailed comparison results of amplitude and phase
response of these three sets of operating points are presented

FIGURE 13. Comparison of the amplitude and phase responses of the
four impedance elements of the WTG1 for set 2 in Table 4.

in Figs. 12, 13, and 14, respectively. In these plots, the red
solid line represents the impedance value from the measure-
ment, and the blue cross point represents the point-by-point
based FDIM. Although the prediction results for the point-
by-point FDIM are not as perfect as the simulation results
above, they still exhibit a sufficient accuracy. Now due to the
high order of the IM, the curve-fitting based FDIM does not
work.

VI. CONCLUSION
As is well-known, the impedance of a white-box device can
be theoretically derived, but that of a black-box device can
only be obtained from measurements. Until now the IM
measurement is generally believed as a dominant workable
method in electric power engineering. Since in the IM mea-
surement, the impedance is highly correlated with operating
points, it becomes difficult to quickly obtain impedances
for a large number of operating points. Especially, as any
impedance measurement is possible only for stable working
conditions and the generalized Nyquist criterion can only be
used when the impedance amplitude-frequency response is
known, it is difficult to predict its small-signal stability before
the VSC’s connection to the grid, whichmight be either stable
or unstable. All these might restrict the IM measurement
application in many practical problems.

The main purpose of this paper is to solve this challeng-
ing problem for a fast impedance prediction under both the
black-box and variable operating conditions, by relying on a
completely decoupled parameter identification algorithm and
several already-known impedance measurement data only.
In particular, based on this IM prediction algorithm, the
impedance becomes apparent immediately, on the basis of
only 28 independent IM measurements. The fully-decoupled
impedance prediction algorithm has been found accurate and
efficient, and it has been widely verified by the simulations
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TABLE 5. Comparison of different impedance methods.

and experiments. When the active power into the DC capaci-
tor side is not constant in a more realistic environment, such
as in the case of direct-drive wind turbines, it is found that the
algorithm alsoworkswell. In addition, as the transfer function
curve fitting algorithm, working as an auxiliary tool, is useful
only when the order of the system is low, the original point-
by-point based FDIM should be used in experiments.

Finally, to make the relation of our algorithm: FDIM, with
all existing major IMmethods in the literature clearer, a com-
parison is presented in Appendix E, with an accompany-
ing Table 5. Therefore, the developed impedance prediction
FDIM is expected to be capable of working as a supplemental
technique of the IM measurement. It is useful for studies on
relevant problems in various practical engineering environ-
ments, such as IM prediction for unknown operating condi-
tions, stability boundary determination, and small-signal fault
discrimination under a large amount of working conditions.

APPENDIX A
SMALL SIGNAL MODELING OF SYNCHRONIZATION
CONTROL PARTS IN A UNIFIED FORM
A. PHASE LOCKING LOOP (PLL)
For the PLL synchronization in Fig. 1(b), recall that the PLL
output angle in the small signal is

1θ = 1V c
q (kp4 + ki4/s)/s (37)

Substituting (37) into (5), we obtain

1θ =
kp4 + ki4/s

s+ Vd (kp4 + ki4/s)
1V s

q (38)

and rewrite it in a unified form,

1θ =
[
0 0

] [1I sd
1I sq

]
+

[
0

GPLLn
GPLLd

][
1V s

d

1V s
q

]
(39)

whereGPLLn = kp4+ki4/s andGPLLd = s+Vd (kp4+ki4/s).

B. POWER-SYNCHRONIZATION CONTROL OR BASIC
DROOP CONTROL
For the power-synchronization control in Fig. 3(a) and the
basic droop control in Fig. 3(b), their1θ ’s are the same after
the small-signal derivations. Namely,

1θ =
−Kp
s

(
[
Vd Vq

] [1I sd
1I sq

]
+
[
Id Iq

] [1V s
d

1V s
q

]
)

(40)

C. DROOP CONTROL WITH LOW-PASS FILTERS
Under the droop control with the low-pass filters in Fig. 3(c),
we have

1θ =
−Kpωp
s(s+ ωp)

(
[
Vd Vq

] [1I sd
1I sq

]
+
[
Id Iq

] [1V s
d

1V s
q

]
)

(41)

D. VIRTUAL SYNCHRONOUS GENERATOR CONTROL
Under the virtual synchronous generator control in Fig. 3(d),
we have

1θ =

−(
[
Vd Vq

] [1I sd
1I sq

]
+
[
Id Iq

] [1V s
d

1V s
q

]
)

(Js+ Dp)ω0s
(42)

1300 VOLUME 10, 2022



Q. Qiu et al.: Black-Box Impedance Prediction of Grid-Tied VSCs Under Variable Operating Conditions

FIGURE 14. Comparison of the amplitude and phase responses of the
four impedance elements of the WTG1 for set 3 in Table 4.

Therefore, for all these typical synchronization controls,
we can have a general relation between the synchronization
phasemismatch1θ and the small-signal variables of terminal
voltage and current, as shown in (7).

APPENDIX B
PROOF AND PRECONDITION OF EQUIVALENCE RELATION
BETWEEN THE MODEL PARAMETER VECTORS AND THE
SOLUTIONS OF EQUATIONS
Define vectors α and β

α =
[
bT1 bT2 aT1 aT2

]T
β =

[
bT3 bT4 aT3 aT4

]T (43)

They can be expressed as α = k1η1+ k2η2+· · ·+ knηn and
β = k ′1η1+ k

′

2η2+· · ·+ k
′
nηn, where ki and k

′
i , i = 1, 2, . . . , n

are constants and η1, η2, . . . , ηn are the fundamental solu-
tions of (27) and (28), they are linearly independent obvi-
ously.

Let Ej =
[
HT
1 HT

2 HT
3 HT

4

]
, j = 1, 2, 3, 4, where Hi =

I10×10 for i = j and Hi = 010×10 for i 6= j, i = 1, 2, 3, 4.
Then we obtain{

b1 = E1α, b2 = E2α, a1 = E3α, a2 = E4α,

b3 = E1β, b4 = E2β, a3 = E3β, a4 = E4β.
(44)

Substituting (43) and (44) into (17) gives

A0 = b1bT4 − b2b
T
3 = E1(αβT − βαT )ET2

=

n∑
i=1

n∑
j=1

(kik ′j − kjk
′
i )E1(ηiη

T
j − ηjη

T
i )E

T
2

A11 = a1bT4 − a3b
T
2 = E3(αβT − βαT )ET2

=

n∑
i=1

n∑
j=1

(kik ′j − kjk
′
i )E3(ηiη

T
j − ηjη

T
i )E

T
2

FIGURE 15. Flow chart for the point-by-point based FDIM prediction
algorithm, mainly consisting of the impedance prediction part (left) and
the curve fitting part (right).

A12 = a2bT4 − a4b
T
2 = E4(αβT − βαT )ET2

=

n∑
i=1

n∑
j=1

(kik ′j − kjk
′
i )E4(ηiη

T
j − ηjη

T
i )E

T
2

A21 = a3bT1 − a1b
T
3 = E1(αβT − βαT )ET3

=

n∑
i=1

n∑
j=1

(kik ′j − kjk
′
i )E1(ηiη

T
j − ηjη

T
i )E

T
3

A22 = a4bT1 − a2b
T
3 = E1(αβT − βαT )ET4
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=

n∑
i=1

n∑
j=1

(kik ′j − kjk
′
i )E1(ηiη

T
j − ηjη

T
i )E

T
4 (45)

Take the calculation of Zdd as an example. After substitut-
ing (45) into (16), we have

Zdd =
xTA11x
xTA0x

=

n∑
i=1

n∑
j=1

(kik ′j − kjk
′
i )x

TE3(ηiηTj − ηjη
T
i )E

T
2 x

n∑
i=1

n∑
j=1

(kik ′j − kjk
′
i )x

TE1(ηiηTj − ηjη
T
i )E

T
2 x

(46)

To make Zdd independent of the coefficients k1, k2, . . . , kn
and k ′1, k

′

2, . . . , k
′
n, only when

xTE3(ηiηTj −ηjη
T
i )E

T
2 x

xTE1(ηiηTj −ηjη
T
i )E

T
2 x

is equal in

any value of i and j, then Zdd =
xTE3(ηiηTj −ηjη

T
i )E

T
2 x

xTE1(ηiηTj −ηjη
T
i )E

T
2 x

, for i, j =

1, 2, . . . , n.
Then, the precondition is that for η1, η2, . . . , ηn, any two of

the solutions as α and β are substituted into the Zdd calculated
by (22) and (21) are equal.

APPENDIX C
The expressions of K1, K2, H1, and H2 in (32) are as follows:

K1 =


1 s0 · · · sn0

1 s1 · · · sn1
...
...
. . .

...

1 sn · · · snn

 (47)

K2 =


1 sn+1 · · · snn+1

1 sn+2 · · · snn+2
...

...
. . .

...

1 s2n+1 · · · sn2n+1

 (48)

H1 =


f(s0) · 1 f(s0) · s0 · · · f(s0) · s

n
0

f(s1) · 1 f(s1) · s1 · · · f(s1) · s
n
1

...
...

. . .
...

f(sn) · 1 f(sn) · sn · · · f(sn) · s
n
n

 (49)

H2 =


f(sn+1) · 1 f(sn+1) · sn+1 · · · f(sn+1) · s

n
n+1

f(sn+2) · 1 f(sn+2) · sn+2 · · · f(sn+2) · s
n
n+2

...
...

. . .
...

f(s2n+1) · 1 f(s2n+1) · s2n+1 · · · f(s2n+1) · s
n
2n+1


(50)

APPENDIX D
FLOW CHART FOR THE FDIM
A flow chart for illustrating the major steps of the point-by-
point based FDIM is shown in Fig. 15.

APPENDIX E
COMPARISON OF DIFFERENT IMPEDANCE
ACQUISITION METHODS
In order to make the properties of FDIM clearer, the advan-
tages and disadvantages with five other major impedance
identification methods are presented in Tab. 5, including the
FSIM, artificial neural network-based impedance estimation
(ANN-based IE) [24], multidimensional interpolation based
impedance estimation method (MI-based IE) [25] gray-box-
based controller parameter estimation (GCPE) [23], and the
nearly decoupled impedance model (NDIM) [26]. The FSIM
is one of experiment-driven and black-box impedance mea-
surement methods without systematic error. It is simple and
accurate. What is more, it has wide and mature applica-
tions in engineering practice. However, it cannot be used
to predict impedance values. The ANN-based IE is one of
data-driven and black-box impedance prediction methods
with systematic error, but it lacks physical meanings and is
often greatly influenced by the training data. The MI-based
IE is one of data-driven and black-box impedance prediction
methods with systematic error as ANN-based IE. It also
lacks physical meanings and the predicted values outside the
interpolation interval are inaccurate. The GCPE is one of
model-driven and gray-box impedance identification meth-
ods without systematic error, but the control structures must
be known in advance. The NDIM is one of model-driven and
black-box impedance prediction methods without systematic
error. However, it is valid under the PLL synchronization
control structure, with the dynamic behaviors of the DC side
completely neglected. In contrast, the proposed FDIM in this
paper is a model-driven and black-box impedance method
without systematic error. As we have seen, besides the VSC
and VSG, it is also valid for wind turbines and other control
structures. Hence it is unique for electric power engineering
applications.
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